Note
Click here to download the full example code
doc_model_savemodelresult.pyΒΆ
Out:
[[Model]]
Model(gaussian)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 29
# data points = 101
# variables = 3
chi-square = 3.40883599
reduced chi-square = 0.03478404
Akaike info crit = -336.263713
Bayesian info crit = -328.418352
[[Variables]]
amplitude: 8.88022277 +/- 0.11359552 (1.28%) (init = 5)
center: 5.65866081 +/- 0.01030506 (0.18%) (init = 5)
sigma: 0.69765538 +/- 0.01030503 (1.48%) (init = 1)
fwhm: 1.64285285 +/- 0.02426649 (1.48%) == '2.3548200*sigma'
height: 5.07800352 +/- 0.06495781 (1.28%) == '0.3989423*amplitude/max(2.220446049250313e-16, sigma)'
[[Correlations]] (unreported correlations are < 0.100)
C(amplitude, sigma) = 0.577
##
import warnings
warnings.filterwarnings("ignore")
##
# <examples/doc_model_savemodelresult.py>
import numpy as np
from lmfit.model import save_modelresult
from lmfit.models import GaussianModel
data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]
gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=5, sigma=1)
save_modelresult(result, 'gauss_modelresult.sav')
print(result.fit_report())
# <end examples/doc_model_savemodelresult.py>
Total running time of the script: ( 0 minutes 0.033 seconds)