## ## here, we test / demonstrate interpolation, including ## data that is outside the original x-range of the data. ## ## note that the quality of the extrapolation from the ## different interpolation 'kind' arguments depends greatly ## on the data -- here, on the value of tau. ## ## For slowly varying data, all methods can extrapolate ## one or two steps outside the range of the original data ## acceptably well. Beyond that, or for quickly varying ## data, no easy generalizations can be made about one ## extrapolation being generally better than another. ## #py: import numpy as np from wxmplot.interactive import newplot, plot from larch.math import interp offset = 0.127890 # tau = 28.00 # tau = 8.00 tau = 2.00 # tau = 0.75 # tau = 0.333 x = np.linspace(40., 44., 9) y = offset + np.sin(x/tau) newplot(x, y, linewidth=0.5, marker='o', color='blue', label='orig', show_legend=True) # extends below data range: xnew = np.linspace(38.0, 42.5, 47) + 0.3333 # extends above data range: # xnew = linspace(48.0, 52.5, 23) + 0.3333 y0 = offset + np.sin(xnew/tau) # predicted y1 = interp(x, y, xnew, kind='linear') y2 = interp(x, y, xnew, kind='quadratic') y3 = interp(x, y, xnew, kind='cubic') plot(xnew, y0, style='solid', color='goldenrod', marker='square', markersize=2, linewidth=2, label='true sinewave') plot(xnew, y1, style='short dashed', color='red', marker='+', label='linear') plot(xnew, y2, style='solid', color='dark green', label='quadratic') plot(xnew, y3, style='short dashed', color='black', marker='+', label='cubic')