Nearest neighbor statistics in a random alloy
Dear all, I am fitting a Pt9Co1 foil sample. I assume the sample to be basically fcc platinum with every 10th atom randomly replaced by cobalt. Here are the assumptions I make: 1. every atom has 12 nearest neighbors 2. every Pt atom has (on average) 10.7 Pt nearest neighbors and 1.3 Co nearest neighbors 3. every Co atom has (on average) 11.7 Pt nearest neighbors and 0.3 Co nearest neighbors I have been told that assumptions 2 and 3 are not precise. Here is what I'm confused about: In order to determine the number of Pt or Co nearest neighbors I looked at an ensemble of 13 atoms: 1 absorber and 12 scatterers/nearest neighbors. I assume that the Pt/Co ratio in this ensemble is 9/1 and therefor, statistically, 1.3 out of those 13 atoms should be Co. That means that if Co is the central atom only 0.3 Co atoms are remaining for the 12 nearest neighbors. On the other hand, if Pt is the central atom, (all) 1.3 Co atoms are remaining for the 12 nearest neighbors. I have been told that the ratio of Pt/Co should be 9/1 in the 12 nearest neighbors, not in the 12 atoms including the central atom (quote: "because we have a bulk sample"). But I do not understand why. Can someone please explain the correct answer to me? With kind regards, Felix
Hi Felix,
Your assumptions are not correct because the model you use is not a
representative unit cluster model. Basically the following three equations
are always correct for foil:
NPt-Pt+NPt-Co=12
NCo-Co+NCo-Pt=12
NCo-Pt/NPt-Co=9
And the specific values for the coordination number can be determined if
you know the orderness of the structure. As for the random distribution of
Pt and Co in foil,
NPt-Pt/NPt-Co=9
or equivalently,
NCo-Pt/NCo-Co=9,
Then you can get
NPt-Pt=10.8, and NPt-Co=1.2
The results will be different if the structure is ordered.
Regards,
On Fri, Jun 23, 2017 at 9:02 AM, Felix E. Feiten
Dear all,
I am fitting a Pt9Co1 foil sample. I assume the sample to be basically fcc platinum with every 10th atom randomly replaced by cobalt.
Here are the assumptions I make:
1. every atom has 12 nearest neighbors
2. every Pt atom has (on average) 10.7 Pt nearest neighbors and 1.3 Co nearest neighbors
3. every Co atom has (on average) 11.7 Pt nearest neighbors and 0.3 Co nearest neighbors
I have been told that assumptions 2 and 3 are not precise. Here is what I'm confused about:
In order to determine the number of Pt or Co nearest neighbors I looked at an ensemble of 13 atoms: 1 absorber and 12 scatterers/nearest neighbors. I assume that the Pt/Co ratio in this ensemble is 9/1 and therefor, statistically, 1.3 out of those 13 atoms should be Co. That means that if Co is the central atom only 0.3 Co atoms are remaining for the 12 nearest neighbors. On the other hand, if Pt is the central atom, (all) 1.3 Co atoms are remaining for the 12 nearest neighbors.
I have been told that the ratio of Pt/Co should be 9/1 in the 12 nearest neighbors, not in the 12 atoms including the central atom (quote: "because we have a bulk sample").
But I do not understand why.
Can someone please explain the correct answer to me?
With kind regards,
Felix
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
... and if the random alloy is a nanoparticle, the equations are modified
(they will be the same as in Qingying's email in the bulk alloy limit and
if the NPs are sufficiently large).
See here, Eq. (11), for more details:
Chem. Soc. Reviews *41*, 8163-8178 (2012)
https://you.stonybrook.edu/frenkel/files/2016/10/Bimetallics-CSR-19p1ya2.pdf
Anatoly
-------------------------------------------------------------------
On Fri, Jun 23, 2017 at 9:28 AM, Qingying Jia
Hi Felix,
Your assumptions are not correct because the model you use is not a representative unit cluster model. Basically the following three equations are always correct for foil:
NPt-Pt+NPt-Co=12
NCo-Co+NCo-Pt=12
NCo-Pt/NPt-Co=9
And the specific values for the coordination number can be determined if you know the orderness of the structure. As for the random distribution of Pt and Co in foil,
NPt-Pt/NPt-Co=9
or equivalently,
NCo-Pt/NCo-Co=9,
Then you can get
NPt-Pt=10.8, and NPt-Co=1.2
The results will be different if the structure is ordered.
Regards,
On Fri, Jun 23, 2017 at 9:02 AM, Felix E. Feiten
wrote:
Dear all,
I am fitting a Pt9Co1 foil sample. I assume the sample to be basically fcc platinum with every 10th atom randomly replaced by cobalt.
Here are the assumptions I make:
1. every atom has 12 nearest neighbors
2. every Pt atom has (on average) 10.7 Pt nearest neighbors and 1.3 Co nearest neighbors
3. every Co atom has (on average) 11.7 Pt nearest neighbors and 0.3 Co nearest neighbors
I have been told that assumptions 2 and 3 are not precise. Here is what I'm confused about:
In order to determine the number of Pt or Co nearest neighbors I looked at an ensemble of 13 atoms: 1 absorber and 12 scatterers/nearest neighbors. I assume that the Pt/Co ratio in this ensemble is 9/1 and therefor, statistically, 1.3 out of those 13 atoms should be Co. That means that if Co is the central atom only 0.3 Co atoms are remaining for the 12 nearest neighbors. On the other hand, if Pt is the central atom, (all) 1.3 Co atoms are remaining for the 12 nearest neighbors.
I have been told that the ratio of Pt/Co should be 9/1 in the 12 nearest neighbors, not in the 12 atoms including the central atom (quote: "because we have a bulk sample").
But I do not understand why.
Can someone please explain the correct answer to me?
With kind regards,
Felix
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
Dear Qingying and Anatoly, thank you very much for your quick help! It is very much appreciated. With kind regards Felix On 23/06/2017 22:57, Anatoly Frenkel wrote:
... and if the random alloy is a nanoparticle, the equations are modified (they will be the same as in Qingying's email in the bulk alloy limit and if the NPs are sufficiently large). See here, Eq. (11), for more details:
Chem. Soc. Reviews *41*, 8163-8178 (2012) https://you.stonybrook.edu/frenkel/files/2016/10/Bimetallics-CSR-19p1ya2.pdf
Anatoly -------------------------------------------------------------------
On Fri, Jun 23, 2017 at 9:28 AM, Qingying Jia
mailto:qjia@hawk.iit.edu> wrote: Hi Felix,
Your assumptions are not correct because the model you use is not a representative unit cluster model. Basically the following three equations are always correct for foil:
NPt-Pt+NPt-Co=12
NCo-Co+NCo-Pt=12
NCo-Pt/NPt-Co=9
And the specific values for the coordination number can be determined if you know the orderness of the structure. As for the random distribution of Pt and Co in foil,
NPt-Pt/NPt-Co=9
or equivalently,
NCo-Pt/NCo-Co=9,
Then you can get
NPt-Pt=10.8, and NPt-Co=1.2
The results will be different if the structure is ordered.
Regards,
On Fri, Jun 23, 2017 at 9:02 AM, Felix E. Feiten
mailto:feiten@cat.hokudai.ac.jp> wrote: Dear all,
I am fitting a Pt9Co1 foil sample. I assume the sample to be basically fcc platinum with every 10th atom randomly replaced by cobalt.
Here are the assumptions I make:
1. every atom has 12 nearest neighbors
2. every Pt atom has (on average) 10.7 Pt nearest neighbors and 1.3 Co nearest neighbors
3. every Co atom has (on average) 11.7 Pt nearest neighbors and 0.3 Co nearest neighbors
I have been told that assumptions 2 and 3 are not precise. Here is what I'm confused about:
In order to determine the number of Pt or Co nearest neighbors I looked at an ensemble of 13 atoms: 1 absorber and 12 scatterers/nearest neighbors. I assume that the Pt/Co ratio in this ensemble is 9/1 and therefor, statistically, 1.3 out of those 13 atoms should be Co. That means that if Co is the central atom only 0.3 Co atoms are remaining for the 12 nearest neighbors. On the other hand, if Pt is the central atom, (all) 1.3 Co atoms are remaining for the 12 nearest neighbors.
I have been told that the ratio of Pt/Co should be 9/1 in the 12 nearest neighbors, not in the 12 atoms including the central atom (quote: "because we have a bulk sample").
But I do not understand why.
Can someone please explain the correct answer to me?
With kind regards,
Felix
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov mailto:Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov mailto:Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit
participants (3)
-
Anatoly Frenkel
-
Felix E. Feiten
-
Qingying Jia