Dear All, I sent a related question in the month of Dec but it seems that the question did not appeared on list because of mailbox being full, as we all have received an email. Since mailing list is started again I am sending this question once more. My question is actually regarding finding out the nanoparticle size. In this respect, I am referring to Harris's work in which by using a simple equation we can roughly estimate the nanoparticle size J. Appl. Phys., Vol. 94, No. 1, 1 July 2003 Now the question is that in this paper and another paper I found online as well, it refers to Nnano and Nbulk. I am guessing that this is basically coordination number of nanoparticle and bulk. But my first question is how do I calculate it?? e.g. I am working on Pd K-edge. So should I fit Pd foil with Pd crystal data and get the CN? but that would be 12 anyways. So would Nbulk be 12 in that case? and what will be Nnano then? In another context, CN is proportional to amplitude, so in that case is it directly proportional? as in, can I simply replaced in formula, Nbulk/Nnano with Amplitudebluk/amplitudenano? Third thing is that, if above is true then how should/can I calculated the amplitude? isnt that amplitude is always calculated by Feff? if so could someone help me with the procedure to do so? How will I know amplitude for nanoparticles, because I cannot have FEFF for nanoparticles, right? I went through lot of material, however, so far my calculations give me a solution that is vaguely correlated to TEM images. The TEM value is about 2nm (rouhgly 20 angstrom). my current values I am getting by solving the equation by my current understanding is only 2Ao. about 10 times less. What I am doing is simply plotting the crude data in athena to get x(R) Vs radial distance graph, calculate A-3 for nanoparticles and bulk and using this as amplitudes. It is possible that I may be doing something totally irrelevant, so please help me in this aspect. Thank you Sincerely Pushkar -- Best Regards, Pushkar Shejwalkar. Post-doctoral -Researcher, Tokyo Engineering University, Tokyo-to Japan