# investigate inherent noise in a Feff.dat file # result: noise is at the 1.e-6 level, slightly worse than # single precision, and consistent with the digitation in # the Feff.dat file and linear interpolation # p1 = feffpath('feff0001.dat') p1.e0 = 0 p1.sigma2 = 0.01 # 13 path2chi(p1) # eps_off = 8.6e-6 sum = p1.chi ## + 0* random.normal(size=len(p1.chi), scale=scale) fdat = group(k=p1.k, chi=sum) trans = feffit_transform(kmin=4, kmax=16, kweight=3, dk=8, window='hanning', rmin=2., rmax=3.8) d1 = feffit_dataset(data=fdat, pathlist=[p1], transform=trans) d1.estimate_noise() trans._xafsft(fdat.chi, group=fdat, rmax_out=32) print( 'noise estimate k = ', d1.epsilon_k) print( 'noise estimate r = ', d1.epsilon_r, log(d1.epsilon_r)) newplot(fdat.r, (fdat.chir_mag), xmax=30, win=1) newplot(fdat.k, fdat.chi*fdat.k**2, win=2) plot(fdat.k, fdat.kwin*2.0, win=2) newplot(fdat.r, log(fdat.chir_mag), xmax=30, win=3)