Well, I’ll take a shot. Looks like the mirror angle is totally fubared, you are getting Bragg peaks from the coating or substrate that are giving you the peaks in Io. Since you have no idea what angle those are going through Io, they are unlikely to make it into either the sample or It. Since those photons are removed from the beam hitting the sample, they would show up as intensity dips in It. I’d bet that most (all?) of the reflected beam is not going into the sample. I’m kind of surprised It signal is as clean as it is, but then I don’t know the gains on either measurement amplifiers. I couldn’t find a flat mirror angle that would cause the cutoff at 12870? eV but since it is a collimating mirror who knows what range of angles were actually being hit. Jeff Terry Interim Chair, Department of Biology Interim Chair, Department of Social Sciences Professor of Physics Professor of Mechanical, Materials, and Aerospace Engineering Editor, Applied Surface Science Illinois Institute of Technology 3101 S. Dearborn St. Chicago IL 60616 630-252-9708
On Jun 14, 2023, at 7:27 PM, Anatoly Frenkel
wrote: Hello, all. It is a low- to medium- level brain teaser.
Pt-coated collimating mirror was in place for Pd K-edge measurement, but Au L3-edge of Pd-Au alloy was measured (for testing purposes). I0 and It detectors were both Ar filled ionization chambers. Because of the energy dependence of reflectivity of the Pt mirror, I0 intensity was strongly nonlinear (blue curve). However, the transmission intensity in the It detector was almost linear (red curve). Why?
Anatoly
_______________________________________________ Ifeffit mailing list Ifeffit@millenia.cars.aps.anl.gov http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit Unsubscribe: http://millenia.cars.aps.anl.gov/mailman/options/ifeffit