{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Struct2XAS examples: from CIF/XYZ to XANES/EXAFS simulations with FDMNES and FEFF\n", "\n", "- Authors: Beatriz G. Foschiani and Mauro Rovezzi\n", "- Contact: mauro.rovezzi@esrf.fr\n", "- Last modified: August 2023\n", "\n", "Here we provide various examples on the usage of `larch.xrd.struct2xas` module." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: Zn K-edge XANES of wurtzite ZnO with FDMNES from a CIF file\n", "\n", "This example shows how to use the `Struct2XAS` class to convert a CIF file to a FDMNES XANES input. We will simulate Zn K-edge XAS of ZnO. \n", "\n", "- The input structure is taken from the Materials Project database: [mp-2133](https://legacy.materialsproject.org/materials/mp-2133/).\n", "- The experimental data are taken from the SSHADE/FAME database: [DOI:10.26302/SSHADE/EXPERIMENT_ST_20180418_001](https://www.sshade.eu/data/EXPERIMENT_ST_20180418_001)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Import the main class and instantiate it with the CIF file and the name of the absorbing element" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : Frames: 1, Absorbing sites: 1. (Indexes for frames and abs_sites start at 0)\n" ] } ], "source": [ "from larch.xrd.struct2xas import Struct2XAS\n", "mat_obj = Struct2XAS(file = \"../structuredata/struct2xas/ZnO_mp-2133.cif\", abs_atom=\"Zn\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "to get the information about absorbing site" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idx_absspeciefrac_coordswyckoff_sitecart_coordsoccupancyidx_in_struct
0Zn[0.3333, 0.6667, 0.4995]2b[-1.6446 0.9495 -2.6505]10
\n" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# information about absorbing site as pandas.DataFrame\n", "mat_obj.get_abs_sites_info()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "the same, more programmatically" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[0,\n", " 'Zn',\n", " [0.3333, 0.6667, 0.4995],\n", " '2b',\n", " array([-1.6446, 0.9495, -2.6505]),\n", " 1,\n", " 0]]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat_obj.get_abs_sites()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Getters and setters are available for changing the absorber site being considered. We can use the methods `set_abs_site` and `get_abs_site`. This structure has only one absorber site (an example with multiple sites is given later)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "mat_obj.set_abs_site(0)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "to get information on the coordination environment around absorber atom" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coord. Env. from absorber atom: Zn at site 0\n", "['T:4', 'T:5']\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ElementDistance
0(O)2.00418
1(O)2.00425
2(O)2.00426
3(O)2.01242
4(O)3.29440
\n", "
" ], "text/plain": [ " Element Distance\n", "0 (O) 2.00418\n", "1 (O) 2.00425\n", "2 (O) 2.00426\n", "3 (O) 2.01242\n", "4 (O) 3.29440" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat_obj.get_coord_envs_info()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "or programmatically" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[['Coord. Env. for Site 0',\n", " [{'ce_symbol': 'T:4',\n", " 'ce_fraction': 0.8596848561093451,\n", " 'csm': 0.00569144245172932,\n", " 'permutation': [0, 1, 2, 3]},\n", " {'ce_symbol': 'T:5',\n", " 'ce_fraction': 0.1403151438906549,\n", " 'csm': 4.062381866591053,\n", " 'permutation': [0, 1, 4, 2, 3]}],\n", " [{'site': PeriodicNeighbor: O3 (O) (-3.289, 1.899, -3.291) [0.6667, 1.333, 0.6202],\n", " 'index': 3,\n", " 'image_cell': array([0, 1, 0])},\n", " {'site': PeriodicNeighbor: O3 (O) (-6.423e-07, 1.899, -3.291) [-0.3333, 0.3333, 0.6202],\n", " 'index': 3,\n", " 'image_cell': array([-1, 0, 0])},\n", " {'site': PeriodicNeighbor: O2 (O) (-1.645, 0.9495, -0.6381) [0.3333, 0.6667, 0.1202],\n", " 'index': 2,\n", " 'image_cell': array([0, 0, 0])},\n", " {'site': PeriodicNeighbor: O3 (O) (-1.645, -0.9495, -3.291) [0.6667, 0.3333, 0.6202],\n", " 'index': 3,\n", " 'image_cell': array([0, 0, 0])},\n", " {'site': PeriodicNeighbor: O2 (O) (-1.645, 0.9495, -5.945) [0.3333, 0.6667, 1.12],\n", " 'index': 2,\n", " 'image_cell': array([0, 0, 1])}]]]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat_obj.get_coord_envs()\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "It is possible to visualize the local environment at a ginen radius from the absorber" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n jupyter labextension install jupyterlab_3dmol

\n
\n", "text/html": [ "
\n", "

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n", " jupyter labextension install jupyterlab_3dmol

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : {'Zn': 'red', 'O': 'green'}\n" ] } ], "source": [ "mat_obj.visualize(radius=2.5)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "To create the FDMNES input file using the default template in a temporary directory" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : written FDMNES input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-nn_wjppk/fdmnes/ZnO_mp-2133/Zn/frame0/site0/job_inp.txt\n" ] } ], "source": [ "mytemplate = None #: uses default FDMNES XANES template (-> `larch/xrd/templates/fdmnes.tmpl`)\n", "mypath = None #: creates a default structure -> \"mydir/fdmnes/input_structure/abs_atom/siteN/\"\n", "mat_obj.make_input_fdmnes(radius=7, green=False, template=mytemplate, parent_path=mypath)\n", "mat_obj.fdmnes_dir = mat_obj.outdir" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "To show the created input file" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "! FDMNES input file generated by Struct2XAS\n", "\n", "header\n", "\n", "comment\n", "cif file name: ZnO_mp-2133\n", "creation date:2023-09-23_1224\n", "\n", "filout\n", "\n", "job\n", "\n", "range\n", "-30.0 0.1 70.0 1.0 100 \n", "\n", "radius\n", "7\n", "\n", "quadrupole\n", "\n", "density\n", "\n", "SCF\n", "\n", "\n", "\n", "absorber\n", "1\n", "\n", "spgroup\n", "186\n", "\n", "\n", "\n", "crystal\n", "3.28910248 3.28910248 5.30682100 90.00000000 90.00000000 120.00000000\n", "\n", "30 0.33333333 0.66666667 0.49945200 Zn\n", " 8 0.33333333 0.66666667 0.12023800 O\n", "\n", "convolution\n", "\n", "end\n" ] } ], "source": [ "! cat {mat_obj.fdmnes_dir}/job_inp.txt" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Run FDMNES (refer to FDMNES documentation if needed)\n", "\n", "```python\n", "#Example how to run FDMNES at the ESRF via SLURM \n", "input = mat_ojb.parent_path\n", "! cd {input}; subfdmnes -c 30\n", "```\n", "\n", "The output files created by FDMNES will be:\n", "- `job.txt`: non-convoluted spectra\n", "- `job_conv.txt`: convoluted spectra (by fdmnes with default parameters)\n", "- `job_out.txt`: FDMNES output during the execution of the program (NOTE: this is created by the SLURM submission script)\n", "- `job_sd0.txt`: file with the projected density of states information\n", "- `job_bav.txt`: file with large simulation infos (better to compress it or remove)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Please, refer to [XANES_Convolution.ipynb](./XANES_Convolution.ipynb) for a comparison of the simulated data with experimental one." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1a: Zn K-edge EXAFS with FEFF\n", "\n", "We can also simulate the EXAFS spectrum with FEFF" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-nn_wjppk/feff/ZnO_mp-2133/Zn/frame0/site0/feff.inp\n" ] } ], "source": [ "mytemplate = None #: uses default FEFF EXAFS template (-> `larch/xrd/templates/feff_exafs.tmpl`)\n", "mypath = mat_obj.parent_path #: if None creates a default structure -> \"mydir/feff/input_structure/abs_atom/frameN/siteN/\"\n", "mat_obj.make_input_feff(radius=7, template=mytemplate, parent_path=mypath)\n", "mat_obj.feff_dir = mat_obj.outdir" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "to show the input file" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* FEFF8* input file generated by Struct2XAS\n", "\n", "TITLE ZnO_mp-2133\n", "TITLE 2023-09-23_1225\n", "TITLE site 0\n", "\n", "* edge energy = eV\n", "EDGE K\n", "S02 0.0\n", "\n", "* pot xsph fms paths genfmt ff2chi\n", "CONTROL 1 1 1 1 1 1\n", "PRINT 1 0 0 0 0 0\n", "\n", "*** ixc=0 means to use Hedin-Lundqvist\n", "* ixc [ Vr Vi ]\n", "EXCHANGE 0\n", "\n", "* r_scf [ l_scf n_scf ca ]\n", "*SCF 5.0\n", "\n", "RPATH 7\n", "EXAFS 20\n", "NLEG 6\n", "\n", "* EXAFS damping, to mimic the structural disorder\n", "* SIG2 0.005\n", "\n", "* Debye-Waller factors\n", "* DEBYE 0 0\n", "\n", "* emin emax eimag\n", "*LDOS -30 20 0.1\n", "\n", "\n", "POTENTIALS\n", "\n", "* ipot Z tag [lmax1 lmax2 xnatph sphinph]\n", " 0 30 Zn(abs)\n", " 2 8 O\n", " 1 30 Zn \n", "\n", "ATOMS\n", "\n", "* x y z ipot tag distance occupancy\n", " 0.000048 -0.000018 -0.000002 0 Zn(abs) 0.00000 *1 \n", " -1.644504 0.949464 -0.640992 2 O 2.00418 *1 \n", " 0.000049 -1.898982 -0.640992 2 O 2.00425 *1 \n", " 1.644599 0.949464 -0.640992 2 O 2.00426 *1 \n", " 0.000048 -0.000018 2.012418 2 O 2.01242 *1 \n", " -1.644504 0.949464 -2.653413 1 Zn 3.26289 *1 \n", " -1.644504 0.949464 2.653408 1 Zn 3.26289 *1 \n", " 0.000049 -1.898982 -2.653413 1 Zn 3.26293 *1 \n", " 0.000049 -1.898982 2.653408 1 Zn 3.26293 *1 \n", " 1.644599 0.949464 -2.653413 1 Zn 3.26294 *1 \n", " 1.644599 0.949464 2.653408 1 Zn 3.26294 *1 \n", " -3.289055 -0.000018 -0.000002 1 Zn 3.28905 *1 \n", " -1.644504 2.848428 -0.000002 1 Zn 3.28906 *1 \n", " -1.644502 -2.848464 -0.000002 1 Zn 3.28909 *1 \n", " 1.644599 2.848428 -0.000002 1 Zn 3.28911 *1 \n", " 1.644601 -2.848464 -0.000002 1 Zn 3.28914 *1 \n", " 3.289151 -0.000018 -0.000002 1 Zn 3.28915 *1 \n", " 0.000048 -0.000018 -3.294403 2 O 3.29440 *1 \n", " -3.289054 -1.898982 -0.640992 2 O 3.85161 *1 \n", " 0.000047 3.797910 -0.640992 2 O 3.85162 *1 \n", " 3.289152 -1.898982 -0.640992 2 O 3.85169 *1 \n", " -3.289055 -0.000018 2.012418 2 O 3.85587 *1 \n", " -1.644504 2.848428 2.012418 2 O 3.85587 *1 \n", " -1.644502 -2.848464 2.012418 2 O 3.85590 *1 \n", " 1.644599 2.848428 2.012418 2 O 3.85591 *1 \n", " 1.644601 -2.848464 2.012418 2 O 3.85594 *1 \n", " 3.289151 -0.000018 2.012418 2 O 3.85595 *1 \n", " -3.289054 -1.898982 -2.653413 1 Zn 4.63299 *1 \n", " -3.289054 -1.898982 2.653408 1 Zn 4.63299 *1 \n", " 0.000047 3.797910 -2.653413 1 Zn 4.63300 *1 \n", " 0.000047 3.797910 2.653408 1 Zn 4.63300 *1 \n", " 3.289152 -1.898982 -2.653413 1 Zn 4.63306 *1 \n", " 3.289152 -1.898982 2.653408 1 Zn 4.63306 *1 \n", " -3.289055 -0.000018 -3.294403 2 O 4.65521 *1 \n", " -1.644504 2.848428 -3.294403 2 O 4.65521 *1 \n", " -1.644502 -2.848464 -3.294403 2 O 4.65524 *1 \n", " 1.644599 2.848428 -3.294403 2 O 4.65525 *1 \n", " 1.644601 -2.848464 -3.294403 2 O 4.65527 *1 \n", " 3.289151 -0.000018 -3.294403 2 O 4.65528 *1 \n", " -1.644504 0.949464 4.665829 2 O 5.03744 *1 \n", " 0.000049 -1.898982 4.665829 2 O 5.03747 *1 \n", " 1.644599 0.949464 4.665829 2 O 5.03747 *1 \n", " -4.933607 0.949464 -0.640992 2 O 5.06486 *1 \n", " -3.289056 3.797910 -0.640992 2 O 5.06487 *1 \n", " -1.644502 -4.747428 -0.640992 2 O 5.06491 *1 \n", " 3.289150 3.797910 -0.640992 2 O 5.06493 *1 \n", " 1.644601 -4.747428 -0.640992 2 O 5.06494 *1 \n", " 4.933702 0.949464 -0.640992 2 O 5.06496 *1 \n", " 0.000048 -0.000018 -5.306823 1 Zn 5.30682 *1 \n", " 0.000048 -0.000018 5.306819 1 Zn 5.30682 *1 \n", " -4.933607 0.949464 -2.653413 1 Zn 5.68177 *1 \n", " -4.933607 0.949464 2.653408 1 Zn 5.68177 *1 \n", " -3.289056 3.797910 -2.653413 1 Zn 5.68178 *1 \n", " -3.289056 3.797910 2.653408 1 Zn 5.68178 *1 \n", " -1.644502 -4.747428 -2.653413 1 Zn 5.68182 *1 \n", " -1.644502 -4.747428 2.653408 1 Zn 5.68182 *1 \n", " 3.289150 3.797910 -2.653413 1 Zn 5.68183 *1 \n", " 3.289150 3.797910 2.653408 1 Zn 5.68183 *1 \n", " 1.644601 -4.747428 -2.653413 1 Zn 5.68185 *1 \n", " 1.644601 -4.747428 2.653408 1 Zn 5.68185 *1 \n", " 4.933702 0.949464 2.653408 1 Zn 5.68185 *1 \n", " 4.933702 0.949464 -2.653413 1 Zn 5.68186 *1 \n", " -4.933607 2.848428 -0.000002 1 Zn 5.69684 *1 \n", " -4.933605 -2.848464 -0.000002 1 Zn 5.69686 *1 \n", " 0.000046 5.696874 -0.000002 1 Zn 5.69687 *1 \n", " 0.000050 -5.696910 -0.000002 1 Zn 5.69691 *1 \n", " 4.933702 2.848428 -0.000002 1 Zn 5.69693 *1 \n", " 4.933704 -2.848464 -0.000002 1 Zn 5.69694 *1 \n", " -3.289054 -1.898982 4.665829 2 O 6.01614 *1 \n", " 0.000047 3.797910 4.665829 2 O 6.01615 *1 \n", " 3.289152 -1.898982 4.665829 2 O 6.01620 *1 \n", " -4.933607 2.848428 2.012418 2 O 6.04184 *1 \n", " -4.933605 -2.848464 2.012418 2 O 6.04186 *1 \n", " 0.000046 5.696874 2.012418 2 O 6.04187 *1 \n", " 0.000050 -5.696910 2.012418 2 O 6.04190 *1 \n", " 4.933702 2.848428 2.012418 2 O 6.04192 *1 \n", " 4.933704 -2.848464 2.012418 2 O 6.04194 *1 \n", " -3.289055 -0.000018 5.306819 1 Zn 6.24341 *1 \n", " -3.289055 -0.000018 -5.306823 1 Zn 6.24342 *1 \n", " -1.644504 2.848428 -5.306823 1 Zn 6.24342 *1 \n", " -1.644504 2.848428 5.306819 1 Zn 6.24342 *1 \n", " -1.644502 -2.848464 5.306819 1 Zn 6.24343 *1 \n", " -1.644502 -2.848464 -5.306823 1 Zn 6.24344 *1 \n", " 1.644599 2.848428 5.306819 1 Zn 6.24344 *1 \n", " 1.644599 2.848428 -5.306823 1 Zn 6.24345 *1 \n", " 1.644601 -2.848464 -5.306823 1 Zn 6.24346 *1 \n", " 1.644601 -2.848464 5.306819 1 Zn 6.24346 *1 \n", " 3.289151 -0.000018 5.306819 1 Zn 6.24346 *1 \n", " 3.289151 -0.000018 -5.306823 1 Zn 6.24347 *1 \n", " -1.644504 0.949464 -5.947813 2 O 6.24359 *1 \n", " 0.000049 -1.898982 -5.947813 2 O 6.24361 *1 \n", " 1.644599 0.949464 -5.947813 2 O 6.24361 *1 \n", " -6.578158 -0.000018 -0.000002 1 Zn 6.57816 *1 \n", " -3.289057 5.696874 -0.000002 1 Zn 6.57817 *1 \n", " -3.289053 -5.696910 -0.000002 1 Zn 6.57820 *1 \n", " 3.289149 5.696874 -0.000002 1 Zn 6.57821 *1 \n", " 3.289153 -5.696910 -0.000002 1 Zn 6.57825 *1 \n", " 6.578254 -0.000018 -0.000002 1 Zn 6.57825 *1 \n", " -4.933607 2.848428 -3.294403 2 O 6.58081 *1 \n", " -4.933605 -2.848464 -3.294403 2 O 6.58083 *1 \n", " 0.000046 5.696874 -3.294403 2 O 6.58084 *1 \n", " 0.000050 -5.696910 -3.294403 2 O 6.58087 *1 \n", " 4.933702 2.848428 -3.294403 2 O 6.58088 *1 \n", " 4.933704 -2.848464 -3.294403 2 O 6.58090 *1 \n", " -4.933607 0.949464 4.665829 2 O 6.85652 *1 \n", " -3.289056 3.797910 4.665829 2 O 6.85653 *1 \n", " -1.644502 -4.747428 4.665829 2 O 6.85656 *1 \n", " 3.289150 3.797910 4.665829 2 O 6.85657 *1 \n", " 1.644601 -4.747428 4.665829 2 O 6.85658 *1 \n", " 4.933702 0.949464 4.665829 2 O 6.85659 *1 \n", " -6.578157 -1.898982 -0.640992 2 O 6.87671 *1 \n", " -1.644506 6.646356 -0.640992 2 O 6.87672 *1 \n", " -4.933605 -4.747428 -0.640992 2 O 6.87673 *1 \n", " 1.644597 6.646356 -0.640992 2 O 6.87675 *1 \n", " 4.933704 -4.747428 -0.640992 2 O 6.87680 *1 \n", " 6.578255 -1.898982 -0.640992 2 O 6.87680 *1 \n", " -6.578158 -0.000018 2.012418 2 O 6.87910 *1 \n", " -3.289057 5.696874 2.012418 2 O 6.87911 *1 \n", " -3.289053 -5.696910 2.012418 2 O 6.87913 *1 \n", " 3.289149 5.696874 2.012418 2 O 6.87915 *1 \n", " 3.289153 -5.696910 2.012418 2 O 6.87918 *1 \n", " 6.578254 -0.000018 2.012418 2 O 6.87919 *1 \n", "\n", "END\n" ] } ], "source": [ "! cat {mat_obj.feff_dir}/feff.inp" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "run FEFF" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : ZnO_mp-2133\n", " : 2023-09-23_1225\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.42792E+00 1.30600E+00 1.15000E+00\n", " : 1 1.41649E+00 1.30145E+00 1.15000E+00\n", " : 2 1.09462E+00 1.00452E+00 1.15000E+00\n", " : : mu_old= -0.830\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 7.00000E+00 0.00000E+00\n", " : Rmax 7.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 1396 1396 5 5.2933\n", " : 2000 1876 1932 5 5.6530\n", " : 3000 2428 2428 5 5.9694\n", " : 4000 2961 2961 5 6.2061\n", " : 5000 3675 3679 5 6.2170\n", " : 6000 4015 4018 5 6.3022\n", " : 7000 4284 4287 5 6.4972\n", " : 8000 4710 4817 5 6.5658\n", " : 9000 4679 4817 5 6.5739\n", " : 10000 4615 4817 5 6.5767\n", " : 11000 4673 4817 5 6.5829\n", " : 12000 4699 4817 5 6.6057\n", " : 13000 5150 5166 5 6.6595\n", " : 14000 5127 5187 5 6.7838\n", " : 15000 5097 5187 5 6.8237\n", " : 16000 4791 5187 5 6.8759\n", " : 17000 4503 5187 5 6.9027\n", " : 18000 4222 5187 5 6.9117\n", " : 19000 4085 5187 5 6.9117\n", " : 20000 3924 5187 5 6.9117\n", " : 21000 3576 5187 5 6.9199\n", " : 22000 3351 5187 5 6.9289\n", " : 23000 2981 5187 5 6.9342\n", " : 24000 2576 5187 5 6.9379\n", " : 25000 2130 5187 5 6.9426\n", " : 26000 1458 5187 5 6.9446\n", " : 27000 925 5187 5 6.9654\n", " : 28000 293 5187 5 6.9826\n", " : Paths found 28478 (maxheap, maxscatt 5187 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 114, total paths 1044\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 3.000 2 2.0042\n", " : 2 33.026 1.000 2 2.0124\n", " : 3 65.446 6.000 2 3.2629\n", " : 4 64.213 6.000 2 3.2891\n", " : 5 10.014 1.000 2 3.2944\n", " : 6 8.562 6.000 3 3.6398\n", " : 7 9.468 6.000 3 3.6398\n", " : 8 9.479 6.000 3 3.6398\n", " : 9 9.145 6.000 3 3.6488\n", " : 10 20.151 12.000 3 3.6488\n", " : 11 19.892 3.000 2 3.8516\n", " : 12 39.665 6.000 2 3.8559\n", " : 13 5.315 3.000 4 4.0085\n", " : 14 3.512 6.000 4 4.0085\n", " : 15 1.693 3.000 4 4.0166 neglected\n", " : 16 1.697 3.000 4 4.0166 neglected\n", " : 17 7.267 12.000 3 4.5615\n", " : 18 5.523 12.000 3 4.5615\n", " : 19 7.131 12.000 3 4.5725\n", " : 20 5.492 12.000 3 4.5725\n", " : 21 7.077 12.000 3 4.5787\n", " : 22 5.452 12.000 3 4.5787\n", " : 23 27.221 6.000 2 4.6330\n", " : 24 23.562 6.000 2 4.6552\n", " : 25 3.655 24.000 3 4.9075\n", " : 26 5.846 12.000 3 4.9612\n", " : 27 11.968 12.000 3 4.9612\n", " : 28 3.749 12.000 3 4.9612\n", " : 29 9.396 3.000 2 5.0375\n", " : 30 18.498 6.000 2 5.0649\n", " : 31 5.058 6.000 3 5.1564\n", " : 32 11.259 6.000 3 5.1564\n", " : 33 2.237 6.000 3 5.1564 neglected\n", " : 34 10.156 12.000 3 5.1791\n", " : 35 22.687 12.000 3 5.1791\n", " : 36 4.631 12.000 3 5.1791\n", " : 37 3.095 12.000 3 5.2466\n", " : 38 3.455 12.000 3 5.2466\n", " : 39 3.656 12.000 3 5.2466\n", " : 40 3.340 6.000 4 5.2672\n", " : 41 4.485 3.000 4 5.2753\n", " : 42 2.394 12.000 4 5.2933 neglected\n", " : 43 5.385 12.000 4 5.2933\n", " : 44 5.282 6.000 4 5.2933\n", " : 45 9.129 6.000 4 5.2933\n", " : 46 3.141 12.000 4 5.2933\n", " : 47 6.284 2.000 2 5.3068\n", " : 48 3.595 2.000 3 5.3068\n", " : 49 7.213 2.000 3 5.3068\n", " : 50 6.775 2.000 3 5.3068\n", " : 51 4.151 1.000 4 5.3068\n", " : 52 3.646 1.000 4 5.3068\n", " : 53 31.146 12.000 2 5.6818\n", " : 54 15.457 6.000 2 5.6969\n", " : 55 12.575 12.000 3 5.7710\n", " : 56 14.674 12.000 3 5.7710\n", " : 57 12.865 12.000 3 5.7710\n", " : 58 6.442 6.000 3 5.7764\n", " : 59 7.989 6.000 3 5.7764\n", " : 60 7.024 6.000 3 5.7764\n", " : 61 2.773 3.000 4 5.8559\n", " : 62 2.296 3.000 4 5.8559 neglected\n", " : 63 3.596 12.000 4 5.8601\n", " : 64 4.992 6.000 4 5.8601\n", " : 65 4.104 6.000 4 5.8601\n", " : 66 5.546 3.000 2 6.0162\n", " : 67 10.949 6.000 2 6.0419\n", " : 68 4.246 24.000 3 6.1169\n", " : 69 2.405 24.000 3 6.1169 neglected\n", " : 70 2.388 24.000 3 6.1169 neglected\n", " : 71 2.337 24.000 3 6.1375 neglected\n", " : 72 2.863 12.000 3 6.1706\n", " : 73 2.745 12.000 4 6.2061\n", " : 74 2.711 12.000 4 6.2061\n", " : 75 2.754 12.000 4 6.2170\n", " : 76 23.757 12.000 2 6.2434\n", " : 77 4.951 3.000 2 6.2436\n", " : 78 2.817 6.000 3 6.3308\n", " : 79 2.960 6.000 3 6.3396\n", " : 80 4.713 12.000 3 6.3846\n", " : 81 4.006 24.000 3 6.3846\n", " : 82 4.500 6.000 3 6.4005\n", " : 83 5.969 12.000 3 6.4556\n", " : 84 4.944 12.000 3 6.4556\n", " : 85 4.738 12.000 3 6.4556\n", " : 86 3.128 12.000 3 6.5675\n", " : 87 10.187 6.000 2 6.5782\n", " : 88 3.314 6.000 3 6.5782\n", " : 89 20.480 12.000 3 6.5782\n", " : 90 3.569 6.000 4 6.5782\n", " : 91 14.953 6.000 4 6.5782\n", " : 92 8.413 6.000 2 6.5809\n", " : 93 2.164 24.000 3 6.5935 neglected\n", " : 94 6.192 24.000 3 6.5935\n", " : 95 3.177 12.000 4 6.5968\n", " : 96 3.035 6.000 3 6.6090\n", " : 97 7.240 6.000 3 6.6091\n", " : 98 3.270 3.000 4 6.6372\n", " : 99 2.835 12.000 3 6.6426\n", " : 100 2.787 12.000 3 6.6969\n", " : 101 2.530 12.000 3 6.6969 neglected\n", " : 102 2.520 12.000 3 6.6969 neglected\n", " : 103 4.458 12.000 3 6.8237\n", " : 104 3.764 12.000 3 6.8237\n", " : 105 3.859 12.000 3 6.8237\n", " : 106 3.671 12.000 4 6.8237\n", " : 107 1.572 12.000 4 6.8237 neglected\n", " : 108 2.622 6.000 3 6.8477 neglected\n", " : 109 7.397 6.000 2 6.8566\n", " : 110 7.328 6.000 2 6.8768\n", " : 111 7.320 6.000 2 6.8791\n", " : 112 2.561 12.000 4 6.9379 neglected\n", " : 113 3.101 12.000 3 6.9877\n", " : 114 7.065 12.000 3 6.9877\n", " : 100 paths kept, 114 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.950 Global sig2 0.00000\n", " : Done with module 6: DW + final sum over paths.\n" ] } ], "source": [ "#via larch\n", "from larch.xafs import FeffRunner\n", "feff_inp = f\"{mat_obj.feff_dir}/feff.inp\"\n", "sim = FeffRunner(feff_inp)\n", "sim.run()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Note: can also be run via direct call to `feff8l`\n", "\n", "```\n", "! cd {mat_obj.parent_path}; feff8l\n", "```" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "load the simulated EXAFS" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "from glob import glob\n", "xmu = glob(f\"{mat_obj.feff_dir}/xmu.dat\")[0]\n", "from larch.io import read_ascii\n", "gsim = read_ascii(xmu, labels=[\"energy\", \"erel\", \"k\", \"mu\", \"mu0\", \"chi\"])" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Load experimental data and quickly extract the EXAFS signal" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "gexp = read_ascii(\"../fdmnes/ZnO_SSHADE.data.txt\", labels=[\"energy\", \"mu\"])\n", "from larch.xafs import pre_edge, autobk\n", "pre_edge(gexp, e0=9661)\n", "autobk(gexp)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "then plot" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "line": { "color": "#1f77b4", "width": 3 }, "name": "FEFF simulation", "type": "scatter", "uid": "3587ea54-295d-4e00-9e98-c4cb37f87dbb", "x": [ 0.35, 0.4, 0.44999999999999996, 0.5, 0.55, 0.6, 0.6499999999999999, 0.7, 0.75, 0.8, 0.8500000000000001, 0.8999999999999999, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4000000000000001, 1.45, 1.5, 1.55, 1.6, 1.6500000000000001, 1.7, 1.75, 1.8, 1.85, 1.9000000000000001, 1.95, 2, 2.05, 2.1, 2.15, 2.1999999999999997, 2.25, 2.3, 2.3499999999999996, 2.4, 2.4499999999999997, 2.5, 2.55, 2.5999999999999996, 2.65, 2.6999999999999997, 2.75, 2.8, 2.8499999999999996, 2.9, 2.9499999999999997, 3, 3.05, 3.0999999999999996, 3.15, 3.1999999999999997, 3.25, 3.3, 3.3499999999999996, 3.4, 3.4499999999999997, 3.5, 3.55, 3.5999999999999996, 3.65, 3.6999999999999997, 3.75, 3.8, 3.8499999999999996, 3.9, 3.9499999999999997, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.3999999999999995, 4.45, 4.5, 4.55, 4.6, 4.6499999999999995, 4.7, 4.75, 4.8, 4.85, 4.8999999999999995, 4.95, 5, 5.05, 5.1, 5.1499999999999995, 5.2, 5.25, 5.3, 5.35, 5.3999999999999995, 5.45, 5.5, 5.55, 5.6, 5.6499999999999995, 5.7, 5.75, 5.8, 5.85, 5.8999999999999995, 5.95, 6, 6.05, 6.1, 6.1499999999999995, 6.2, 6.25, 6.3, 6.35, 6.3999999999999995, 6.45, 6.5, 6.55, 6.6, 6.6499999999999995, 6.7, 6.75, 6.8, 6.85, 6.8999999999999995, 6.95, 7, 7.05, 7.1, 7.1499999999999995, 7.2, 7.25, 7.3, 7.35, 7.3999999999999995, 7.45, 7.5, 7.55, 7.6, 7.6499999999999995, 7.7, 7.75, 7.8, 7.85, 7.8999999999999995, 7.95, 8, 8.05, 8.1, 8.15, 8.200000000000001, 8.25, 8.3, 8.350000000000001, 8.4, 8.450000000000001, 8.5, 8.55, 8.600000000000001, 8.65, 8.700000000000001, 8.75, 8.8, 8.850000000000001, 8.9, 8.950000000000001, 9, 9.05, 9.100000000000001, 9.15, 9.200000000000001, 9.25, 9.3, 9.350000000000001, 9.4, 9.450000000000001, 9.5, 9.55, 9.600000000000001, 9.65, 9.700000000000001, 9.75, 9.8, 9.850000000000001, 9.9, 9.950000000000001, 10, 10.05, 10.100000000000001, 10.15, 10.200000000000001, 10.25, 10.3, 10.350000000000001, 10.4, 10.450000000000001, 10.5, 10.55, 10.600000000000001, 10.65, 10.700000000000001, 10.75, 10.8, 10.850000000000001, 10.9, 10.950000000000001, 11, 11.05, 11.100000000000001, 11.15, 11.200000000000001, 11.25, 11.3, 11.350000000000001, 11.4, 11.450000000000001, 11.5, 11.55, 11.600000000000001, 11.65, 11.700000000000001, 11.75, 11.8, 11.850000000000001, 11.9, 11.950000000000001, 12, 12.05, 12.100000000000001, 12.15, 12.200000000000001, 12.25, 12.3, 12.350000000000001, 12.4, 12.450000000000001, 12.5, 12.55, 12.600000000000001, 12.65, 12.700000000000001, 12.75, 12.8, 12.850000000000001, 12.9, 12.950000000000001, 13, 13.05, 13.100000000000001, 13.15, 13.200000000000001, 13.25, 13.3, 13.350000000000001, 13.4, 13.450000000000001, 13.5, 13.55, 13.600000000000001, 13.65, 13.700000000000001, 13.75, 13.8, 13.850000000000001, 13.9, 13.950000000000001, 14, 14.05, 14.100000000000001, 14.15, 14.200000000000001, 14.25, 14.3, 14.350000000000001, 14.4, 14.450000000000001, 14.5, 14.55, 14.600000000000001, 14.65, 14.700000000000001, 14.75, 14.8, 14.850000000000001, 14.9, 14.950000000000001, 15, 15.05, 15.100000000000001, 15.15, 15.200000000000001, 15.25, 15.3, 15.350000000000001, 15.4, 15.450000000000001, 15.5, 15.55, 15.600000000000001, 15.65, 15.700000000000001, 15.75, 15.8, 15.850000000000001, 15.9, 15.950000000000001, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.400000000000002, 16.45, 16.5, 16.55, 16.6, 16.650000000000002, 16.7, 16.75, 16.8, 16.85, 16.900000000000002, 16.95, 17, 17.05, 17.1, 17.150000000000002, 17.2, 17.25, 17.3, 17.35, 17.400000000000002, 17.45, 17.5, 17.55, 17.6, 17.650000000000002, 17.7, 17.75, 17.8, 17.85, 17.900000000000002, 17.95, 18, 18.05, 18.1, 18.150000000000002, 18.2, 18.25, 18.3, 18.35, 18.400000000000002, 18.45, 18.5, 18.55, 18.6, 18.650000000000002, 18.7, 18.75, 18.8, 18.85, 18.900000000000002, 18.95, 19, 19.05, 19.1, 19.150000000000002, 19.2, 19.25, 19.3, 19.35, 19.400000000000002, 19.45, 19.5, 19.55, 19.6, 19.650000000000002, 19.7, 19.75, 19.8, 19.85, 19.900000000000002, 19.95, 20, 20.05, 20.1, 20.150000000000002, 20.2, 20.25, 20.3 ], "y": [ 0.0014274875000000005, 0.005716690000000001, 0.012902062499999999, 0.022991920000000006, 0.0360146875, 0.051899039999999994, 0.07050891749999999, 0.09162672000000002, 0.1146957975, 0.1393665, 0.16437971, 0.18941327999999996, 0.21232991, 0.23317433999999998, 0.2490159375, 0.26073728, 0.26506501999999993, 0.2641329, 0.254929175, 0.240992, 0.2202651675, 0.19715982000000004, 0.17080087499999996, 0.1454472, 0.1211315625, 0.10093389800000001, 0.0854690535, 0.076359836, 0.07505020925, 0.08254732499999999, 0.10190011550000001, 0.13444582400000002, 0.18477798075, 0.25328162299999996, 0.342951, 0.4483803600000001, 0.5644455450000001, 0.67460431, 0.760401135, 0.796528, 0.7530417724999999, 0.61185663, 0.36803836525, 0.032512216000000004, -0.4044805875, -0.8570857999999999, -1.265348335, -1.57696704, -1.7301786075000005, -1.755275, -1.6988691599999999, -1.6166540000000003, -1.5456311825, -1.4794034400000002, -1.4191485, -1.3521726399999998, -1.2654123975000002, -1.14483648, -0.9749410750000002, -0.7471296000000001, -0.4663380459999999, -0.131123645, 0.23431884525, 0.5946460160000001, 0.93333524375, 1.19574378, 1.3480803675, 1.37300432, 1.2831014025, 1.0848551, 0.8196388745000001, 0.541348272, 0.30279378, 0.15314592300000002, 0.12638025, 0.23357999599999998, 0.46266951500000003, 0.7752217589999999, 1.1184012422500003, 1.4348544, 1.677024405, 1.7985019, 1.7813576200000003, 1.6294156199999998, 1.362483275, 1.0148254989999999, 0.6254151164999999, 0.22818857600000003, -0.15706986555, -0.514943325, -0.8457964969999998, -1.1564405519999998, -1.459285227, -1.7490243480000003, -2.01485155625, -2.234025216, -2.3816531249999997, -2.4173508100000007, -2.31526327725, -2.0658275, -1.6811783552499997, -1.1932633709999998, -0.6538141042500001, -0.1218495408, 0.35142463125, 0.722741655, 0.9786175862499998, 1.1316646080000001, 1.21178774375, 1.2577859249999999, 1.3015257547499999, 1.3537327999999997, 1.3985566475000002, 1.3956631830000001, 1.29324299375, 1.047690888, 0.6441666952499999, 0.11079953380000002, -0.47971803600000007, -1.0218204, -1.3903459624999999, -1.4975573809999998, -1.3008973230000003, -0.8231464720000001, -0.15013515624999998, 0.5893806239999999, 1.25625958425, 1.7364377600000003, 1.96846805025, 1.95462865, 1.738546588, 1.4130254159999998, 1.0618441365, 0.7326990689999999, 0.42196707, 0.0806259136, -0.36027846259999996, -0.9532569420000001, -1.700112753, -2.5327365, -3.319073307, -3.8716039429999998, -4.031254513, -3.7018995840000004, -2.88513985625, -1.688935957, -0.30614982929999995, 1.0314155520000001, 2.1101939495, 2.78632125, 3.00996001, 2.844789744, 2.430579879, 1.9352967480000003, 1.50442748125, 1.2225372119999998, 1.0976014832499998, 1.070475043, 1.04394729375, 0.9200448, 0.6353275981500001, 0.16937418329999998, -0.439028148675, -1.110697216, -1.74793348125, -2.2559132740000005, -2.55749799475, -2.59950096, -2.35307652775, -1.8130270499999999, -0.9976882995, 0.035684664559999996, 1.189707679, 2.3241220019999993, 3.2661409375, 3.835649664000001, 3.8827909439999995, 3.3291487740000005, 2.1999510805, 0.63527409, -1.1315157985000002, -2.803151624, -4.096767975750001, -4.80387016, -4.8373786125, -4.247350920000001, -3.2006863432499997, -1.9309575880000003, -0.6737668229249999, 0.3927057275, 1.1871008602500002, 1.72104192, 2.080133156, 2.3731003439999996, 2.68075299375, 3.0196224520000006, 3.3319466949999996, 3.5046317790000003, 3.4094579952499995, 2.9505500000000002, 2.1045284910000004, 0.9257244284, -0.44209633335000004, -1.806071976, -2.9684043562499998, -3.7694519630000003, -4.1181424042499994, -4.0030016, -3.4838218359999993, -2.669317875, -1.6891935215000002, -0.6685521124, 0.28985346720000005, 1.1138491670999997, 1.7618889875, 2.2178979360000004, 2.4837328495, 2.571321663, 2.4952549567499998, 2.2664147, 1.8928085345000003, 1.3540162949999999, 0.643148886675, -0.23325191679999996, -1.23968221875, -2.2977815500000003, -3.2807612542499998, -4.022638884, -4.3453399215, -4.100794775, -3.21842869425, -1.7438976, 0.14610527125, 2.162944134, 3.95953585625, 5.20771524, 5.679036956249999, 5.3052487180000005, 4.198579143249999, 2.6229744000000004, 0.9227096146000001, -0.5777104344, -1.642979376, -2.1913415519999995, -2.30008296875, -2.159906814, -1.9942774442499998, -1.9723717760000001, -2.1462731167499998, -2.43453125, -2.6575081820000004, -2.6111574719999995, -2.1515665215, -1.2589603853, -0.056597109750000006, 1.2224364544000001, 2.309006991, 2.985029298, 3.1519014065, 2.8553564000000002, 2.26486997775, 1.5793817451999996, 0.9796543808000001, 0.5506593839999999, 0.25870714437500003, -0.01973968577, -0.42916512667499995, -1.054026178, -1.8593882559999997, -2.679421275, -3.2616800522500005, -3.3535282559999997, -2.7993651367500005, -1.6120900558999998, 0.01016046453125, 1.7307644256, 3.1708451072499995, 4.022013928, 4.13633451825, 3.5623196, 2.5187966792500007, 1.2940403732999999, 0.1712989583175, -0.6698863916, -1.195053271875, -1.4966377712, -1.7269834608249999, -2.012190336, -2.3834178967499997, -2.754506275, -2.9552822190000003, -2.807146672, -2.2090879302500004, -1.1976658595999998, 0.0460011974375, 1.2480921104, 2.13481216575, 2.5305365830000004, 2.4222753944999997, 1.9636154999999997, 1.4163405177250001, 1.035575818, 0.9807289854750001, 1.2392823872, 1.6247351143750002, 1.8458113545000001, 1.623219896075, 0.8106460824000001, -0.52686893205, -2.10976979, -3.52144234825, -4.341615408, -4.28945020375, -3.324805014, -1.670792720625, 0.2524659248, 1.960020359425, 3.054627387, 3.3463596045, 2.8983808, 1.9893584904750001, 0.9845703035000001, 0.21713420960499993, -0.1366052688, -0.10871241875, 0.09128789572, 0.17595193682250002, -0.09134553999999999, -0.7882921427499999, -1.78774596, -2.7920525240000007, -3.4356269680000007, -3.4182088694999995, -2.6203277284, -1.1585042862500001, 0.6403065984, 2.3364465193250004, 3.5137741469999995, 3.9076587629999997, 3.4815541, 2.4312438463500006, 1.0974381228, -0.12539412779249998, -0.9262661647999999, -1.167554908125, -0.9115804749, -0.37955927025, 0.13826928095999996, 0.387555556875, 0.2336791625, -0.30134902999499996, -1.0567338496, -1.7941858017249996, -2.2782323483999996, -2.347678766875, -1.956867208, -1.1781130662000003, -0.17073207055, 0.86832929345, 1.75420728, 2.3592531914, 2.6001193543000007, 2.4661326021749996, 1.9994640119999996, 1.2807585375000001, 0.41699498130000007, -0.46830691855000006, -1.2459955967999998, -1.797069898125, -2.033861695, -1.9222976470250002, -1.4970865464, -0.8612850309499998, -0.165788029, 0.42863906249999995, 0.7964982464000001, 0.88512966685, 0.7306980596999999, 0.4450931846499999, 0.17634777799999998, 0.06004766216250001, 0.15558453361000002, 0.43366402514999997, 0.7800127487999999, 1.03473649125, 1.0505111976, 0.749215678275, 0.15626580108, -0.600441728, -1.3278139875000001, -1.8287701660500004, -1.9663959504000006, -1.7087233441499996, -1.1384464914, -0.424235875625, 0.23623703136000002, 0.6816510445500001, 0.8381036836999998, 0.7386010994250001, 0.5049 ] }, { "line": { "color": "#d62728", "width": 3 }, "name": "EXP data", "type": "scatter", "uid": "eb1f9b9f-3d03-447f-8936-7ae54f1043f9", "x": [ 0, 0.05, 0.1, 0.15000000000000002, 0.2, 0.25, 0.30000000000000004, 0.35000000000000003, 0.4, 0.45, 0.5, 0.55, 0.6000000000000001, 0.65, 0.7000000000000001, 0.75, 0.8, 0.8500000000000001, 0.9, 0.9500000000000001, 1, 1.05, 1.1, 1.1500000000000001, 1.2000000000000002, 1.25, 1.3, 1.35, 1.4000000000000001, 1.4500000000000002, 1.5, 1.55, 1.6, 1.6500000000000001, 1.7000000000000002, 1.75, 1.8, 1.85, 1.9000000000000001, 1.9500000000000002, 2, 2.0500000000000003, 2.1, 2.15, 2.2, 2.25, 2.3000000000000003, 2.35, 2.4000000000000004, 2.45, 2.5, 2.5500000000000003, 2.6, 2.6500000000000004, 2.7, 2.75, 2.8000000000000003, 2.85, 2.9000000000000004, 2.95, 3, 3.0500000000000003, 3.1, 3.1500000000000004, 3.2, 3.25, 3.3000000000000003, 3.35, 3.4000000000000004, 3.45, 3.5, 3.5500000000000003, 3.6, 3.6500000000000004, 3.7, 3.75, 3.8000000000000003, 3.85, 3.9000000000000004, 3.95, 4, 4.05, 4.1000000000000005, 4.15, 4.2, 4.25, 4.3, 4.3500000000000005, 4.4, 4.45, 4.5, 4.55, 4.6000000000000005, 4.65, 4.7, 4.75, 4.800000000000001, 4.8500000000000005, 4.9, 4.95, 5, 5.050000000000001, 5.1000000000000005, 5.15, 5.2, 5.25, 5.300000000000001, 5.3500000000000005, 5.4, 5.45, 5.5, 5.550000000000001, 5.6000000000000005, 5.65, 5.7, 5.75, 5.800000000000001, 5.8500000000000005, 5.9, 5.95, 6, 6.050000000000001, 6.1000000000000005, 6.15, 6.2, 6.25, 6.300000000000001, 6.3500000000000005, 6.4, 6.45, 6.5, 6.550000000000001, 6.6000000000000005, 6.65, 6.7, 6.75, 6.800000000000001, 6.8500000000000005, 6.9, 6.95, 7, 7.050000000000001, 7.1000000000000005, 7.15, 7.2, 7.25, 7.300000000000001, 7.3500000000000005, 7.4, 7.45, 7.5, 7.550000000000001, 7.6000000000000005, 7.65, 7.7, 7.75, 7.800000000000001, 7.8500000000000005, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.200000000000001, 8.25, 8.3, 8.35, 8.4, 8.450000000000001, 8.5, 8.55, 8.6, 8.65, 8.700000000000001, 8.75, 8.8, 8.85, 8.9, 8.950000000000001, 9, 9.05, 9.1, 9.15, 9.200000000000001, 9.25, 9.3, 9.35, 9.4, 9.450000000000001, 9.5, 9.55, 9.600000000000001, 9.65, 9.700000000000001, 9.75, 9.8, 9.850000000000001, 9.9, 9.950000000000001, 10, 10.05, 10.100000000000001, 10.15, 10.200000000000001, 10.25, 10.3, 10.350000000000001, 10.4, 10.450000000000001, 10.5, 10.55, 10.600000000000001, 10.65, 10.700000000000001, 10.75, 10.8, 10.850000000000001, 10.9, 10.950000000000001, 11, 11.05, 11.100000000000001, 11.15, 11.200000000000001, 11.25, 11.3, 11.350000000000001, 11.4, 11.450000000000001, 11.5, 11.55, 11.600000000000001, 11.65, 11.700000000000001, 11.75, 11.8, 11.850000000000001, 11.9, 11.950000000000001, 12, 12.05, 12.100000000000001, 12.15, 12.200000000000001, 12.25, 12.3, 12.350000000000001, 12.4, 12.450000000000001, 12.5, 12.55, 12.600000000000001, 12.65, 12.700000000000001, 12.75, 12.8, 12.850000000000001, 12.9, 12.950000000000001, 13, 13.05, 13.100000000000001, 13.15, 13.200000000000001, 13.25, 13.3, 13.350000000000001, 13.4, 13.450000000000001, 13.5, 13.55, 13.600000000000001, 13.65, 13.700000000000001, 13.75, 13.8, 13.850000000000001, 13.9 ], "y": [ 0, -0.0036617100386953662, -0.014089968428336761, -0.03002644170282787, -0.049813530970437496, -0.07160033325913814, -0.0935486028619445, -0.114038712682252, -0.1318756155791754, -0.14649480571288717, -0.1581682798899563, -0.1682279098215403, -0.17944538644694913, -0.19617713646746546, -0.22065505436127253, -0.2497729444376792, -0.2792429482483095, -0.3043864843372808, -0.3168501302041095, -0.30727229097475206, -0.26872891707905033, -0.18543989268898686, -0.051033498883459066, 0.13808227143723176, 0.3932678700758662, 0.6882663658375792, 1.0827083232640469, 1.383144792599042, 1.530857861988897, 1.4698783961766508, 1.2085118129992214, 0.8607398030821725, 0.4806335652482871, 0.19740355808636506, 0.04713735393630111, -0.1520781107027217, -0.481323392235144, -0.7961039144555779, -0.9417020864702891, -0.870480040950385, -0.6115569585875245, -0.11345222400209398, 0.6081066884115814, 1.0603184726031358, 1.089239766936357, 0.8464973814606759, 0.6430823585204943, 0.6266304113994916, 0.584140201180599, 0.3650218056426746, 0.016932465061044916, -0.19529860038249097, -0.2456565156128632, -0.24344318797552653, -0.46138650581564616, -0.9133683974884763, -1.3306650619919664, -1.6024060213402014, -1.70572696464289, -1.8402182887886211, -1.9960855500486974, -2.086878707383616, -2.0503853103500354, -1.780165802836868, -1.4721514001850329, -1.195841451295806, -0.9886069444166375, -0.789231749772645, -0.5740316786226589, -0.34307197829468206, 0.1604881358786666, 0.8449250759701094, 1.454583998402891, 1.9869916417407332, 2.2085162704671295, 2.1804170966973335, 1.9476082782110817, 1.4533533042346036, 0.9372776496115902, 0.3997210308504625, 0.043127314478556666, -0.03307187224000918, -0.028954486189057122, 0.1378469577104317, 0.35632655555823, 0.6737365026562818, 1.0400183839300003, 1.5128746931927952, 1.9396287681186895, 2.1793621980165168, 2.3569160436928622, 2.302634170252036, 2.1749231605767934, 1.7359697791811644, 1.251267292223209, 0.6003057395851722, -0.07372214653217424, -0.7321311697082192, -1.3911828172946252, -1.93408346667421, -2.4765996197227813, -2.7734529824596827, -3.032354531066237, -2.9639569505868275, -2.7838203283281886, -2.390493319056098, -1.883564912085448, -1.289643686637772, -0.694608837209519, -0.14562787152869605, 0.2906201246748759, 0.5224353185620348, 0.6118885551116593, 0.5874464670618317, 0.5453909831738467, 0.5687938021347637, 0.6695691565434744, 0.8992471721891433, 1.1171811054621135, 1.207298605052518, 1.1280717117154961, 0.7950100582784949, 0.2809420314310074, -0.402707551338781, -1.0737281731675896, -1.5210590811037836, -1.7348841829695973, -1.633568129258728, -1.2836095891431274, -0.688125223654667, 0.041686673553503646, 0.7483172394363374, 1.3771040632805405, 1.8033849348852078, 2.056615858385493, 2.122443014836629, 2.031325220182522, 1.81388931278131, 1.4855921698845058, 1.0751613024773903, 0.5759676220784983, -0.02385635102198916, -0.6879595451556938, -1.3753018601922193, -2.022908816742994, -2.4979407172499553, -2.8208999852130714, -2.897641071439395, -2.7177724443418336, -2.302805750222186, -1.7245365301571882, -1.0755391728757866, -0.373224353095683, 0.31778657154872436, 0.947792725686614, 1.3709065595489172, 1.6216744013044981, 1.6672005427553445, 1.5746220110617821, 1.4974028364254703, 1.4134626874909622, 1.3295978578438747, 1.2442764702691178, 1.1582543719288045, 1.0716869306390497, 0.9848927539029543, 0.8981749067474589, 0.8118527710552579, 0.7262583386176853, 0.6417451753861276, 0.5586608381374923, 0.4773851376191905, 0.39830879897774113, 0.3218230964135063, 0.24835192385818355, 0.1783122130179287, 0.11190982497628542, 0.049155218921425596, -0.009973050888751599, -0.06548133411406493, -0.11738682968042533, -0.1657284620508875, -0.21052970903431997, -0.25183350957959266, -0.28968371920782954, -0.32413298480913033, -0.3552401973440405, -0.3830644071368042, -0.4076785721555652, -0.42919268195124394, -0.44765068453885637, -0.4631337373201877, -0.47577941466251217, -0.4856855521353214, -0.4929683039553823, -0.4977506277996074, -0.5001621797714967, -0.5003407037835625, -0.49842800002760596, -0.49459682795908166, -0.4889247593852412, -0.4816520429327063, -0.47303149480668494, -0.4630840903807438, -0.4521193552012785, -0.4403004855645632, -0.42785880837484214, -0.4150200756354189, -0.4019199374563843, -0.3889630560269257, -0.3761662770909778, -0.3634865715214251, -0.3510056567675473, -0.33871055685035556, -0.32661187152423987, -0.31471056060355573, -0.3030117344838672, -0.2915134402151374, -0.28024198581799686, -0.2691045217574557, -0.25818743196885197, -0.24757996411955868, -0.23708862139682066, -0.22685654620597193, -0.21683581046087555, -0.20705854772668172, -0.19750240271509706, -0.18818557793086085, -0.17912110622452562, -0.17019352986689237, -0.1616141112202752, -0.15326135638374105, -0.14507401464857655, -0.13714876256393704, -0.1294615980547549, -0.122023337272881, -0.1148251287706829, -0.10789451585847103, -0.101113178050838, -0.09459123117754488, -0.08839188749353054, -0.08244274894465681, -0.07663727696524501, -0.07110926006763031, -0.06580387551238727, -0.060752941186502936, -0.055928057426442024, -0.051349200101919026, -0.0470131994080889, -0.04281885398884335, -0.03885122418028612, -0.035211852496262644, -0.03178729067301991, -0.02848686670916425, -0.025422492231228177, -0.02256687116787435, -0.019914607616812317, -0.017490437616722292, -0.015151288609789154, -0.013021051443657556, -0.011172236994785438, -0.009509364171248032, -0.00790678847259906, -0.006513963834812371, -0.005265304354239339, -0.004184294079817165, -0.0032698860615064476, -0.0023613443909688593, -0.0017370517144435318, -0.0012177952354352401, -0.0007205439021705807, -0.00032917629239984504, -0.000160719556466379, -7.251559584548494e-05, 4.041012095908042e-05, 5.973109758083784e-05, 7.128447495074203e-09, -3.575821696935035e-09, 2.1154739800062434e-09 ] } ], "layout": { "height": 500, "hovermode": "closest", "legend": { "bgcolor": "#F2F2F2", "borderwidth": 0.5 }, "plot_bgcolor": "#FDFDFF", "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Wurtzite ZnO EXAFS" }, "width": 800, "xaxis": { "color": "#004", "gridcolor": "#D8D8D8", "range": [ 0, 10 ], "showgrid": true, "title": { "text": "k (Å^-1)" }, "type": "linear", "zerolinecolor": "#DDD" }, "yaxis": { "autorange": true, "color": "#004", "gridcolor": "#D8D8D8", "range": [ -5.421623921875, 6.263282265625 ], "showgrid": true, "title": { "text": "chi(k) * k^2" }, "type": "linear", "zerolinecolor": "#DDD" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAH0CAYAAAAE++nQAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3XV8FEcDBuAXEpKQ4AGCu7TQFqdQ3L3FHYo7FC9uxb1QrECLuxUolOJSKO4UKe7uAZJAvt/MfXdNiN3t7e3u3b37T0lux55ZKHmZnYkVGhoaCl4UoAAFKEABClCAAhSgAAUoQAEKUIACqgvEYvCiuikrpAAFKEABClCAAhSgAAUoQAEKUIACUoDBCx8EClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBC58BClCAAhSgAAUoQAEKUIACFKAABSjgIAEGLw6CZbUUoAAFKEABClCAAhSgAAUoQAEKUIDBixM9A4Fv3uLDh1DE84vrRL2OuavPX77G/YdPkSrA3+XGFt3oX74KxKMnz+HnGxeJE8VHHE+PmLF4BwUoQAEKUIACFKAABShAAQo4lYDLBy+nzl1Ggw4/4JsKRTCyb+twkzNyyiIsXrMNvdrXR7N6FcN91qzraBw+cR6HN8+Eb1wfVSb1xu37WLlhN0oUzoX8ubLbXGfpOt1kQHFo00z4+frg/fsPmDx7FTKlT4kalYrZXF90BWYv3ijrju7KnD4V1s8fqajdkPfvMX/FFsxbvhlPnr201BGQLDE6NquBmpWLIVasWDHWvXLjLgwZPy/K+0R9O1ZOwpK12zHix4UoUywvpvzQJcL9m7YfRK8fZqBc8fyYPKxTuM9FMPRVtY7ye1XLFcaY/m0jlI+pHzUrF8cPvVvIchv+3I+ffl2LW3cfhqsnW6Y0qFT6S7RpXC3GcfMGClCAAhSgAAUoQAEKUIACFHAOAZcPXoKCgpGnfGskSRQfe9dNDTcrlRt/j+u37qPkV7kxbWRXy2dv3wUhX4U2+Cx7RiyfNVi1mTx0/DyadxuN3h0b4Ns6FWyut//oOTKkmDS0I3y8vRAcHILc5VpF6L/NFUdSYMdfx7F979FIqzp+5pJ0+zRreqyaPdTm5kTo0qrHOBlsiXmpXrEY0qZOjivX72D173sgVvZUKVMIYwe2i7HuFet3YujE+fgiR2ZkSpcywv0J4/tJb9Fm/XbD8M+l6/jxh84oWyyf5V5hWqFBL/n1xgWjIMKasNfazXsxYMxcy7fMwVfYe2LqR97Ps6FWleLYe/AU2n0/URYVIVC+L7Lj8ZPnOP/vDfx1+Iz8/tldUQdJMYLwBgpQgAIUoAAFKEABClCAAhQwlIDLBy9Cu02v8fKH2s2LxyJd6uRyAp4+f4mi33SWvxYrWv7eOB0eHrHl18dOX0KTziPQqmEVdGtTR7UJszd4+bgjtgQvoaGhVq0giWmwDx8/Q82WA2UAtHT6QBl4RHVF1aZY8dFn5M8QKzxmje2J5EkTWaq4euMuWvYYK1f2zJ3YG4Xy5oi2S+bAQ6xmEquaorsuXL4p+y7Cnt8XjUGCeL7y9u9HzMLGrQcwql9rfF0+Yh2teo7DgSNnUe+b0lj+2w6MG9gelct8Ga4pa/ohQsCKjXrLsW1ePAbpUgeEq0OEQmOmLcW8yX1imgZ+TgEKUIACFKAABShAAQpQgAJOIuAWwcuvyzZj/MzlGN2vDaqV/0pOza79J9Cx32RUr1gU6/7YhzVzf0D2zGnlZ3OXbsLEWSswc0x3FPvyC7ky45dlm9GifiUUyP2JZWrv3n+MYZMWoHyJ/JZXfcTqiD93H8HArk3kqpCd+4/j9r1HKFrgc9nOmQtXkSZlMmRKn0rWk/fzrKhYqiBGTlkc5SPTt3MjGRiNm75M1iVehRGrQroO+kkGSiI4Mr+6FNfHGxOHdJB1iVUeC1f+iT92HrK0W7zQF+jSshbi/z90sOU5FfU17zoGx05fxMBuTVH/m9KW4uZxd25RAxu2HsCOfcfkqzSF8+dE/y6NkfH/q1FEGFOmbncZPiyZPhC5Iglutuw6jO5DpkGsElk4tV+0XbQm8AhbwfR56zBt3jrZdzGG3QdOokPfSSheKBdmjO4Woa0Hj56hVO2u8nMRwtVoMSDSe63ph3heytbrAXte0bJlvngvBShAAQpQgAIUoAAFKEABCugv4BbBy+l/rqB++2GoXbUEhvZsLtVFsCICFvGqTO3Wg8MFCe2+n4C9B0/jwMbpclWEef+Pj1c6XL52G18364+WDSqje9u6st5JP6/EnCW/y5UgYn8Z8yXuEYGCCCPEiouAZEnkR1/lz4laVUqg9w8zwz0Nb96+w+Xrd+T3Ni0ag/RpAtC40wiI13zEqyivXr+Rq3IuXrkl7xGv/YhLbLwrVkyIgKND38nY8/dJGcyI11r+OnRarlQRr1AtnTEIsWPHvIdK2E6ZzUR4JUKssJd53ObvidUs5k1zRdD0+6LR8PTwgDnIiO41LrF3Tcla38m+ntw+V5aL6rIm8AhbVqw6qd5igAzFpo/qhgFj5uDtu2D8vnB0uJU35jJiDyCxF5A5tDO/niZeWxPzaL6s6YeYk4oNe8tnYMGUfsj3RTb9/wRgDyhAAQpQgAIUoAAFKEABClDAoQJuEbyIlRq5yrSUK022LB0nQeu1HYokiRPIvV2+rNJebng7flB7uUpE3Bs2GFASvIiwo1f7eiiULwe8vbzg7RVHhiTW7vFi3vi3Y7Pq6NCsuuxz2OBFfB3dq0Zbdh1C9yHT5esxfTo2gJdXHDm2oRPmY82mPZg64juULpLH6odr+95j6DJwilytsWzmYPjG9Y40eBEBT9/OjZEyeRLZXpue43Hw+D+W1S0iOBLjECuNRvRpFWX7LbqNkeXEfIl5iyl4EZ+HDULM94uA6+N9aE6eu4yGHX6wVBnVK0bm50SsUjKHcDMXrMfUX9ZgcI9mqFutZITgRewPkyzJf69OiRtyZM+Awd2/lfdOn/8bpv26Vv5arJ4qmPsTZM+cDp9/minS4MfqCeKNFKAABShAAQpQgAIUoAAFKGBIAbcIXoS8eK1IvF60feVExPfzRcHK7eQqFbESRbyyc/TUBexZO0VucipWwITd30VJ8BLZ/ifW7vGyecdB9Bw2A0UKfIYZo7tb9p6xJXhp32eSXO0igouUyf0tD9/fx87JPW86Nq+BDt9+Y9VDKVaHiJUeIkwSIYZYffPxZV7xsu7X4ciaMY3l46XrtmP45IWYOKQjKpQsAPPYWjeqiq6ta0fZvlgB9Pv2v7Fwan/5OlZUl3mliQg8UgUkjXBbksTxIz3FqHP/HyE2EBZhze41UyJd/WMed9iTkMQqpK+/7Yc8n2XFop/6RwhehJGPd5xw/SiQ+1PL619i4+apc9dg3oo/IvRVnHzUsXl1pPj/aiirJoc3UYACFKAABShAAQpQgAIUoIChBdwmeFm46k+M/mmJ/AE4YYJ4aNl9rPzBWfwAbX6dRGx4uu/QGXns8MwxPVDsy8/l5CkJXj4OIEQ91gQv5h/sRSDw27yR4VZx2BK8iFN6Pj6uOOyTGPa1q+ie0Ddvg1Cv7RD52tPU4V1QumjeSG+PKngx24kjmMVRzGK/HHFUd9jjlSOr8L8NkSNuQhv2fmte8fm4fvMmu+bvD/++ZaTHcc9auAFT5q5G5xY1ZWhkvpp2GSlfg/pz2XikTmEKe2zth3AVr8BdunoLp89fkUdMi0vM+67VP1rCNkP/6cHOUYACFKAABShAAQpQgAIUoECMAm4TvIgTY8RKloY1yshXjH76ZS2ObvlZHsts/kycjLP7wAm5F4s45ci8Aa1WwYvYMFf0Uay0iGzjWVuClwKV2skNeM172nz8JGRIm8KyIW90T0m/UbPx25a/YjzhKargxfzKkzl4MW8wG9PGuaXrdJMb8J7YOgdx4nhG2UVbAw/xelbdtkPka1/iNTOxEkqsUonsGGnzfi5RNd6zXT00r19JUfDycZ3Pnr+COD1JPIsxrfKJ8Xc1b6AABShAAQpQgAIUoAAFKEABwwi4TfAiNmwtVLUDkvknlK9yBIe8t5yYY97XRazCECcAZUqXEstnDbZMkvn1mB96t5ArNcxXdJvrRrfipUe7umhRv3KEh8B8rHG/Lo3RqGbZCJ9HFbyIlTlihU7Yy3zv4c2zIuzHYu3Tt2LDLgydMA9f5vkUP4/vGe0mt9YGL+Z5EKFQ2JOkwvZJnNQkVryIDYM/3p/l477bGryI/VXEPiudWtRA+6bfYOXGXRgyfl6Ek4rOXbyGOm2GyE2SyxfPH67Zt0FBMrgLezqRNf0QY48VK1aUmxpHtX+MtfPF+yhAAQpQgAIUoAAFKEABClDAeAJuE7wIerGXy9Y9R+QsiP1NxD4n5su8B4z4+uP9R8yvx4iNagd1ayqLiBNqlq7bIV9LiuxUo8iCF7F/TK1Wg+Sqm/7fNQn3NCz/bYc8mrpCyYKYMLi9/AH94+vj4EV8nrNkM7nnijj5KOwlXpERr8qE7Zv58zv3HskTh8wnIUX2WIoNZeUGxIniY+0vw5E0ScJon15rgxdRiTnQEa95TRneJdzrVKJvYuWHWPVjPs47uoatCTzM5U+fv4r67YZCnLi0YtYQuZLmw4dQtOg+Rr4CFXaTXfMJTlN+6CJPhPr4EjbCyDzP1vRDvFok9rvp07mhfMUt7CVOW2rRfaw8tWrZjEFys11eFKAABShAAQpQgAIUoAAFKOD8Am4VvCz7bQd+mLRAztrP43rKzWvN17zlf2DcjGXyy7D7u4ivRUhRtm4P+epOk9rlkTCBH/b8fcpyXLS1wYsoX6JmV1mPWHEhjqr28PBAgVzZ5bHU4hKvrojNf8NeZYvnk6srIgteREhx4MhZuRInR7b0uHPvMcSKGnHcdKVGveVeJMUL5UKpInnkKUjm/USiWlVjblfswyLCCBHq5M6ZJconfWivFojj6WE5RvvjwOnjV41ERWKFUfOuY3Ds9EUZutSoVEzulSLClpUbd0ufKmUKYezAdjH+DjMHHmJlSsa0KSLcL/bz+b5jA4hNbWu2HCjbEKtowoZOYTcPFsdK+ydOYDnO+sgfPyOuj1eEes37AolVM2IurQ1exLHm4hLBiwhXxOlPZy9ew/7DZ+RcRXZUd4wIvIECFKAABShAAQpQgAIUoAAFDCvgVsGL2Mi0evMBcjLC7uEivj517jIa/P+I4Y8/E5+LlTJixYz5Ekcci9eBxkxbGm7/k8mzV2H24o347dcRyJIxdYSJ333gpPxcrGwQlwgYqpQtjA59J0X5kEwe1gnliuePNHgRrztNm7dO7ksjLrFfyeHNM+WvHzx6hgmzlmPj1gPh6havDokThURYEdUlLIRJTNexP2fLo7KjGrc5eBk3sD0ql/nSUp0IX+av2IJ5yzfLwMF8iSDmu1a1UatK8UhX/XzcH/Pqmaj6KU472rFykqV/YY/nDlvm12WbMX7mcunctE4FNOkc/ZHXYv8ZsQ+N+Yhycz9G92sjw5PILhGGrdq4Gxu3HZB7uYS9xLyJAKf+N6WlJy8KUIACFKAABShAAQpQgAIUcA0Btwpe7J2ywDfvcPPOA7lSJWXAf0c0K6lXhCLidaVk/omi3PPDlnpfvArEi5evEZA0cYTNaEXIITa1Fa/ViCBCbChspOvRk+d4+PiZPPY6UcJ4Ruqaw/oiVuCIMb8OfCv3HHKXcTsMlBVTgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHhx/jnkCChAAQpQgAIUoAAFKEABClCAAhQwqACDF4NODLtFAQpQgAIUoAAFKEABClCAAhSggPMLMHixYw6vXLkiS2fIkMmOWliUAtoKXLnyL9KnzwgPDw9tG2ZrFFAo8OrVK7x8+RwpU6ZWWAOLUUB7gTt3biFBgkSIFy+e9o2zRQooEAgJCcHNm9eRMWNmBaVZhAL6CcSObX/bCxYswLt37+yviDW4jYC3tzeaNm1q9XgZvFhNBQQFBePOncdImdIf3t5xwODFBjzeahgBBi+GmQp2xEoBBi9WQvE2QwkweDHUdLAzVggweLECibcYUkCt4KVGjRqGHB87ZUyBtWvXMnhRe2ouXLiJ1q0nYu/eM7Lq6dO7oH37agxe1IZmfZoIMHjRhJmNqCjA4EVFTFalmQCDF82o2ZBKAgxeVIJkNZoLMHjRnJwNAmDwovJjcPv2I6RJ0wD165dEx47fIG/eLAgMfIekSRMyeFHZmtVpI8DgRRtntqKeAIMX9SxZk3YCDF60s2ZL6ggweFHHkbVoL8DgRXtztsjgRfVnoEePmVi0aDtu314GT8/we2LwVSPVuVmhBgIMXjRAZhOqCjB4UZWTlWkkwOBFI2g2o5oAgxfVKFmRxgIMXjQGZ3NSgCteVH4QcuZsCT8/H6RLlxw3bjxAnjxZMHBgY6RJk4wrXlS2ZnXaCDB40caZragnwOBFPUvWpJ0AgxftrNmSOgIMXtRxZC3aCzB40d6cLTJ4Uf0ZiBWrHEqXzo3mzSvIDXVHj16GV6/e4PTp2bh166ZsL1my5Kq3ywqdQyA01Dn6GbaX9+/fRbJkAYitxv+lnG/47LETCrx9+wZv3gQicWJ/g/XeCf8AMJigK3fnyZPH8PX1g4+Pj8GHGcvg/WP3tBL48OE9Hj58gICAlFo1yXZ0FojlIr/948e3//Q4caoRN9fV+YF0sua54kXlCRPBy9q1Q1C9ehFZs9ho95NPWuDkyVkwnxAZJ46Xyq2yOmcRcMb/Yb1+/Rq+vr6I5Yydd5YHg/1UVSAk5D1CQoIN+AOsi/yNVdXZYmVmAREYenrGgaenp8FRGCAafII0696HD6EQz634OwIv9xBwxn9AjGxm0qZNY/eEMXixm9DtKmDwovKU58vXHg0alEbPnnVkzefOXUfOnK1w6NBP8PePI7+XIUMmlVtldRRwnABfNXKcLWt2jABfNXKMK2t1rABfNXKsL2tXX4CvGqlvyhq1EVBjETeDF23mypVaYfCi8myOG7cC48evxMGDU5EwoR/69JmDdev24+rVhbh37w6DF5W9WZ3jBRi8ON6YLagrwOBFXU/Wpo0AgxdtnNmKegIMXtSzZE3aCjB40dabrZkEGLyo/CS8exeMZs3GYtmyXbLmNGmSYtWqQfjyy0+5ua7K1qxOGwEGL9o4sxX1BBi8qGfJmrQTYPCinTVbUkeAwYs6jqxFewEGL9qbf9xicMh7vH//Hj7e6m/BceLsZSSI54tM6W3ff8qR/WLw4qDn7tmzV3jxIhBp0yaz7I3B46QdhM1qHSrA4MWhvKzcAQIMXhyAyiodLsDgxeHEbEBlAQYvKoOyOs0E3CV4uX3vEWq1HhrB9ds65fF1+cKRfvZV/pyYOLgdRkxZgg1bD0Qou335OEyesybKz/x8rdsgfvbiTdj990ksmtpX9Xnv+cMs5MyWAc3rVYi2buEzff56DO35LTw9POS9juwXgxfVpzrqChm8aIjNplQTYPCiGiUr0kiAwYtG0GxGVQEGL6pysjINBBi8aIDMJhwi4G7By5RhHRGQLLHFMkF8PwS+eSuDl48/i+vjjeRJE8ng5cWr1+jQ9Otwc5A2VXKM+mlplJ/Fjm3dQQIPHz/Hq9eByJjO9lUpMT0U1gYvFy7fxLddx2LvmkmIE8e0sb0j+8XgJaaZU/FzBi8qYrIqzQQYvGhGzYZUEmDwohIkq9FUgMGLptxsTAUBBi8qILIKXQQcFbw8fxOCRYduaT6mRL5eaFQgVYR2zSteVv08CGlSJgv3eXSfiRtF8BIaGooB3zWKUG90n3188+ETFzBjwQZcu3Uf/onjo2rZQhArbrbsPoKT566gd/u6skjLnhPwVf4c2PnXCdy5/wRVyhRExZIFMG3+epz/9yYqliqAto2qIGECP6zb8hdu3XmETs2/kWXvPXyKfqPmYsoPHRHPLy7CBi/Hz/yLsdOX4/6jZ/LeYgU/Q/e2tZEwvp8MXUT4kj1zWnjEji2/L1zC9mvvodOYPm89rt68h1w5MqNX+7rIksFkLfos6tu5/yRu3nmImpWKomWDSojrE/nrUwxeNPytweBFQ2w2pZoAgxfVKFmRRgIMXjSCZjOqCjB4UZWTlWkgwOBFA2Q24RABRwUv15+8QdUZhx3S5+gqTZvYB5s6FIwyeBFBR5JE8eXncTw9ULNyMRkwiBUvdaoWR4J4fpayaVIlRaVSBWXwcvHKLVQu/V+e2V0xAAAgAElEQVS9eT7LgmyZ0kT7WdhOvH0XhJK1e8hXfsoXz4cbtx/iyKkL6NG2Dpb9thP7Dp3BTyM6yyKFqnWWgUbzehUBhKL/mF/hG9cHnZp9LUOj4VMWo3XDyqhWrjDmLN2MS1dvYUy/1rLszTsPUKftD9iyZLQMVMIGL+cuXceV63dlv0V/Rk1diqIFP0PHZt9g47a/MfzHxXLVj6enBzJnSIXNOw5Z+iXKNew0UgZFIhRasWE3jp2+hNWzh8A3rrfsc8a0KWSfxdeDxs/H8N7NIF7Xiuxi8KLhbw0GLxpisynVBBi8qEbJijQSYPCiETSbUVWAwYuqnKxMAwEGLxogswmHCLhb8JL386wyGBCXX1wfuaeJOXgpUfgLxPONa3EW4UPD6qVluLLv0GnkzJ7B8plY0SFCheg+Czthr16/Qdn6vdG2cVXU+7qEDFLMV2TBy89ju+GLTzPJW1p0H4/yJfKh/jel5NdT5q7Fk+cvMaR7U5uCF1H20ZPnchWL+O+Ov04gfry4GD+wrVzt8vGrRmH7NWvRRvy5+yhWzx4s+/Dk2UtUbtIP4wa2QbGCn8vgJWyfB0+YD/9ECdClZQ0GLw75nWtDpQxebMDirYYRYPBimKlgR6wUYPBiJRRvM5QAgxdDTQc7Y4UAgxcrkHiLIQUcFbzwVaOI071y4x5MmLVSfiBClfZNq0GsnIkpeOnUfyqKFPwMDf4fvMxZsgmXr9/FqL4tbQpetu45ioHj5snXhLJlSi3r8PbyxKQhHWIMXoZMXCD7LcIe8/V184FoWrscalcpHiF4EeMMef8B33eox+BF79/5DF70ngG2r0SAwYsSNZbRU4DBi576bFupAIMXpXIsp5cAgxe95NmuvQKOCl7s7Zfa5Y2wx4sYk3jF599rd7B03U4cO30RG+ePwMqNuyO8ahR29UiXQdNQOF+OSIOXX5dvwenzV+XpS+KK7lWjBh1GoEyxvGjVoJK8d9GabTh66qIMXsSrVE2/G4PdqyfC2yuO/DxsICRW2Rw6cd5y8tLrwLcoU68XRnzfHGWK5mXwovYDq2Z9DF7U1GRdWgkweNFKmu2oJcDgRS1J1qOlAIMXLbXZlhoCDF7UUGQdeggweIHlVaPJQzsgZfIklmnw8fFCQNLEqmyue+/BE2zacQg1KxeV+8is3rRXbrS7ZfEo+euP93ixNng5euoSeg3/GfMn94aHR2wsXL0Nazfvi3SPlza9J8m9Wzo0rYY79x9jzLTlSJjAVwYvb94GoVSdHnKfGXH8tNhMeP2f+y39OnT8PEQAJIKWgrk/wfL1u+Rqm43zhyNpkoQMXvT4zWttmwxerJXifUYSYPBipNlgX6wRYPBijRLvMZoAgxejzQj7E5MAg5eYhPi5UQUYvPwXvHw8R2IPF7GSRI1TjcSeKu37/ihP/BGXOD2oTaMqKFIgpwwx9h48HW5z3WiDl6WbcfXGXYz4vgWCQ96j76g5MiARV5miebB933FL8NJ7+M/IkS09mtWtgL+P/YOhExfg6fNXco8ZsYGvOPnIvFpm9uJNmLtss6xHbLIrTi8K2y/xmbhHXKL84G5NIPbFEdfHe7yIV43efwi1nNT0sS0319XwTwQGLxpisynVBBi8qEbJijQSYPCiETSbUVWAwYuqnKxMAwEGLxogswmHCLhL8OIQPAWVvngViA8fPiBRgngKSkddRGx2G9fHO8rjm80lQ96/h1h9E5AsiTzV6eNLrHwJCg6WJyJFdolXpR4/fYGAZInh6RGxvLWDYvBirZQK9zF4UQGRVWguwOBFc3I2aKcAgxc7AVlcFwEGL7qws1E7BBi82IHHoroKMHjRld9tG2fwouHUM3jREJtNqSbA4EU1SlakkQCDF42g2YyqAgxeVOVkZRoIMHjRAJlNOESAwYtDWFlpDAIMXjR8RBi8aIjNplQTYPCiGiUr0kiAwYtG0GxGVQEGL6pysjINBBi8aIDMJhwiwODFIayslMGLcZ4BBi/GmQv2xHoBBi/WW/FOYwgweDHGPLAXtgkweLHNi3frL8DgRf85YA+UCTB4UebGUvYJcMWLfX42lWbwYhMXbzaIAIMXg0wEu2G1AIMXq6l4o4EEGLwYaDLYFasEGLxYxcSbDCjA4MWAk+IGXWLwouEkM3jREJtNqSbA4EU1SlakkQCDF42g2YyqAgxeVOVkZRoIMHjRAJlNOESAwYtDWFlpDAIMXjR8RBi8aIjNplQTYPCiGiUr0kiAwYtG0GxGVQEGL6pysjINBBi8aIDMJhwiwODFIayslMGLcZ4BBi/GmQv2xHoBBi/WW/FOYwgweDHGPLAXtgkweLHNi3frL8DgRf85YA+UCTB4UebGUvYJcMWLfX42lWbwYhMXbzaIAIMXg0wEu2G1AIMXq6l4o4EEGLwYaDLYFasEGLxYxcSbDCjA4EWbSTl88gKS+ydC+jQB2jRo8FYYvGg4QQxeNMRmU6oJMHhRjZIVaSTA4EUjaDajqgCDF1U5WZkGAgxeNEBmEw4RcJfg5fa9R6jVemgEw6/y58TYAa3RsscEpEmZFCO+b2G5Z/eBU/h+5GysnDUIsWPHClc+dYqkqFWlGBpWL23VvLT9fjLKFM2DutVKRHu/6Of0+esxtOe38PTwsKpuZ7yJwYuGs8bgRUNsNqWaAIMX1ShZkUYCDF40gmYzqgoweFGVk5VpIMDgRQNkNuEQAXcLXqYM64iAZIktlnF9vJE8aSJcunobTbqMxsg+LVG6SG48e/EKNVsNRfum1VCnanGYg5uZo7vCP3ECnDj7L0ZMWYLB3ZugUqmCMc6NtcHLhcs38W3Xsdi7ZhLixPGMsV5nvYHBi4Yzx+BFQ2w2pZoAgxfVKFmRRgIMXjSCZjOqCjB4UZWTlWkgwOBFA2Q24RABRwUvH54/x8tlyx3S5+gq9UiYEPHq14twizk4WfXzIKRJmSzSKn5dvgULV2/D2jlDMHbGCrx8HYjJQzrI1S6Rle/5wywkThgf/bs0jFDfzTsPMWHWSvx97B+kTZUMj5++RLsmVeWKl+Nn/sXY6ctx/9EzWa5Ywc/QvW1tJIzvJ0MXEb5kz5wWHrFjy+8HB4dEeb/mwCo1yOBFJUhrqmHwYo0S7zGaAIMXo80I+xOTAIOXmIT4uREFGLwYcVbYp+gEGLzw+XBWAUcFL8E3buB+rdqas3ikSYOUa9dEGbyI1SsJ4vlZPk+TKqllxUpwyHu06jkBgW/eyqBkybR+SPH/1TEfBy8h79+jSefRKFrwM3Rs9k249sRnDTqMkKHMt3XKI46nB4ZPWYzGNcvK4OXcpeu4cv0usmVKg7fvgjBq6lJLPRu3/Y3hPy6GWJnj6emBzBlSydAnqvs1B1apQQYvKkFaUw2DF2uUeI/RBBi8GG1G2J+YBBi8xCTEz40owODFiLPCPjF44TPgigLuFryUKPwF4vnGtUylCDbC7tOyc/8J9B01V75e1KNtHct95uClZf1KMhA5cPQc/r12B4um9kGqAP9wj8aJs5fRrs9kLJ8xwLKZ7sevGj168hwnz12B+O+Ov04gfry4GD+wrVztEtmrRlHd76zPJIMXDWeOwYuG2GxKNQEGL6pRsiKNBBi8aATNZlQVYPCiKicr00CAK140QGYTDhFwVPDijK8aBQUFo0WP8fCKE0euSgkbnJiDl8L5PpUrWdKlTo6qZQshaZKEEeZl885DGDdjJXasGGf5LGzwsnXPUQwcNw+5cmRGtkypcfn6XXh7eWLSkA6RBi/R3e+Qh0KDShm8aIBsboLBi4bYbEo1AQYvqlGyIo0EGLxoBM1mVBVg8KIqJyvTQIDBiwbIbMIhAo4KXhzSWTsqtWaPl1mLNmLb3mNY8GMfDB4/D89evMb0UV3k6ULWlDd3T4Q2LbqPl8GLb1wf+e2wwYt4DalMsbxo1aCS/GzRmm04euqiDF4uXrmFpt+Nwe7VE+HtFUd+Ht39dpDoWpTBi4b8DF40xGZTqgkweFGNkhVpJMDgRSNoNqOqAIMXVTlZmQYCDF40QGYTDhFwt+Bl8tAOSJk8icXSx8cLAUkT48yFa3J/lznje+Cz7Bnw8PFz1Gs/HK0aVpKvItkSvIg9Xso36CNfV6pdpTjOXbyOoZMWWjbXbdN7kty7pUPTarhz/zHGTFuOhAl8ZfDy5m0QStXpgZ9GdEbObBkQGhqKroOnR3m/Qx4KDSpl8KIBsrkJBi8aYrMp1QQYvKhGyYo0EmDwohE0m1FVgMGLqpysTAMBBi8aILMJhwi4W/DyMeJX+XNiZJ8WaNRplDxGOuxGueaNblfOGiRPNqrVeiiiOxUpbN0rN+6RpxqJK0uGVHjxKhBNapWTYYw46WjoxAV4+vyVXBEjPo/nFxcTB7eT989evAlzl22Wvxab7H4IDY32foc8GA6ulMGLg4HDVs/gRUNsNqWaAIMX1ShZkUYCDF40gmYzqgoweFGVk5VpIMDgRQNkNuEQAXcJXhyCF0Ol4nSkV6/fInnSRBHuFKti7j14goBkSeSpRx9fYuVLUHCwPGJaXDHdr8f47GmTwYs9ejaWZfBiIxhvN4QAgxdDTAM7YYMAgxcbsHirYQQYvBhmKtgRKwUYvFgJxdsMJ8DgxXBT4hYdYvCi4TQzeNEQm02pJsDgRTVKVqSRAIMXjaDZjKoCDF5U5WRlGggweNEAmU04RIDBi0NYWWkMAgxeNHxEGLxoiM2mVBNg8KIaJSvSSIDBi0bQbEZVAQYvqnKyMg0EGLxogMwmHCLA4MUhrKyUwYtxngEGL8aZC/bEegEGL9Zb8U5jCDB4McY8sBe2CTB4sc2Ld+svwOBF/zlgD5QJMHhR5sZS9glwxYt9fjaVZvBiExdvNogAgxeDTAS7YbUAgxerqXijgQQYvBhoMtgVqwQYvFjFxJsMKMDgxYCT4gZdYvCi4SQzeNEQm02pJsDgRTVKVqSRAIMXjaDZjKoCDF5U5WRlGggweNEAmU04RIDBi0NYWWkMAgxeNHxEGLxoiM2mVBNg8KIaJSvSSIDBi0bQbEZVAQYvqnKyMg0EGLxogMwmHCLA4MUhrKyUwYtxngEGL8aZC/bEegEGL9Zb8U5jCDB4McY8sBe2CTB4sc2Ld+svwOBF/zlgD5QJMHhR5sZS9glwxYt9fjaVZvBiExdvNogAgxeDTAS7YbUAgxerqXijgQQYvBhoMtgVqwQYvFjFxJsMKKBW8PLu3TsDjo5dMqqAt7c3mjZtanX3YoWGhoZafTdvDCfA4IUPhDMKMHhxxllz7z4zeHHv+XfW0TN4cdaZc99+M3hx37l39pGrEbw4uwH7b3wBBi92zBGDFzvwWFQ3AQYvutGzYYUCDF4UwrGYrgIMXnTlZ+MKBBi8KEBjEUMIMHgxxDSwEzEIMHix4xFh8GIHHovqJsDgRTd6NqxQgMGLQjgW01WAwYuu/GxcgQCDFwVoLGIIAQYvhpgGdoLBi+OeAQYvjrNlzY4TYPDiOFvW7BgBBi+OcWWtjhVg8OJYX9auvgCDF/VNWaM2AgxetHFmK/YJcMWLHX4MXuzAY1HdBBi86EbPhhUKMHhRCMdiugoweNGVn40rEGDwogCNRQwhwODFENPATsQgwODFjkeEwYsdeCyqmwCDF93o2bBCAQYvCuFYTFcBBi+68rNxBQIMXhSgsYghBBi8GGIa2AkGL457Bhi8OM6WNTtOgMGL42xZs2MEGLw4xpW1OlaAwYtjfVm7+gIMXtQ3ZY3aCDB40caZrdgnwBUvdvgxeLEDj0V1E2Dwohs9G1YowOBFIRyL6SrA4EVXfjauQIDBiwI0FjGEAIMXQ0wDOxGDAIMXGx6Rvn3nYvToZXj6dC0SJYoHBi824PFWwwgweDHMVLAjVgoweLESircZSoDBi6Gmg52xQoDBixVIvMWQAgxeDDkt7NRHAgxerHwk5s3bgubNx8u7GbxYicbbDCnA4MWQ08JORSPA4IWPhzMKMHhxxllz7z4zeHHv+Xfm0TN4cebZc5++M3ixYq537z6FatUGYPbs7qhffwSDFyvMeItxBRi8GHdu2LPIBRi88MlwRgEGL844a+7dZwYv7j3/zjx6Bi/OPHvu03cGLzHM9aVLt5EvX3usWjUIqVMnxWeftWbw4j6/P1xypAxeXHJaXXpQDF5cenpddnAMXlx2al12YAxeXHZqXX5gDF5cfopdYoAMXqKZxidPXqJAgQ7o3r02Onb8BmfPXos0eIkXL75LPAwchHsIPHv2FAkSJERs/l/KPSbcBUYZFBSEoKB34J+1LjCZbjSEly9fwNvbB15eXm40ag7VmQU+fPiAFy+eI1GixM48DPbdDQWSJ0/mhqPmkJ1NgMFLNDO2cuVu1K07HN261USsWLHw8OFzLFy4De3bV0Pr1pWRMGFsWTphwkTONu/srxsLPHnyGIkTJ5HPNC8KOIOACF7evXuL+PETOEN32UcKSAEGL3wQnE1ABC/Pnz+Tf0fgRQFnEvD35zPrTPPlrn1l8BLNzJ87dx3r1v1luePevaeYOnUdBgxohAYNSsHH5738LEOGTO76/HDcTijAV42ccNLcvMt81cjNHwAnHT5fNXLSiXPjbvNVI2NN/vEbT7H9/AMUyZIUhTP5G6tzBusNF3EbbELYnUgFGLzY8GBE9aoRgxcbEHmr7gIMXnSfAnbARgEGLzaC8XZDCDB4McQ0sBM2CDB4sQHLAbe+Df6Avf8+xLZz97Hj/H08fh0kW6lfIB1G1vjcAS26TpUMXlxnLl15JAxebJhdBi82YPFWwwoweDHs1LBjUQgweOGj4YwCDF6ccdbcu88MXvSb//Un76Dr8uORdiAggQ8O9CmjX+ecoGUGL04wSewiGLzY8RBcuXJFluaKFzsQWVRzAQYvmpOzQTsFGLzYCcjiuggweNGFnY3aIcDgxQ48O4u2XXgEW/+5H2UtW74rgawB8exsxXWLM3hx3bl1pZExeLFjNhm82IHHoroJMHjRjZ4NKxRg8KIQjsV0FWDwois/G1cgwOBFAZoKRUI+hCLX0C14E2zaOzKyq2+lT9G6GPeUjMqHwYsKDyKrcLgAgxc7iBm82IHHoroJMHjRjZ4NKxRg8KIQjsV0FWDwois/G1cgwOBFAZoKRf6+8gQN5xyQNSXx88KR/uXkr1cfu4Veq07KX3+V2R+LWhZSoTXXrILBi2vOq6uNisGLHTPK4MUOPBbVTYDBi270bFihAIMXhXAspqsAgxdd+dm4AgEGLwrQVCgybst5zNh9WdZUK28ajKudS/5abK5bYMRW+evYsYDTQyoibhwPFVp0vSoYvLjenLriiBi82DGrDF7swGNR3QQYvOhGz4YVCjB4UQjHYroKMHjRlZ+NKxBg8KIATYUi1X7ai7N3XsiaptTPg6pfpLLUGvazmY3zo3yOABVadL0qGLy43py64ogYvNgxqwxe7MBjUd0EGLzoRs+GFQoweFEIx2K6CjB40ZWfjSsQYPCiAM3OImFXtYiqTgwsjwRx41hqHf/nBUzf9a/8ukHBdBhRncdKR0bO4MXOB5HFNRFg8GIHM4MXO/BYVDcBBi+60bNhhQIMXhTCsZiuAgxedOVn4woEGLwoQLOzyLoTt9F9xQlZS+60ibCmfZFwNR6+9gT1fjbt/5IigQ/281jpSMUZvNj5ILK4JgIMXuxgZvBiBx6L6ibA4EU3ejasUIDBi0I4FtNVgMGLrvxsXIEAgxcFaHYW6bbiBH47cVvW0qV0VnQtmy1cje8/hCLv8D/x8m2I/D6PlY4cnMGLnQ8ii2siwODFDmYGL3bgsahuAgxedKNnwwoFGLwohGMxXQUYvOjKz8YVCDB4UYBmZ5H8I7biyesgWcuqdkWQN12iCDV2XHIUm8/ck9/nsdIMXux85FhcRwEGL3bgM3ixA49FdRNg8KIbPRtWKMDgRSEci+kqwOBFV342rkCAwYsCNDuKnLn9HF9P2ydrSODjieMDKyBWrIgVrjh6E31Wn5If8FhpBi92PHIsqrMAgxc7JoDBix14LKqbAIMX3ejZsEIBBi8K4VhMVwEGL7rys3EFAgxeFKDZUURsmis2zxVX5c9T4qcGeSOtjcdKx4zMV41iNuId+gsweLFjDhi82IHHoroJMHjRjZ4NKxRg8KIQjsV0FWDwois/G1cgwOBFAZodRerPPoBDV5/IGsbU+gJ18qWNsrbKU/bg/L2X8nMeKx2RicGLHQ8ii2omwODFDmoGL3bgsahuAgxedKNnwwoFGLwohGMxXQUYvOjKz8YVCDB4UYCmsEhg0HvkGrYFYvNccR3uXw7+fl5R1jbmj/OYteey/JzHSjN4UfjYsZjOAgxe7JgABi924LGobgIMXnSjZ8MKBRi8KIRjMV0FGLzoys/GFQgweFGAprDIn+fuo92iI7J09hTxsblL8Whr+vvKEzScw2Olo0LiiheFDyKLaSrA4MUObgYvduCxqG4CDF50o2fDCgUYvCiEYzFdBRi86MrPxhUIMHhRgKawyKDfzmDRweuydNvimfF9xU9irOnzIX/gddB7ed/BfmWRLJ53jGXc5QYGL+4y0849TgYvdswfgxc78FhUNwEGL7rRs2GFAgxeFMKxmK4CDF505WfjCgQYvChAU1ik1ISduP44UJZe3KoQCmfyj7GmmtP/wolbz+R9K9t+hXzpE8dYxl1uYPDiLjPt3ONk8GLH/DF4sQOPRXUTYPCiGz0bVijA4EUhHIvpKsDgRVd+Nq5AgMGLAjQFRV6+DZH7u4jL2zM2/hlWyapaui4/gfUnb8t7x9bOhdp501hVzh1uYvDiDrPs/GNk8GLHHDJ4sQOPRXUTYPCiGz0bVijA4EUhHIvpKsDgRVd+Nq5AgMGLAjQFRY5df4ras/bLkjlTJcCGTsWsqmXStouYuuOSvLdDySzoWT67VeXc4SYGL+4wy84/RgYvdswhgxc78FhUNwEGL7rRs2GFAgxeFMKxmK4CDF505WfjCgQYvChAU1Bk+eGb6Lv2lCz5Te7UmFQ3t1W1rDl+Cz1XnpT3Vv48JX5qkNeqcu5wE4MXd5hl5x8jgxc75pDBix14LKqbAIMX3ejZsEIBBi8K4VhMVwEGL7rys3EFAgxeFKApKDL893P45a+rsqRYtSJWr1hzHb3+FHUUrJSxpm5nv4fBi7PPoHv0n8GLHfPM4MUOPBbVTYDBi270bFihAIMXhXAspqsAgxdd+dk4gFfvQhDP29NqCwYvVlPZdeO3vxzC3n8fyjpmN82PMp8EWFXf49dBKDBiq7w3vo8nTg6qYFU5d7iJwYs7zLLzj5HBix1zyODFDjwW1U2AwYtu9GxYoQCDF4VwLKarAIMXXfndvvE/zt7D2D/+wcp2ReDv52WVB4MXq5jsvqnw6O24/+KtrGdnj1JI7+9rdZ2fDtqMdyEf5P2H+5ezem6tbsBJb2Tw4qQT52bdZvBix4QzeLEDj0V1E2Dwohs9G1YowOBFIRyL6SrA4EVXfrdu/M6zt6g0ZTfE6TnZAuJjWevCSOQbJ0YTBi8xEtl9w4u3Icit4EQjc8NVp+7Fubsv5Jer2xdBnrSJ7O6TK1TA4MUVZtH1x8DgxY45ZvBiBx6L6ibA4EU3ejasUIDBi0I4FtNVgMGLrvxu3bjYB0TsB2K+cqRMgOVtv4Kfl0e0LgxeHP/YHL/xFLVmmk40EvOysbN1JxqZe9Zh8VGI1UzimlAnN2rkSe34TjtBCwxenGCS2EUweLHjIWDwYgcei+omwOBFN3o2rFCAwYtCOBbTVYDBi678btv4TzsvYeLWixHGnztNIixuXQhx40QdvjB4cfxjs+zwDfRbe1o2VD13aky08kQjc8/GbjmPmbsvyy+7lM6KrmWzOb7TTtACgxcnmCR2kcGLPc8Agxd79FhWLwEGL3rJs12lAgxelMqxnJ4CDF701HfPtk/ceoZaM/5CaGjk4y+QIQkWtPgS3p6xI72BwYvjn5thG89i3v5rsqFeFT5B+xKZbWp0xZGb6LPGdBT117lSYXK9PDaVd9WbGby46sy61ri44sWO+WTwYgcei+omwOBFN3o2rFCAwYtCOBbTVYDBi678bte4OMGoypQ9uPn0jRy72PtD7AEyavM/mL33isWjSOakWNjySwYvOj0hTX85iH3/PpKtz2laAKU/SW5TTw5efYIGsw/IMmIV05oORWwq76o3M3hx1Zl1rXExeLFjPhm82IHHoroJMHjRjZ4NKxRg8KIQjsV0FWDwoiu/2zXedflxrD95R45bHCG9qUtxpEkcV3496LczWHTwusXkl28LoGT2iD/wc8WL4x+bsCca7e5ZCmmTWH+ikeidOA1J1CEusWHysQHlHd9pJ2iBwYsTTBK7yFeN7HkGGLzYo8eyegkweNFLnu0qFWDwolSO5fQUYPCip757tb3rwgO0mH/YMuipDfKiyucpwyF0XnoMv5++K79XIWcKzGiULwISgxfHPjf2nmhk7l3YI6VPDKqABD6eju24E9TO4MUJJoldZPBizzPA4MUePZbVS4DBi17ybFepAIMXpXIsp6cAgxc99d2r7bArWsQpN+K0m4+vs3eeo9pP+yzfFislPj5imsGLY58bcdKUOHFKXDlTJcSGTkUVNVhh8h5cevBSll3fqSg+S5VQUT2uVIjBiyvNpuuOha8a2TG3DF7swGNR3QQYvOhGz4YVCjB4UQjHYroKMHjRld+tGq80ZQ8u3DP9IL6wxZcokiVppOMvO3EXrjx6LT8bVDUnmn2VIdx9DF4c+9gsOXQDA9YpP9HI3Ls2C49g2z/35Zdic12xya67Xwxe3P0JcI7xM3ixY54YvNiBx6K6CTB40Y2eDSsUYPCiEI7FdBVg8KIrv9s0LjbVzTVsizzJKFYs4NzQSlGeWiRO0xGn6ojrkxTx5T4wYS8GL459bIZsOIsFB0wnGvWu8Ana2Xiikbl3Izadw9x9V+WX3cpmQ+fSWZ9SDGUAACAASURBVB3bcSeoncGLE0wSu8hXjex5Bhi82KPHsnoJMHjRS57tKhVg8KJUjuX0FGDwoqe++7S988JDtJx/SA7489QJ8VvHqF9fEXuM5B/+J0I+mM6b3tCpGHKmSmDBYvDi2Oem8dy/sf/yY9nIz03yo+ynAYoaFBsli9fLxBXVq2WKKnbiQgxenHjy3KjrXPFix2QzeLEDj0V1E2Dwohs9G1YowOBFIRyL6SrA4EVXfrdpfMKfFzBt179yvM2/yoiBVXNEO/ZOS49h0/832f22cAYMrpaTwYtGT8uXI7fh4at3srVdPUshnY0nGpm7uefSQzT71RS25U2fGKvafqXRCIzbDIMX484Ne/afAIMXO54GBi924LGobgIMXnSjZ8MKBRi8KIRjMV0FGLzoyu82jTeYfQAHrz6R453WMB8qfZYi2rHvvvgQzeeZfmgXp+Ec7l8ecTxiya+54sVxj82zwGDkHf6nbEB4X/ihsuLGbjwJRMnxO2V5fz8vHO5fTnFdrlKQwYurzKRrj4PBix3zy+DFDjwW1U2AwYtu9GxYoQCDF4VwLKarAIMXXfndonHxytDnQ/7Au5APcrxHB5RHYt840Y5d7AVTePQ2PHhpWnkRNqxh8OK4x+bQ1SeoP/uAbOCz1AmxPppXwmLqxfsPocg+cBP+/8YY/hkW9b4+MdXlKp8zeHGVmXTtcTB4sWN+GbzYgceiugkweNGNng0rFGDwohCOxXQVYPCiK79bNH7y1jPUmP6XHGsGf1/s6FHKqnFP2nYRU3dckveWzJ4cv3xbQP6awYtVfIpuWnzwOgb+f1+WmnnSYHydXIrqMRcqPWEnrj0OlF/+3qUYPk3x3149dlXspIUZvDjpxLlZtxm82DHhDF7swGNR3QQYvOhGz4YVCjB4UQjHYroKMHjRld8tGp+z9wpGbv5HjrVW3jQYV9u6H+ZvPn2DEuN2yHLiJKRD/crJV1YYvDjusRm8/iwW/m3/iUbmHorXxcRrY+KaWj8vqnyR0nGdN3jNK4/eRL0CaQ3eS3aPAuCpRvY8BAxe7NFjWb0EGLzoJc92lQoweFEqx3J6CjB40VPfPdpuv+gotpy7Jwc7uuYXqJvf+h8+G835GweumE7Y+b7iJ2hbPDODFwc+NmG9535bAKWyJ7ertbBBTs/y2dGhZBa76nPmwsXH7cC+70s78xDYdzcR4IoXOyaawYsdeCyqmwCDF93o2bBCAWcKXoKuXsOTubORoGpV+BYqrHDELOYKAgxeXGEWjT2GfMP/xNPAYNnJ7d1LImNSP6s7vO7EbXRfcULeL15TEa+rcMWL1Xw231hgxFY8fh0ky+3uVRppE8e1uY6wBX7dfxU/bDwnv1U3X1qMrvWFXfU5a+Hlh2+i79pTuDa6irMOgf12IwEGL3ZMNoMXO/BYVDcBBi+60bNhhQLOEry8f/oU1+vURvCdO3KkngEBSFC1GhJWrw6vzJkVjp7FnFWAwYuzzpxz9Pvqo9coM3GX7Gwi3zg4NqC8TR1/9S4EeX/4E2KDXnHt7FEKqRN64ebN68iYkX9e2YQZw81qnmhkbmrH+QdoteCw/LJgxiRY1tr9gn6xybBY7XL3+VsGL2o+sKzLYQIMXuygZfBiBx6L6ibA4EU3ejasUMAZgpfQwEBc/7Yp3p09G+kofb7IhZSjR8MrQwaFCizmbAIMXpxtxpyrv6uP3UKvVSdlp8vnSIGZjfPZPID2i49iy1nTq0rflcmGjiUyMnixWTHmAoevPUG9n00nGuVMlRAbOhWNuVAMd1x++BrlJpmCtxQJfLC/Txm763S2CpYcuoEB607LbnPFi7PNnnv2l8GLHfPO4MUOPBbVTYDBi270bFihgDMELzfbtEbgvn3RjjCWjw9SjhyJ+BUrKZRgMWcSYPDiTLPlfH3ts+YUVhy5KTvev3IOtCya0eZBbD5zFx2XHJPl0vv7Yut3xRi82KwYc4EVR2+iz+pT8sbaedNgrJWbIMdUc6Z+v1tuOTu0IuLG8YipiEt9Xnj0dtx/8ZbBi0vNqmsPhsGLHfPL4MUOPBbVTYDBi270Ltfwqy1bAI/Y8MqYyaGv0hg9eLk3YACer1ltmd9U48cjXpmyeLVjO178vkn+N+yVuHFjJO/X3+WeBw4ovACDFz4RjhQQqx3EqgdxretYBF+kTmRzc+9CPsjXjd4Ev5dlf+vwFeIFP+GrRjZLRl9g3JbzmLH7srypV4VP0L6EOq9yiddsbj19I+v947viyBYQX+WeG7e6hX9fx+D1Z2QHxVHqu3pZd5S6cUfEnrmDAIMXO2aZwYsdeCyqmwCDF93oXarhN8eO4kbjxuHG5JU1K7yzZEWiGtXhW7SYauM1cvDyeMZ0PJo61TLWgIEDkahBw3Bjf3f+H9xq1w4hDx5Yvu/92edIM3Wq3AeGl2sKMHhxzXk1wqjEhrpiY11xeXvGxukhFeEZO5airn237Dg2nDLtS9W6aEbU/9SbwYsiyagLdVxyFJvPmF7pmtogL6p8rs7Rz43n/o39l00nU01vlA8Vc6ZQuefGrC7o/QcUG7MDD1+9kx0Ux6jXyZ/GmJ1lrygQRoDBixWPQ0jIe9y9+xjJkiWCj4+XpQSDFyvweIvhBBi8GG5KnK5DH168wNVvvkbI/fuR9j22ny8ybvgdninU+UugUYOXwAP7cbNlS4uBf9u2SPpd10hNxMa7tzt3hgiszJdvkSJIO3uO080/O2ydAIMX4P2zZ4jl4YHY8d3nX+Ktezrsu2vrP/fRduERWUnhTP5Y3KqQ4gq3n7+P1gtMdaVM6I1FdTMyeFGsGXnBqlP34tzdF/LDjZ2LIUfKBKq00H/daSw9dEPWNbBqDjT/yvbXzVTpiMaVzD9wDUM3mPZTE6tddvQohdixNe4Em6OAAgEGLzGgjR69DH37zrXcVadOccyc2RVJksQHgxcFTxyL6C7A4EX3KXD6Dtz+7ju82mr611bxA5VXhox4d+kiQt+a3rUWV9yCBZFu3nxVxmrE4OXD60Bc/boqQu7elWOMX7UqUo0dF+N47w8fjmdLFlvuy7JnLzySJo2xHG9wPgF3Dl7enjyBp8uW48Vv6+CRODGSfdcVCevWdb5JNGiPR27+B3P2XpG961QqK7qXy6a4p8HvQ5H3hy14HWR63WjK1+lRtdBniutjwYgCnw7aDPFal7hODqqA+D6eqjBN2XEJk7ddlHW1KZ4ZfSp+okq9Rq5EOBYevQ3ipChxTaiTGzXypGbwYuRJY98sAgxeYngYZs/ehMyZU6JQoU9x+fJdlC3bG71710WPHnUYvPA3klMKMHhxymkzTKefr1qJe4MGWfqTZtYs+BUrLr9+e/wYrjdqZPksed++SNykqd19N2Lwcm/wYDxfuUKOLXaCBMi0aTM8kiSxaqw3vv0Wbw4fkvcm79MHiZt+a1U53uRcAu4WvIjg9cWG9XiyZCmCLpyPMFniVcQU/QfIUJaXfQJ1Zu3H0etPZSULW36JIpntC297rzqJVcduyfpq5kyM8Y2+sq+DLG0RePQqCAVHbpVfJ/HzwpH+5VTTEZsri02WxVU9d2pMrJtbtbqNWtHcfVcxYtM52T2xIbQ4Bl3+f5grXow6ZexXGAEGLzY+Dq1aTcDVq/ewffs4Bi822vF2YwgweDHGPDhjL4KuXcO1GtUR+s70XnXiJk2QvG+/cEN5OGkSnsz+WX4vlpcXMqz9DV4Z7TtC2WjBy8evGKWaNAnxK1S0ekqfLV+O+0OHyPu9c+ZEhpWrrC7LG51HwN2Cl+uNGuLt8eMxTpBfqVJIMXgIPJMnj/Fe3hC5QN7hf1r+xV8cIyyOE7bn2n3xIZrPM4XBieN64OhA6/88s6dddygrAjIRlIkrd5pEWNOhiGrD3nXxIVr8f97sfeVMtU45uKIvR23Dw5emv4OIoEkETuJi8OJgeFavigCDFxsYg4NDkClTEzRsWBpjxrRm8GKDHW81jgCDF+PMhbP15GqNGpZ/yfbKkhUZ16+PdAhXv/kGQZdMy5+9P82BDKv/O/FHyZiNFLyEBgbiSrX/XjGKV648Uv/4o03D+vD8OS4V/m9Phowbf4dXpkw21cGbjS/gTsHLxyvhxCqwRLVrI16xYnh94AAe/2wKY82Xd46cyLCKgaOSp/j5m2Dk+cH0qqc4PlgcI6zGJeoUdYtraevC+DKjdSv41GjbletYe/w2eqw8IYf4Te7UmKTiqpTz916i8pQ9su4syeLhz24lXJkSq4/dQq9VJ+UYk8X3xsG+ZS3jZfDi0lPvMoMzVPDy4MEz/PHHYdSvXxJeXnEMh9ymzSQsW7YT58//ilSp/C3Bi6en8fpqODx2yDACb9++gY+P+NcxZScgGGYg7IimAsGLFiFowQJTm15e8J05E7HSRH6KQOiNGwhs1crSP6+mTRHnoxOQbOn8+/fv8f59CLy8vG0p5pB73/04GSG/b5J1x0qQAL5z5wAJbT/G9e3gIXh/wPSvoHEaNoBXs+YO6S8r1U8gKOgdPDw84eHhoV8ntGj52TO8bt4ceG062tizbj14t2qJS4/eosOaS0jg7YksIU9R59BafHrV9EOTvK9WbXi3baNFD12qjXMPAtFu1b9yTJn9vfFrveyqjG/87ltYf/aJrOvrnEnQswRPiVEDdu6he5h/xHSiXfMCKdC8gHorvZ69DcHXv5heu/Hzio3NrVx7b54mSy/g+lPTape2hVOiUZ5klilKly6tGtPFOijgUAFNg5f9+8+ia9fpOH/+Jj75JK3cJ6VevZKWAYrPixTpiidP1iBxYmPtgD906EIMGbIAhw79hAIFTP+TM2+uGxCgzskdDp1pVk6B/wvcuXMbKVKkRGz+8wCfCRsE7tati+DLl2UJ/4ED4Fe9RrSlXy5ahKeTJlnuSbVqFTwzKjtx4c2bNwgMfA1/f/v2MbBhuJHe+u7IUdwP84NisrHjELdMaUXVvtmxAw979ZJlPVOlQqoNGxTVw0LGFXj06CH8/OIhbty4xu2kCj17PGAAXm/eLGvySJUaqVatRCxvb1Sd/jeuPn4TroXql/ei7enfLN9LNmUK4hZR79ULFYZj+CrWn7qPvr+Zftgu/2kyTKqtzg/bh64/Q/MFplfFEvh44kCvYoa3cIYO9l57Fr+fMQUvo6vnQLXPA1Ttds4fdlrqO9qnBHziuOZmJ/suP0HbJabgVhyhvqtbEfmcmi8/P19VXVkZBRwhoFnwEhoainTpGuLWrUeoVaso9u49A7HCpX37apg6tRM8PGLDiMHLhw8f0Lv3bPz88+/YtWsC8ubNapkHnmrkiEeSdTpagK8aOVrY9eoPefAAl0ualjDHihsX2Y4es2qQYfd88G/XHkm7dLGq3Mc3GeVVo1vt2uH1nt2ye/ErVkKqiRMVjcdc6FLBAvjw6pX8Mv3ixfDJk9eu+ljYWALu8KrRm0OHcKPZf5tDp/3lF/gWKozhv5/DL39djXRChu2fgwIPTJvveiRKhAzrfuN+LzY8uhO2XsC0naYVLx1LZkGP8uqseBH15R++FU8Cg2TdvzYriBLZ/ltRYEMXeWsYgerT/sKp28/kd1a3+wp50iVW1afImO24+9x0oqA4Vlkcr+yKV+O5B7H/8iM5tCaF0mPo1+EDR/5boivOuuuNSbPg5dSpK8iVqy2OHZuBPHmyQAQx48evlKFGu3ZVMX16Fxw4cM5wK15athyPX37Zgs2bR8pVOuYrTZpkuHHjuvwyQwa+m+96vzVcd0QMXlx3bh01sudrVuPegAGyer8SJZFmxgyrmnqxcQPu9u4t7/XKlh0Z162zqtzHNxkheHn/6BH+Lf7fvwBn2rodcVKnUjQecyFxOpTYG0NcierVQ8Bg04a7vFxDwB2ClysVKyD4xg05YfErV0Gq8eNx5PoT1J11wDKJYvPLdElMPwyeuv0cx09fxfTt45Hk3Uv5vbh58yHdokWuMekajKLT0mPYdNp0jP242rlQK696rwQN+u00Fh00zWfNPGkwvk4uDUbk2k3kHrYFL96GyEEe7l8O/n5eqg64xvS/cPKWKdhZ1qYwCmZwvb15Lt5/iYo/mvayEZc4yUicaBT2YvCi6mPFyhwkoFnwIlaM9Ow5Cy9ehN+MUeyZ0qDBSAwY0AiVKhUwXPCSOXMTXLlyLwL/xYvz4OFhes+QwYuDnk5W6xABBi8OYXXpSm9364pXW7bIMSbv1x+JrdyvRazmuFToS+DDB1k2867div5l2wjBy5O5c/Fwwng5jlhf5EHAr/ORMK59+3sFHjqMm81Mx22LzUiz7t0HxLGvTpd+EJ1scK4evDyaMgWPZ5pC2Fi+vsi0+Q+8S5gE5SftsvwLfKGM/ljS+r+NpN+FfECN6fsQ99RRjNz/34a7/h06ImmnTk42w/p0t+rUvTh394VsfHX7IsiT1vY9pqLq+ZGrj1B39kH5sa+XB84MUWfjXn2k9G817EbIfl4eOO0Az3aLjuLPc6afU6bUz4OqX9j3DwL6q0XsgdicWGxSLK6ynwbg5yb5I9zE4MWIM8c+fSygWfCydu0+1Kw5FM+fr0OCBH7h+rF48XY0bjwajRuXwaJF2w25x0tkjw5fNeJvKGcUYPDijLOmb5/DvhKTcdNmeGWw/nho8RqCeB1BXLaENmFHbITg5Wq1qgj6/x43E/PUx9b0pr/4pUzoI49y7V8lB/IqWEJ+uXQphNwz/aU5zbRp8CulbM8YfZ8Qth6ZgCsHL8G37+BKuTKWYQcMGoxE9eujz5pTWHHkpvy++EFza/eSEY46vvEkUJ7E0vDYOtT61/TqnrgybduOOKlc74dGtX935Bi8GW+DTWH20QHlkdhXvbA2JCQERcdux4NXphUaMxvnQ/kc3MdQ6RyKV4zEq0biypkqITZ0Kqq0qijLDV5/Bgv/Nq3A7185B1oWVbaXmuodU6nC+y/eovDo7ZbaolrVw+BFJXBW41ABzYKX69fvI0OGxvKVIrGvy8fXuHEr5GtH4jLi5rqRzQKDF4c+m6zcQQIMXhwE66LVvj15AtcbNJCjEz8UiR+ObLmeLlyIB6NGyiK+hb9C2rlzbSku79U7eLlz8BheNm8k+/IuticaVBqGN3HCLxcXx7rOb1EQ+dPbtsz70eRJlqN241WogNSTJtvswwLGFHDl4OXRTz/h8fRpEt7ni1xIv2wZdl54gJbzD1smY3K93Pg6V+pIJ2fzmbvouOQYpu2YgEwvTK/NJKrfAAGDBhlzMg3Sq7A/hIqNRU8MqqBqz0Tw0n/VYaw8ZTrdqMrnKTG1AfeeUoq8/uQddF1u2rC40mcpMa2h+pbTdv2LCX9ekG20KpYJ/Sp9qrS7hiw3+o/z+HmPaWP/HCkTYGPnyDd9ZvBiyOljpz4S0Cx4Ee2uXr0XCRP6oWzZyP/gGTVqKf7997bcbNfXVxx3a+yLwYux54e9i1yAwQufDFsEwv6ApWQfkuDbt3GlXFlLk1kPHkLs+LadWqdn8LL74kOc6tUP5S/tk2PYmq4AJuatFymhOGnhl2YFUTiTv9XEQVeu4GrVKnb5WN0Yb9RUwJWDF/F7WvzeFpfYZFpsNl1i3A7cfGo6xciaH9jFv9Sf/+0PDDvwXxibefceeCbjhq5RPagHrz5Bg9mm/XNyp0mENR3UPRFKBC87jl9Au7XXZBvizzSxqka8dsTLdoGfdl7CxK0XZcEOJbOgp4obIZt7s/rYLfRaZTrtRwSdIvB0letN8HsUHrXNskdOdGEugxdXmXXXHoemwYurUTJ4cbUZdY/xMHhxj3lWa5RitYtY9SKu1D/9hHil/3u9wNo2rn7zNYIuXTL9kDZhAuJXqmxtUXmfXsHL7L1XMGrzP1jx+0DEDzb9QHmw6yg0bVNd/vpZYDCuPn6NjouP4t4L06kS4geVWU3yo3hW6394vFqjBoIumE55STlmDBJU+9omH95sTAFXDV7eHDuKG//f50mEqCJMPX37Ob6ZZgonxStGf31fBgms2ANJvHLUaelQZH5+R5ZN0rIlkvXoacwJNUCvlh2+gX5rT8ue1MiTGhPqRP5D9rt/zuH1/gN4c+Y0kjRqhLj5C1jVexG83Lx5Hc1W38DNJ4GyzI/186CaC+4bYhWInTf1XHkSa47fkrWMrvUF6ub775AOO6u2FN/37yM0/cW0L8/Heyqp1YZe9Wz95z7aLjwimw9I4IMDfaL++weDF71mie3aIqB78BIS8h6ens6ZpDN4seVR471GEWDwYpSZMH4/Pjx/jkuF/9sYM+vhI4jtF36PLmtGEXYTTvPJJ9aUM9+jR/AiNq8Um1gWu30K/Q4vkF15H5ASOXbuiND1W0/foOGcAxD/NV+/fFsAJbMnt2qYj2fNwqMfTa8YiT1exF4vvJxfwFWDF3HCmTjpTFzm14PCvg7wda5UmFwvj1UTuOviQ/wyYi76H55vut/XF1l37JSbTfOKKDBy0z+Ys++K/KBb2WzoXDqr5aaXGzfi5Y4deH1gP8Sf3WEv36LFENCrJ7yyZouW1Ry8rLkUAvEKi7ii2syU8xOzQK2Z+3H8xlN549LWhfFlRtteRY25BSDsiT8Zk/phe/eS1hRzinv6rj2F5YdNe0a1KZ4ZfSp+EmW/Gbw4xZS6fSd1C16Cg0MwbNgiZMuWGk2alHPKiWDw4pTT5vadZvDi9o+A1QAv/9iMO927m34eypcPaRcqO/L17ZkzuF63jqxHBDdZ/z4IeFgfuOsRvFSZshf/3HuBYfvnoMAD02qUpJ07w799h0j9xIqX+j8fgNg41Hzt610GqRLF/Nps0LVruFq5kqlYnDjIdvAQYvnEXM7qieSNugi4YvAS+u4dLhX5CqGBpuc8/fIV8Pn883CvGdm6IWu1KXvQbWF/pH79yPT7rGMn+HfsqMucGb3R1guOYPv5+7KbYu8V8UqXuJ6vWIF7QwZH3/1YsZCgajUk7dIFcVJHvveOOXgJ9k0e7vhesZeM2FOGl20CBUduxaNXQbLQ/j5lImw0bVttkd8tVl7mHf6n/NDVTqISm+qKfY3EtbxNYRSI5qhsBi9qPE2sw9ECugQv167dk0dInz17DTt2jEf+/NEn8I5GUFo/gxelcs5VLvjOHZc6aYHBi3M9f3r2Nuy/bCf9riv827ZV3J2wp/ek+/VXxP3yv5U0MVWqdfBi3qww8duXWPLHUEv3Yjp1RfwFsV6Y8KVCjhSY0ThfTMOTn4d7HWv8eIiVQbycW8AVg5eXm37HnZ6mV4G8MmdGxg0b5dHGYnWY0h/8tpy9h1Wjf0bPo0tlHbETJkTmbTsQ28/XuR8AB/S+3KRduPzwtaxZbDIqNhsNefhQ7hP14eVLS4seSZLAr3gJvH/+DK937ozQk8RNmsC/XXt4JE4c7jNz8JIxY2aEbWts7VyonTeNA0bkulW+DnqPz4f8YRnglZGO+zP900GbIY5qF5c4AtwV9uQJ++eKNRtJM3hx3d9LrjQyzYOXVav2oEWL8cidOzMWL+6LtGmtW4ptRHQGL0acFXX7dG/gQDxfvQq+hQojUa1aiF/Fcf/jVLfnUdfG4EUraedv53LJ4gh58FAOJMPKVfDOmVPxoO4PG4pny5bJ8okaNUJA/wFW16Vl8HL10WtU/HE3gt+HotalXWh1dqPspwiKRGAU03X0+lPUmbXfctuill/iq8xJYyqGx9Om4dG0n+R98cqWQ+opU2IswxuMLeCKwcvN1q0Q+JfpeNxkvXojSfPmGLflPGbsNp06YstrRubZCw0FykzciaFL+iP5G9NrGcl69kKSFi2MPcEa9+79h1BkH7gJH0JNDf8zrJLcU0qsShSrE8UlVrKknvxjuD+rxZ4890ePwbszpr1hzFcsX1/4t2yJJN82g/i1uMIGLz9uv4Qft5s2hi2WNSnmN/9S4xE7d3Nn77xAtZ9MgWSW5PHwZ9cSDhtQ8XE7LK+6bu1WEpmT2f5KsMM6p7DiaTv/xYStptOaqn6RClPqR//6IoMXhdAspqmAZsFLYOBb9OgxCzNnbsSwYd+ib98GTru3i3mGGLxo+qxq3tjd3r3xYuOGcO16JEqEhDVrIlG9+oiTVv1N0rQYJIMXLZSdv42gfy/h6temTV7Fc59lv+kkDaWX+GFN/NAmLs+AAGTeucvqqrQMXmrP3I9j/38n/9ddE5Dimemo21RjxyF+1apW9bnr8hNYf9J04ku6JL7Y1bNUjOXE5sNi1Yv5ynbkqOWHoRgL8wZDCrha8CJWVlwuUdxinWXvPnj4+6P0hJ249tj06pHYWLrcpwE2z8e6E7exbcxMdD65yvRnTtKkyLLH9EMrL5PA9ceBKDXBtHolWXxvHOxbFoH79uJmmzYWIvMJU5GZvdq2FQ8nTULQ1avhPhZ/votXKMUqmLDBy5VHr1F24n9/Tov2RLu8rBMwH5ku7i7zSQBmN81vXUEFd4X9/9aS1oXkJrvOftWa8ReO33wmhxHdaUbmcTJ4cfYZd4/+axa8/PXXGRQt2g3dutXExIntXUKXwYtLTGOkg7jdrStebdkS7QAzrlsHr2zZnQ6BwYvTTZkuHX4671c8GDtWti0CBxE82HtdKpAfH16blsnb8vtHq+Bl4d/XIY64FVe6F/cwa8d4+etYceMi6/4DiOVt3Q8dD1++g/gXSPPSb3GEqDhKNKbrapVKCLpqOsY11aRJiF+hYkxF+LmBBVwteHnyyy94ON7054B5E+jz915CnEwkv+flgdNDlD+z4vfM6KV94P/W9MpMiuHDkbBmLQPPsLZdE0fbN593SDb6ZUZ/LGmcC1eqVEbIvXsm/5IlkWb6jBg7JVbxPpo6FSEPHoS7V6yWSdypM5598RnEq0biMu91JX5dr0BajKrxRYz18waTgFgFJlaDiatV0UzoV/lTh9F0XHIMIugRlzUhhcM6olLFTwODke//+9aIKo8NKI9E/2PvKqCjurboDnH3ECWCu3uA4O7u8oFCocXdMGUJCAAAIABJREFUneLutBS3Qikuwd2leEIChBAh7v7XuTczmYTI+Ezo7LVYTGbeu/fc80be2++cvY108x1dQ7zIKfmaYRSaAaURL2lp6Vi+/DCmTduJYcPaYPXqkTA2LtzigRriRaHvTZUNHjBiBOKuXxPOb1S3HnQd7BF96hQykrlIGsGgShW47uc96YUJGuKlMB0t1cX6eehQxN/mLQUOS5fCrENHmYMJnDABMWfPsHFI4JE0BsSBMogXIku8VlxBQkoaC2l90kOUOMtbo4gAISJEEuy48QGLz75mu1A7wOUJjeFgnv9v3rc1qxG2bZvUc0oSn2Zb+WYgPjkN/wZGIZ36ZjLx7VsoyjrborhD4b/7TEsiHZHkD9xRx2n9epg0bYZVF99hwxVuFd+hshO76JMWB+5/wrNlazH4Ff+OMKhcBa4HCt9vrLTrL2i/P277YcGpV2wzIkHGvTuLiD93sb+JHPY4ew46duK175NIcsTevQjbtjWbNgwby80NjhMnwqRJU/zzLBBjDz0RhnZ+TCOULGpSUKia1wFMPfYchx9yR575HSugX21XheVl3smX+PMOJ+2ntS6LYQ08FDaXMgamCrjxh5+yqaq7WuLIT/UKnFZDvBSYIs0GapABpREvgrXevfsa3bvPh5GRPg4enImqVQu+C6gGeco1BA3xoq5HRvq4Pg0aiIT7/I4SgS426aKTQHfqiXwJWboEdNJCcFiyBGYdO0k/oQr21BAvKkh6IZuS3t/vqmZdQFHJP5X+C0AXmK8Co5moZmR8MsY1Kw1X64KFMGNOn0bgJC7MqV++AtyOHBErM8ogXkRtWss7mmPd2cXCknzSWyHdFUkhKk7Zqrw9NvXNX2g36fUr+Hfld/ipuobcn8StspE0Ns32smeAnKxIGNb7dTBu+nBHnpwg0m1iizL4n6e77BOqcATR9yZZPTNnMiCbAOu2/jWY9bAsaDHnONYfmS4cwu2fk9AvUXjPE2XJRc59qRqPqvIIi8rrotqiMcJNis6ZC4uePSWeLj06Gt+2bAFVOOaEQaXKsBs/Hn0epuBZAG/5IL0q0q3SoOAM9N5+F/f8wtiGfw6phQYlbAveScottl73xW/neHUNfdfMaFNOypHUY7cxB5/g5PNAFsyklmUwshGvwMoPGuKloAxpXleHDCideKFFR0TEYMSItTh8+Bq8vZehSZP8BZPUIVG5xaAhXtT1yEgXV+S+fQhetFC4s+XAQbCbMuW7wahHOnw7vytN/e0e584zi9zCAg3xUliOlOrijL95E5+HD2MB6JcpC7djx9iJ99S/nuNtcJZzhmiEIxoVxy9NSsJQN2+baHLdeF+7lnC34levQ8eu4JNRRRMv4XHJ8FzmjcQU7gqxpZ4lXCf/jz0m0cmSt25LRYDc9QtDn+13hes9OLwuauVjh0kbfmjeDClfuD6MtISP6t45P/7M9Dnwfh3CyBayGxcXVYtZYkW3ynC3KTy/FaJroxYjajUikBaI3bTpeB8ci5ZreXWorG1Ggrl23fYHZk5E3aCXfK48fofFzfuPtF3/nfdwy5cTfMd9D8DgxSP22LBadRTbu1empVLb0bd16xB17K/vxkmvWhPjzerhrSXXtVM0iSDTQtRo53pLvUHkLIF0vkjvS1EQrRARR4hWUXHIa9wq888jOjGVDXduTEOUKmpa4NAa4qXAFGk2UIMMqIR4Eax7x44zMDExRK9eBQsPqkGuvgtBQ7yo41GRLqaMhAT4Nm+GtPBwNoDNqNGwHjUq18Fo2w9tWiM1OJi9LjgJlW5m5e+lIV6Un/PCNmPI0qWI2P0nC9tq6DC87zgAw3Y/FLbh5LWeomYGmNm2HNpWdMhzyZ//9z/E3+GuP/Zz58G8R48C06No4mXlhbcgC2kCXRgf0n2BsM2b2N/kZOa4nGu9SINfDjzG6Re8975JGTvsGFAz32FCV65A+M6dcplbmng1+3yfgctvQnDhVRAuvgoCaQ/kBbqwsjfLaif7EhGLL1FZ7am0n7h6P+p2HPx79BC64rjs3AlqwV13+T3WXOKuNx2rOGF1D+nbjATrJfLzlzHrMPHqVvZUmokZyt3n1TX/dQica2zjI7D7wiJhOtzPnoOeq3zaWBJ8fPB52VJk3ORtpqK4Y18eu8q3gX7xEjg/Nktk+b9+XHJbP+l7kcWzAIq0kqY57nwIQ98dnOSv6WaFQ8PrFtrD8vBjOHps5WL+1J57a0pTsdaiIV7ESpNmIxVnQKXEi4rXLvP0GuJF5hSqzQBhWzazuz0EPXc3uJ88DeTzLU7WjWThyFCkCNz/OQk9j8LRU6shXtTmbae2gfi1bSNsswmauwqDn/JKEIKRnjYczQ1hZazH/v4SmcD+iSK/O26ilWXGDRrAeSuvHssPiiReohNSUP83b8Qlc22X5d0qo9qMoUj+yEv6Hdeug2lzyduMBOv5HJGARssvC5dHWi9u+bRlJTx7hk+9e7HtWbvR/QfQ0s1fVLCg/GlelywDpPdDZMv5V0G44/tNKJKc2yj1i9ugcRk7NCpl952FK4nr/vUqBpuu+2cb46eGxTGlVRnJglLh1qz1sFpVgPRrtLTYe5KqPFutvY53mRVw5NhCzi3ywPZr71FhXD9YJfKKovyceuQxX2EZw2P6aRZqr7cXMfA1F/83rl8fztt3yG0JAlcjp9Q0hKxclU3vjiZJgxa8i1WHy7ix6NQy/9ZJuQVVCAcSrQaj73v63lckfEJj0WI1rz5TxnyKXMuy82+wJdOennRxSB9HHGiIF3GypNlG1RlQCfFy48YLNGhQMde1r1//NwYObA4zM/Uvx9UQL6p++8pn/rTISPg2aYyMRF4SKhANLGh0UT0Yg6pV4bpvf0G7qMXrGuJFLQ6D2gZBlVy+jb1YfGn6BmjXOqv9ju7m7/lfne8uMHfc/IB13u8Rm8RLgwkTWpTGqFycfFK/foVv0ybC7cSxTVYk8ULCoCQQyj77Fobw7uwMv45cSLiIsRFKPuDl/LLgpz0PcfE1r5AbXM8ds9rl33/v69VI6DjivHEjc5DRQLEZII2WG+9Dcf1daJ7tdBSBs6UhGpfmREvd4tbZWuuoRYycYQQQuBqFJxfBjOMvhG0i9PqpXxqgnIOZYhclp9FJ94x+7wh6JUvB/cQJZh9NNtIEE30dPJ/TUk6zgZGga/uOR9eXF9iYCVVqoMr+PXIbvzAO9D4kBi3XcPeoPy//BrvoUPbYccUKmLZpK7clidpJ06BJL/9F8PLl2bTvBJOZ9O0P+1E/g+yoNciegUuvgzF8z0P2ZMOSttg1OKvFVhG5iklMReX5nIwz0C2CV/NaK2IapYzZeu114Xfw7wNrwqu0eILRGuJFKYdHM4mMGVAJ8dKp0xwmqjtnTv9s4c+Z8yfmz9+L8PBjsLQsuJ9PxrXLvLuGeJE5hWoxgGjvuiSCn8l+fqDKAAEcfvsNZu07qMWa8gtCQ7yo/SFSaYBRR48gaPZsFsNd+7KYV4drnRS3NcbuIXXydOYJi0vGotOvQL3mAvwxqBYalfpew8W/SxckveGOP05r18KkeYt816wo4oUu8Bos80ZkZvvIgo4V0PLe3wjbsoXFY9auPRwyLbVlOSiiZeB0kXpnWjOmiZEXyMZbIHZp0bsPis6aJcv0mn3zyEBUQgpzAvnjlh/ocV6o62HNTv7pvZyb1kDy+3cIWrwECffuwriRF2xHj4Z++fLIaSfdaeMtPP/CRUorOpnjxCjPQnFswrZuxbe1a1isFr16o+js2Tj44BOmH3/BnhNHOFrShW4/chsN5/DvHoLHJW/oOjpKOswPsz1VX43c+whlwj9i9fX1bF0kclzi2nWp9KfySkxO4kWwHel+Ba9ejeTX3FVJCEMj2AwbCqsBA5kelgY8A3QzggTbCf3ruGFeh/IKT025OWeFOmXPZreEqYGOwueU9wRfoxJZBaoARCARkSQONMSLOFnSbKPqDKiEeDl48Ap6916MefMGYPbs/iCr6bFjN2HDhhPC51SdGHHm1xAv4mRJvbchQTm6uyxAsT/+gGHtOmIHLUra6Lq4wOM8v0OnztAQL+p8dFQf25exYxB7gb+PN1XqjJMe9dlF4p+Da8PCqOCWF9HqDjrxOzm6wXeigmGbNuLbhg1sDrNOneGweHG+C1cU8bL9xgcsybR8tjPVx91pzfChVUukfPrE4nHeuAnGjeVTIt5izTX4hMSycee2L48Bdd3yXHNuFQaqf2f8OBF8i03G9hu+2HfvI8gGOieosouIFq/StvAsYcva63JDamgoIySijh377mX2vuneDRY1asHEhNvvUlsOtecIQJVPVAGl7vg8fDjib95gYRIRSYTk5KPPcPRxAHtuepuyGOop31ZbIsLOtemOKsFv2RxxvQaj2uzJ6p4qhcUncK0Z/ewvtPXj+hcCEkyek+ZFvAjm8N68F/hjK5xjs7t4UdULaeNZ9O0rz3AK7VizTvzLvl8IpHs2pL7iP+dUgUaVaIQL4xqhhG3hs/0mS/kZf3NClyoLdw7MXxNN9A2iIV4K7cflPxW4SogXyvChQ1fRq9cizJ7dDz4+gdi//zI2bfoVI0e2LzQHQEO8FJpDlWegQXPmIOrIYfa6Ya3aKLZrl0SLyoiPx4c2rZAakln2u2oVTFupd4mnhniR6BD/5zZ+X6sm0mM5QfC/5lNhV7oE9gytk2+FhmiSqN2o08ab+PAtjj1d0s4Uf4+qn60lI/ndW/h14jbsdMJe4ja/kMgLiiBeSMSz4XJv0EU4gew3+9smwa9zZ/Y3aViUfMBLxeUB0RNKEvD1Hs/buXIDtT0yTY1MUH405fzyOArAkUefMeWv598NRsekazVnNC1bFKXFcNCgKpCwrVuELap5RWfg6QnXbduFL6+8+BYbr3AhZ7qT6z2+cZ5VZPJZseyjvK9ZA+lx/PPscdEbuk6OaLbqqvAz/teIeiDXJnlj77I/UHPXMjZspKkVat/7XvBV3nOq63j0nqX37uHTs2CawjW13I4cAVXpyhMFES80FwmRP9++F/1fn4NtYlS26anVzmbMGEbO/Zch6kBFguokrK5o9Nx2Bw/8uUHEvqF1QJV6hQ0TjzzDsSec0KUK1L61xReN1hAvhe1o/zfjVRnxQuk+fvwmunSZxzJ/+PBMdO+eVXlQGA6HhngpDEcp7xiT/fzh1zaLJHE7fBj6FXLXHspvpeF//IHQ5fzkUK90GbgfP67WiZGWeEn2eY/EV6+Q8OIF+z8tJASuR45qLgjV+mhLFlzikyf42LcP2ynI0BKDW84Q28pRdCYS+uu44abQBal1BQds7FMtWzCk80J6L4Rie/bAsHqNPINVBPGy+44/5p7MtKw10sXNKU0Rt3EdwrZxsV+zDh3hsHSpZAnMZ2sieuosuSi0yPx9UC145dKGJRjiY+/eSHz2lP0pz8obuS2oEA5Ed6DpTrQoSGflZ68SaJOPE1fOpVIbGLWDicKoTl1YDRqIqBP/IObsmWyv5XTvarrqKvwyiUl6D9B7QV2R/P49/DryFlqyficLeHJ2qr4wq7pTUY4tRIr6edaFWTK/i5+wYBWqdFXvGxuKOo7k8mJ4+yqmP9jNptArXhzuJ0/JfTpxiBea1PtNMMYcfIJmb66jz5sLME/mxJwAycU8oDvyF5Tp2EruMRaGAQUOVBTrxXFe3+miKWINdDxOPg9kQ6/qUQWdqmTpTSliPkWMSTpGpGdEkFQHS0O8KOKIaMaUdwaURry8fOmP8HD+YRIFkS+rVx/D779PRIkSvH+3bt1y0NHJu/9d3kmQdjwN8SJt5tRjv6CZM4Ql4iZNmzFRXWmQHhcP36aNkR7NHRhctm2DkWcDaYZSyj6SEi9hGzcibOeOXO/skugniX9q8GNkIHDNWsRs4/omp9zqIf7nCQUKwea18nMvg/Dzvixh2hXdK6NLVWfh5sGLFoIcjghWQ4bAduKkPJOoCOKl7lJvBEdzQW2BxW+2NqMtW2DcUL43AxaffY0dNz6wOQsSXAxduRLhO7lbidXgwbCd9N9ts5DHp+uP235YcCpLn6KqiwUmtiwj8V3hpNev4N+1qzAkajEtOnVqNgHkJB8ffFu/HrEXOTmhW6wYPM5x4UvCo48R6L6VW6oT1veulq8FuzzWL+0YkYcOIXjeXLa7actWcFy9mjk+Dd39gD1HlS5U8aIonBgxBWWu/8OGf1W6Njofl6wqVVFxKXvcmosuYrT3ZtQJ4roh9H1J35vyhrjEC81LrXP0PvgWGoUuvtfQ7d0VGKZlt09/Ye2BM/W6oEj5SijrYAZy9CKdqx8dAgcqWqeiiMmcOVx05hV23vRjT5NrGuW6MIFuTpBOjQCS5k1DvBSmo/3fjVVpxAsJ6p44kXWikV/KNeK6/903pLJWTiSJT8MGyEjmJwluR44yMURpQVbUZElNMKxRE8V287tS6ghJiZf3desgPSp7ObHouuznzYN59x7quFRNTBJm4E7LDrD6/J7ttcZrOJav/kWmk2RRW0hrYz3WXmNmyHViSIj00+DB7HHOC9OcYcubeDn04DOmHeftJmYGOqzaRf9bMPzat2MEYxFTU5S8d1/C7BW8+efweDRawZ1gCPndCY27fg0BI0aw7QwqVoLroUMFT6DZItcMbLvui6Xn3ghfoxL8HQNrZmt/Eyd11Frq17kTUj5/5sclHze7jIQEvG/shYxMQt5x5UqYts4SYxfVgBDoC4kTg7K3+TplCqJPcuLDbtp0WPbvj+Xn32Bzpt3r0AYemN66rMLC+vLsJWJ7d+PfGdp60Dl5CRXcvhfsVlgAajAwOdY0nPEXDp7lBBihxPUb0LaxkXt0khAvNDkJk4/c9wj3/MJYZVKPt97o6sttjUVxx748dpVvAy03d2zrX4O1oP6oIC0v0vQiuFgZ4dpE+eiEFZQvIvWJ3CeI455X0HjKfv3xpwh028KvEys4muOf0ZKJj2uIF2UfMc180mRAacRLQEAoYmJ4X2pBKFXKGdra4qlYFzSWIl/XVLwoMruKHTtiz26ELFnCJtErWRLuJ/iJpbRIi4iAT/2su36uBw7AoHIVaYdT6H6SEC9x164iYORIFg+VmeuVKAWD0qWQ5P8RcVcus+e19PXhdvxv6LnlLRaq0AVpBpdLBt77BCC9Q3PhWO92nkT7uiVkHpvEROnOKKFfbVfM75ilSSCqJ+N++gz03HMXIJQ38dJo+WV8juC/R780KYlxzUoheMECRB7glvDmXbrCfmGWjbbMSRAZgCxGyWqUQAK7JLSbG0hnh/IjgDi22/KM80cZa9NVH6y4wAVaCfWL2zDSRV9H8nOMr1OnIvqfE/x7z8gI7v+czNdpx3/pEiRlkvB6JUrC/Z+s3xnSQiIxTIHG0PYBNdC0TFG1S/uH5s1ANtkEgaZI7+132YU2YXPf6mhZ3l6hcT/w9IJZOP/M/NN9PCbNG6bQ+dRt8DdBMdg2ZiF+esHfP8ZeXnDexG/0yBuSEi+C+QMjE/HhWyz7rg/y/QTX0wdQ48X3BMwllxo4XKk1xvdthI6FsBVGnHwr20paENM/zwIx9tAT9mdu7b3ixK7KbXbd9sf8U7z9t3etYljUSbLWfw3xosqjp5lb3AwojXgRN6DCtJ2GeClMRyt7rKItBWSNSe4AskL0ws2ksRecNirmxEjWOCUhXgInTBDqFVj/PAo2o0ez6TNSUuDfrSuo/5+gX7Yc3OiOvM6PX0Isa/7Vdf+FE1aj+1mub+LvWAotL/ELTFmRs62C7mLR3SxC4KSJiDl9mj22HT8eVkNzv6CSJ/FCdtfjD3PtFBI3vT2lGcxS4vG+YQMghVsKu58+Cz13xRCJotbShrrazFqaqm5yg3+njkh694695Lx9B4zr15f1cPyn9n/yKQJdM++g0sIldckQTVbMmdMInDhR+JTTmrUwaZG/DXrg29eI6dkbSE5i+zlt2gwTryxRZSKEiBgikPgmiXCqE9IiI+FTry4LSUtPD6UePwGKFEHZ2WeRlJrOnr83vRlsTfQVGrbvwsVI3b+HzXHRpQZa7tn0Q1dM5EwmtXYlDuqF4tFcE8tx9VqYtsz/vSftAZGWeMltvpSAAAQsW47kS9ndHlO0tHHavR5S+g7GzN78/fUjQbTyJD9yXd5rvucXjt7buVB9dVdLHPlJcS2A8o6dxptw5CmOP+Ek7+LOFdGrZjGJptEQLxKlS7OxijKgIV5kSLyGeJEheSrcNeHBA3waOICfTOrro8TNW8zBRFakBAbiQ7OmwmHc/jkJ/RKyVwzIGlfO/cUlXki7xsezHjKS+EUDaRRQS4gAyb6+rDVDAKthw2E7bpy8w9WMp4QM0In9y7ET0OJTpovP0FEoPZ6TbPKA6AkVWVOfGMVLiGPOnUXg+PHscX5tG/IkXlqsvgYS/yUMa+CBaa3LQrRVkHRdnLdwnRtFQTSG/CyFRXVwrEeMhM2vvyoqpB9yXNFqq4I0dfJLALUW+XXqCGofIohbERUYGID07TsRd+ggf49XrgKqhhQgZ+sZ2ZlT25G6IPb8eXwZN5aFI3D9+zcwCh023GTPuVga4tqkJgoPV1T0O1rXCPum78CanlmuXwoPQMUTHDl9H5UmDWRRJBqaoPIjrq+jCMiTeBHEl/TmNULXrAW1T4oiXkcPj2u3xZC1M1kF2Y+C6cdf4OCDT2w5s9uVx6B6iiHxc+aLBLtJuJt9NpXY4iSv40btWdSmRTg52hPlM2/QiDu+hngRN1Oa7VSZAQ3xIkP2NcSLDMlT4a50oUcXfATzHj1AjhPywtfJkxF96iQbjuwUHXI4X8hrHlnGEZd4oXXQeggGFcrD9fDR76YlcVS6OBRAnVusZMnZj75vr213MH7TL0JnCjrWdMzlBWqnaLziMuKS09iQCztVRJ9axdiF7Ls6tYWVJnnZJsuLeDn771eM2v9YuKz705vDWicdPl6NssSxd+2GkUiLj7xyIDqOqLV0MSsjXM1DA0CUmDKqUQMuu/ldfw0KzsD2Gx+wJFPvQCbb5vR0+HfvDhLVJZBdLrWminOhSMSLSXIKvrZvD6Tx9z4dQzqWAvTbeQ+3fb+xPye0KI1RXupD1ocsWYyIPfw9Zz1iBGx+HQPRdoAOlZ2wpqcSWmozMvC2bl0gmmuNTav/E1YtHQ436x/nYj2/d/SB+ZtQ7SAX/w+pUBMNDitOQ04RxItgbeTSFrhgAVJeZYlc02tpZhZwGD0Klj17ArpcA6wwo++Ou6DKRkJB7nXyXGd8choqzD3HhqRWytfzC48DmGjsFL+kwrq0j4Z4kee7STOWojKgIV5kyKyGeJEheSraNS08HD6eWeX67n//Db1SpeUWDVku+3Xg1psEj4ve0HXibl3qAnGJl8/DhyP+5g0Wtt20abDsz6uEckJ0O52iRZnFZRETE3VZriaOAjLw4ksUxi45gk2XV7IttSwtUeqWeELokiRX1L6ZWmu8JzQGCe5+Hj4M8Tf5HXT7hYtg3qXLd8PKi3gRrYAQlICL6j2RnTzZyisaCSlpqLvkktBaOi99j7Rv35gIODsu1Orx9JmiQ/shxv8SmYBmq64K22FI/JVEYKUBiaZTRZQAbseOQb+MeGKyRLyYmVkgZtEiRJ/4mw1h3KAhnLduFY536nkgfj3IdRmcLAxxY7LiK0jEzQMjnF5y+22Xbdth5OnJYqWYCfM6VED/Oq7iDifTduSsRA5LhBMe9RE++Fcs7VpJpjELy85/9xmBsk95tcjX3sPhNUtxlaWKJF4E+abKlxezF8EyhItUC0Ckps2YMeymVWFG/d+88TWKO+ZdmdAYrkokCIl4IRKD8GRWC5hnitmrez4ffgwHWaYTqNKFKl4khYZ4kTRjmu1VkQEN8SJD1jXEiwzJU9Gu4du3IXT1ajZ7zrJveYUU8PNIxF3l5Z4Wffui6IyZ8hpaLuOIQ7yI9vbTpPk5KKSFhbGWI9qHEFevMa70HIOXgdEoVdQUtdysUMvdSiZ3HLksXDNIrhn45cBjaP99BCNf8AtD07Zt4bh8hUKy1XbdDbwO4rbrXas5Y3m3yuxiSmBXa9KkKZw2bPhubnkQL6IWuDTBrSlN4WBuAN8mjZEaFMTmdFq3DibNsgSGFZKEzEEXn3mNHTe5tTQJvu75X+1cp/Nr0xrJ/v7sNdd9+2BQtZoiw/ohxh686z6uvQtlayljb4ozvzaUal1JL1/Cvzt31CFQqxe1fIkLAfGiF8wdswSgihkSdReg6oILiErg+kJ7/1cb9YrL361G3JgF27FqtOpZ77WS9x8wQt1zmTdISJUgTTuApHEItidylkhaQqiBOQa0msVIKiKrfnTcrtcI1pEhbJnRa3agZgvFaT0pg3ihdYTFJWP2yKXo9uoCHON5dYgAesVLwG7iBBg3ytJDKizHmEj18nN41QlBmsoNWdZKhPOHb3FsiPNjGxYaLaQ/bvthwSleCUXaLqTxIik0xIukGdNsr4oMaIgXGbKuIV5kSJ6KdhV1aHBYuhRmHTrKPZLEp0/xsQ8X6yUNmeKXr0Db0lLu80g7oDjEC7m7kFgwwahuPbjs3JnndNGJqdizdj+a/cldogjLq/fGZZfq2fYhQdVGpW0xobn8KoykzYFmP54BgcbEtPu70TCQ2ysXnTkTFn36KiRFTz5HouvmW8Kxj46oh0oGKfD1asQ/L3p6zMaZPjeikAfx0mXTLTwN4ORgjxouWNqlErPJJbtcArlyuZ/hLYjKQE59jwtjG6GE3feVYkEzZyLq2F8sJJux42A9fLgywiu0c5x/FYSRex8J4z/+c31UdraQeD1kK+7fpbOQ9DKoVBmuB7lWi7gQEC8mJiYIGDVK6ARn3q077OfPFw6z6Mwr7Lzpx/5uV8kR63qpXr8k4f59fBrEdUUEzn/B0Ymou9SbPUfC0C/ntRI3FXLZ7l2N6iBLb8LYRmNQq3UDzOsgv5ZIuQQp50FSQ0Ph24h7SwwUAAAgAElEQVQTh0lFdGB27Z5CW6yURbzQerZc88Wy82/Q2v8uBry9AIsETsoLQLpfRSdNhkEVJbSzyem4vQ2OQeu119lo7jbG8B6vXPKoz/a7uJvpOLZ7SG14llA9iStOaknwnoTvCdII69J+GuJFnExrtlF1BpRKvJw+fQ/m5sbw9KyAhw/fwd8/CN26SXcnStWJo/k1xIs6HAXxY6C2GWqLYV/QZmYoce36dxd44o+W/5af+vVDwmN+8i/ojZfX2LKOIw7x8rFvXyQ+4VoYDkuWwKxjp1ynvenzDROPPEVITBJGPjuODn78ojpBRw8jm0xCsNH3hFPVYpb4Y2BNmBWSElhZ863O+887+RJ/3vHHvnPzYZXIT3rdjx+HXukyCgt78tFnOPo4gI1PFVHnxjTkGhqZLQ3Omzd/d6dTVuKF3qcDfr8nXJOg/NuvfXsk+3JXGft582DevYfC1p3bwMN2P4T3G26TS5o3pH2TE9Si8nXaNPY0tXpQy4cGuWeANITIojk0hguC963tigUi9uWS5E3UpY59Ls6eg56rZG01osRLwqOH+NS/PwuBiPgSIu18JChJwpICqEOLQNiWLfi2bi0LyaJXLxSdPQenX3wFVcgR6rhbY/+wOpKkVOZtyVWK3KUIh0o2wa7ybfBgRnPWsvijQlTn6ZFdKfS5Kh+3ubzypUzihZyxGq+4gqDoROinpWCZ9juUuXQE6bFcYFUA48ZNYDd+PPSKF1f7w3z+ZRBG7uPnfrK4qEm70HGHn+JEJoFBFaVUWVoY0Hz1VfiG8kodaSvpNMRLYTjSmhiVSrwcOnQVixfvx+PHW9Co0XgMGtQCQ4e2KbRHQUO8FK5D92X0z4i9fIUFbTlwEOwy73QrYhWxV6/iy8+8JL2IsRGKX70uF+ckecRaEPFCbRfUfsGgo4OSd+6xNYgiJjEVi06/wuFHWT3aemkp2HhlJZxjuVBkpGspXB69GA8/R4FsXUVBd/b/HFybtXpooJoMUGtD3aWXYBEZij8u8molOs4l7z1Q6K2j8LhkdnFMlVKEGW3KodO/54Q6GuZdu8E+s9pKkBlZiReyFBa8BztXdcLK7lUQe+0avowcwaagC+HiV69BS8nCjqLW0iSGSK42OXvyyVHnQ6Z1LAm6lrqv2OOjmnejfGbdet0Xv517wwazMdHDpXFeUhG88bdu4fOwocKgiHQg8kFSiBIvyMiAT/16wpbMYnv3w7BaVmVL9623QdbrhPycriSNQdrtA4YPRdxNTqQ7/PYbzNp3wMLTr/D7LV6ZM6pxCaVXL4qSEAEmNhjWbKrQmUzadar7fn6z5iL5L65t81flNph+gGtxKQrKJF5oDf88+4Kxh56y5ZAI9tWfa6HIgd0I37NH6CLGXtTSYu9B2zFjoOPgoKjlyzyuoIqHBhpS3x0z25aTeUxJBiBBcRIWJ0xsURo/q5FYd17rkIewLo2tIV4keadotlVVBpRKvGRkZDDCxd7eCr6+gbh/fyO0tYuoau0yz6shXmROodIGSP36Ff7duiItgp/YUksBtRYoEn4dOyD5/Xs2he3ESbAaMkSR04k9dkHES/iO7QhdtYqNZ9qyFRwzNXEEE1x/H4opfz0HlZ0LQCdM09uUQzvjOAT36Cp83nLQYJh6eTHSaa9fIhbd5loaLCem+tgzpDaretBA+RnYeNUHKy+8ReOAx5j8cD8LwKh+fbhs36HwYPbd+4hZJ7hoJ7UsXOzigpjeXEtD28aGaQqJQhbi5ZbvN/TfmVXtcm1iY2a1+WnAACQ85LastuPHw2oo149QNkStpfMSgfX1aojUEK5Z4nb0KPTL/djtFdIeg3pLvdndc4K0d3vjb99C8OLFSP7AL16MPBvAZds2qULKRrwACJo7B1GZ4s1Ww4bDdlyWSOpfjwMw6SgXTy5ha4IL43j7narwvmYNpMfxO9ACkfhOG2/h+Rfervf7wJrwKm2n1PAoHopLgGHNpuCbZVHcntIMFkaF3w0nt2S+atse2n68Km9Tp8lYu3iwQnOubOKFFkP25GRTThBUqZF23LdNm0Btzzlh2b8/rH8aAW0rK4XmQprBp/71XHhDan7HCuhXW7IqOWnmFN2HiFEiSAn967gVila8B/7h6LlNNmFdWq+GeJH13aPZXxkZUBrxMmXKdty69RIfPwYjIOAb7OwsULKkEypX9sDGjb8qY61yn0NDvMg9pQob8Mu4sYg9f56Nb+zlBedNmxU2l2DgmFOnEDh5EvtTx9YWxa/xvl9VoyDixa9dW+FFh/PGjaAyX0JuVS70PAlBLutaGY4WvHol4s9dCPntt1yXmWZohPvm7nhuWwLPbYojyNYFe/5XB1VdJNdgUHUeC/v8tRZfBNk8//L0KNr432XLsfnlF1iP/FkpS2u/4SZeZp5st6nogPG/T0bKF97j7XroEAwqZjmWyEK8iFa7CET7El88x0eyLqUbqUZGKHHlKoqYqoYAFCWhnC0NcX3S9642gZMmIuY0b7GwmzoVlgO49oYGWRk49zII036/ht5vL8IKKejasykMypSFftmyYrmsESkfvGQx6HtbAHpPeJw+w8hAaZCTeCE3l4ARvMpKz8MD7qf4MRWg8vzz7HuWcOzn+qgihTaNNHHm3Cf5/Tv4deT6Z4LfLmoLKTs7SwPp8cwWKiE7AkaORNw1Ll6/q2xrHCrdFL80KYlxzUrJY+lqNUZ6VBTe181q59ow5Q+sH6jY9i5VEC+ijjZ0AATkOD2m34SwzZsQdexYtmOjZWAAq0GDYPW/oWpTTUwBEoFARAKBBNNJOF2ZEHVJa1neHpv7ZtfaU2Ys4s5F+lakc0WQVliX9tUQL+JmXLOdKjOgNOLFx+cLYmISsGTJAZw794DpvCxaNARGRvooXdpFlTmQem4N8SJ16pS6o2hvPU2sjGoXwQJFxXxJTJFEFVWN/IiXZD8/+LXl7X+kg1PyLq8UuOETislHs1e5mOjrsDJaEirNic9DhiD+Lr+DkR9idA1xqFY3zNkwWeN6VFCy5Pj6kUefWdUSYfu1lXCO+MoeF9u1C4a1cnfXkeP0bCiyse64kdtIE45n3IfBCW7lTAKyJCQrgLTEC4kMktigAHemNkVRMwN8GTMGsRcvsKetBg+G7aTJ8l6e2OORC0adJZeEF9w7B9Zk2gCiiDx4EMHz57GnTJo2g9P69WKP/1/YkCohto6aj3qPzsIgjbsDiYJsaskC2qB8ORiULQu9kqWgpaWF1OBgZCQnI8nPD6GrVyE9OkvcU9fRkbl7kcCntMhJvNA4ogKxOX+L5vzzEnvucgernxoWx5RWitNaym9Nok5jgqpH0YtjVVbkkNA0CU4T3lo4Y6zXWNZOdnNykx/uN4TcEcklkfCvlTteTV3B2tAUCVUQL7Se4Xse4tJrrnc1vnkpjG6c5fpFzyX5+ODbmjWIvczFnQXQtrCA9ciRsOw/QJFpEXvs2ksuCTWmVOG69fhTBLptuc3irVbMEiRgr+6gVjNqOSMs6lQRvWsVkypkDfEiVdo0Oyk5A0ojXmhd1F5UteoI3Lu3AbVrj8bt22tRoYK7kpcsv+k0xIv8cqnIkfw6dULyu7dsCmVfZIleMJEwIwk0qhr5ES+iJ7UmzVvA7LeV32m5UPyNStkyVxi6iM0NZC2d8OA+a49I/RaKlOAQpAQGIuF+VsuHYL/kIjq4MGY5JgxTrkOGqo+DKucXtLeYpCTgyOlZwlBKPXoMLUPl2bPO+PsFDtz/xOZvmvwFE89wq3eBi4ogMGmJF1HdjIF13TCnfXnmUkMWzQKQtouOnXJbJnIee4HIMT3frGxRbOuf1U5Bz1HbC1WiEehCo8TtgklNVb6/lDl3xN69CCEL8mjeqiAPmPfoAbtJU77TtpJ07NyIF9HqS7vJk0HtmALc8wtH7+382JIOFjldqQJfJ09G9KmTbGq7adNBrR2i+jndq7vgt65ZFWnKjDEtPBw+nll2yn1bzka4oRkmtSyDkY3UX3xVklyFrlyB8ExHwYOlmsB54kT8z1Ox58yqIl4uvwnB0N289TO/9z6JsAcvX/HduQTpvtj+8ivMOuVuBCBJ3qXdVtVW0hT3p/B4eK3gWobUUkvVQ+qOpquuwi/TAvuf0Z4gB0xpoCFepMmaZh9lZ0CpxMvs2bugq6uDWbP6Yf36v/H+/ResWzdK2WuW23wa4kVuqVTYQNRPT331BOoH9jh/QallqRlJSfBt2gR0skhwWr0GJi1bKmy94gycH/ESNHs2oo4eYcMkDBmJESnlmGORAGYGOpjZrjy6SamUn5GQgPh79xB77SrCvK9C+xu/w/XRtCiKHjiMyh6qvQAWJ3+FfRvRE1zPsHeYcYPrV+iXrwC3I/zYKwvRCSlouPyyUGj3xIW50IvnjhYeFy5C15k7MkhDvNz2DUO/nbzahYRrb09tBksjXYi+x806d4bDosXKWm6e89BJJ518ErS0gDtTm8HONLulNhNmzdSocvvnJPRLlFB53KoO4OvUqYj+J7vLyxfXsqjUln/nJr58CWorExdU5eKweLHcqr5yI15EW1ANq1VHsb17heGlpWeg4rxzSExJZ8+JtlyIuwZ5bCdaqel25Cj0y5fHsD0P4P06hA2/pHMl9Kypukrlj716IfE518NZXr03LrtUZ5/tW1OaMYHWHwWi65xZdxgGj+0NastUJFRFvKSkZaDagvMgZzICud3lp/8Wf/MmQtasQdKrl9nSQc5HpJ1k0qSpItOU69j/folCh8wqTlURp5S/inP5DT6dIlp4t1C9DUzou67cHN7CSPG+nNcautpaUh07DfEiVdo0Oyk5A0olXkhcNzU1jZEv9D+V+mrEdZV8xP9D01HZ+IdWLYUuEuSUQo4pykb49m0IzRSopXJ3txy9ysqOJz/iRVQQeFKDn/GvtYcwPKpyWdatMmxNsl8QSht/0utX8O+aJcR7rUxDDDqyGXqFWHBb2lwoc78+O+7i7ocwNuXq6Nsoc5n3zpNuCOmHKBuHHnzGtOP84njS40No8onf9bSbNk1YPi4N8dJl0y08DeBCoMMbFsfUVmWQGhoK30YNhUt0P3lKbSxKe2y7jYf+XPw7t1J70fYoaV12lH1sFTkf6XyQ3ocAIYaW2FGhHX6ZNxI13LLb2FPFY+LLV0h8/QoJL18i6c0bFNHXh7atLat2on96LsXY+y2ng5ssa8iNeKHfpfd1str5qHqJqpgEGLX/Mc7+y1v/qJWTnFGUCdHPCOlolHr8hE1fbeEFRMbzNq7zYxqhZFETZYaVbS6yuSa7a8KdEnUwvwL/XVdFvhSVBLpJ8a56NeHwXdouxt5fGytcD01VxAv7/j/6DCQyTRBXtyf2wgWErl2NZD/eoieAQeUqsJs0EURuKgui+irNyxXF1n7ZKxeVFUepmWeQmp7Bpns+p6Vat+CJOvuVdzTDydENpE6ThniROnWaHZWYAaUSL0pcl1Km0lS8KCXNUk8SsmQJIvbsZvurkvBIj4mBT2MvZMTHs1jINYbcY1SFvIiXnI4RndovQZK2LrO3pRaNTlWc5B5ywNYdiFubZY/5YOg09BuvHr3acl+sGgxIYrYkaivAxY8HkPrkEfvTac1amLRooZIoBW4p9QOfY+Z9/pk1rFULxXb9yR5LSrwcfRyAyZkOMcZ62rg1pSnTgQhduRLhO7lrk3HjxnDeuEkl681tUlFbVRdLQ1zLIbIrKlpt2q4dHJctV5vYlR0Ifaf6tW8rdHq67lgZS2r1R1l7M5z+VfoTd3mvIzfiheb4NGggEu7fZ9M5LF6SrT3i+JMvmHCE2+vW9bDGvqGKFVPNuWYSoad2KNHPoH9YPLOAJ9Dn6Oks1XxPCGJNePAAnwby34kUSyt0aDSdPSanvHvTmsn7MKpkPNJII600wjsLZ4zxGsvWRmtUJFRJvJBj4qA/+OfCw8YYl8Z7ib3U6OPHGQEjcH8T7GjcsBHsJkxg7auKxsYrPlh5kbe1D2vggWmtyyp6ylzHp1YjajkiXJ7QGG7WRiqJQ5xJd9z4gMVnX7NNZRHWpf01xIs4Gddso+oMaIgXGY6AhniRIXkK3jX540cuEpvOS7ZdDx6EQaXKCp417+FDVyxH+O+/sw2MatWCS+YFpSoCyo14iU9Ow841B9Bi1yIWko+5E35pPA4tytljYaeKsDHRU0yoGRl41KMvTF7yu6qxOgYw2XcUpSv+WL36ikme5KP+evAJ6K4coVOFohix7H9MXJSQ88675KNLv8froGi0XXcDBqnJOHxmFnTT09hZFIk7FzExkYh4CYxMRMs1V4Ul6xOal8aoxiWYNS7ZMqfHZRKgu/fAqIZq7kjmlamqCy4gKoFXFeweUhueJbIcMRL//Rcfe3BxbnVySZP+qEu/59dp0xB94m82QLS+CQY3m4p4XQOmO0L6I+qCvIiXiN1/ImTpUhamadOmcFy/QRhyeFwyaiy6KPz72eyWMDXQUdqSQhYvAunmEKx/+gk2Y8ayKgSB1TVVPv4xqJbS4sl1otRUVg2SkcI/KzM7zcQj8KohWcQ5Vbuo7LN/W7+eufkQjnk0xPZKHfBhMdd5UiRUSbzQukS/A8+OaYjSRcV3m6P3Q+TBA6waStCWyXKlpQWztu1gM2YMSGhbUZh45BmOPeEVO4s7V2REgipA4roksks48lM9VHfNXgGoipjymlP0nETWz66GeFGnI6uJJa8MaIgXGd4bGuJFhuQpeNfPw4Yi/tYtNotpq9ZwXLVKwTPmP3zOFoecdrnKDC4n8XL+ZRBI3LPxg1MY8Jr3Bl8o6QnX+XPRobLiTlIEa6bcvGjZBkaJXNvDz6EEWnlzYUcN5JcBIiQ8l2U5QpxuZokio//HJtAtVgwe57jduqow559/sefuR8y5uxN1gvgdMOufR8Fm9GiJiJfe2+/inh9vpaKTdjp5JxDxSQQogcrQXQ8cUNVS85x38ZnX2HHzA3udtBw29M5qNaDnRB1xPC56Q9fJUe3WoOiASNvh8/Bhwmnm1BmC+/blWGXeExVXYuRce17ECwmNf2jGNShE23kE+wsqwOjvdb2qol0l5R1n/+7dQQKmBJdt22Hk6QlREWwBkano41zQ+J+HD0f8zRtss4/9R2FEDG/Jorv7dJe/sOPT4MFIuMc1qubXHoQv5WvhqhKEUlVNvEw//gIHH3DBdSLM6f0mKahNK3zXHwjbsQP0WBQWffvCZuTPTPNP3ui65TaeZBIe+4fVQR13a3lPIdZ4I/c9Ap3XETb1rY5W5e3F2k8VGzVffRW+oXFsalmEdWl/DfGiiiOomVPSDGiIF0kzJrK9hniRIXkK3FXUglFLTw8eZ8+BFO9VDRL5JbFfgiotYQXEy13/CEa4+IRwwmPenZ2oFcwveM0XLoV9l45KS5n/mYtImvircL7gaUvQsL/q3AmUtnAlTrTg1Cv8cduPzUgtDOu1XyN0+TL2t1nHTnBYskSJ0Xw/FQntksBsmfcPhe1G9Lkt7n1ZbOJl500/LDrzSji44I5palAQ/Dp1FNoFO23YoBLxxYISLCqyS9s+mNEc1sZZ1WaihLLDb7/BrH2Hgob8oV6nqiVydyIbaMKzsvUwtXQX9nhEo+KY3FI19st5JTkv4oW29+vcGclv37BdnbdsAbVECLDhynusuviO/Uktnqt6VFHKccypK1Ly/gNWcdZq7XW8C45hMVDrE31/qBoRu/5AyDL+/WXYpBk627dHRKYGzeZ+1dGynPpebIqTu3dVq4DE+Qk92sxDhTLFlNJ2pmriRVTzw9XaCFdkINHIXTFs2zbQe0UURHaaNG0Ki65dYVSnrjiHQ6xtqFKNKtYId6Y2zdP1UazBZNhIcBODhpjXoQL613GVYTTF7uox/bRwghdzW4Fag6WFhniRNnOa/ZSZAQ3xIkO2NcSLDMmT065Ulh+TmIq45FTEJqZCW1sLhoO6AYFf2AyCO+Zymk6mYVI+fWJivwK4nzoNPY8s8VqZBpdg55tPX2PXs1hcfssdKgQ4cmY2TJJ5Gwa5P+m6KLdk//LQMXC6fYHN7+NUCm0vZncrkWCJmk1zZIBIjbpLvUF2l4TfB9ZEyQ0LEOt9if1tP28ezLv3UHneqEybyrX/PL8QdglcGJeq1bQ8GyAmJgoODnlXYBGB2GLNNeEaJrQojVFe3PnnY98+SHzC29n0SpWG+9+8TUUd0XfHXdDFB2F667IY2iDrOyJsy2Z8W7eOvUaWx/Zz56njEhQWU9CsWYj66ygbv4iNDbrWHoNYXW5/ThdodKGmTsiPeKHjSMeTHctu3WE/f74w9Fdfo9FuPa/mUKamSsL9e/g0aBD/nJQsBfcTJxCblIpK87Kq4f6d2wpGMlwcyev4kGCyX6Z1MJFDZ5bsx1pvTlZVdrbA8Z9Vp6Mm6xoTnz3Fx9692TDk+Dei6SR0qeqMFd0V3y6tauKF1ixKYJz6pQHKOZjJlNLUkBBQ65bgu0N0MNL/sx42FKatZXP/ofPQyvP558RQVxsv57WSKWZZdhYlbsUVKZZlPmn3JcfMOkv4OYiFkS4ez5RNO0pDvEh7JDT7KTMDGuJFhmxriBcZkpfPrtGJqQiJScS32CSExiQhJDqJPQ6O5s8Fs78ThXe3RIfq+v4qhr48xZ4KNTDHsOZToW9iBLJBNtHXgZmBLoz1dVjPvKmBLvuytzDUg6OFARwsDOFgZqDQuxSB48cj5hy3zlN2lQEJJJKA55pL/ORUFENdddB1LRdU1La0RIlbtxVzcPMZNcrXH0HtWwu3CFu9A/VaFt6TZ6UnMJ8Jt1zzxbLz/O56CVsTXBjXCKL2xOrk7kPl2u6X/8awf3m7WUqpsnDbu7tA4qXNuut4E8Tvyld0MseJUZ78e0BEUJcq4FyP/qXWVsxnXnzF6AOPWew57/gmPHyATwO4qCiRtkTe/leQEhCADy2aC5frM24BfvHjpEsZe1Oc+TXLrUpdcpIf8UI2uP7duBuPtrU1StzIEr2m52ovucR+/wiHhtdFTTf5t0bkzBNpY5BjEMGiVy+Qe9ZNn28Y8Ps99hxdANOFsLrAx7M+sw0nWO05gNp/8RsuhIPD66KWEnKmiFyQADh9bxFOu9fFhspdMbpxSeZ2pmioA/Ey+8S/2HvvI1vqTw2LY0or+VSykfbft7VrhedgornUK10Glr16waxdOxQxNpY4zS++RKFjppW0qr+PDtz/xNoDCbIK1kqcCAl2eOAfjp7b7rA9RH+zJRgi26Ya4kXazGn2U2YGVEK8fP4cgufP/fD8+Qc8feqLpKQUVKlSHBUquLF/ZcqoRpBK0sRriBdJMwZ2x53uTAdGJiAwKoGRKJ/D4xFEpEpMIogBT0rlgriSwjIxBjsuLYFRKi/1XFqjL645V5V0GLY9XfC4WBqhmBX/55L5r5iVMSNxpEXSm9fw78JL4wnURqHINigisU4++4IjDwPw/AuvIBBFveI2zILT8Z43SLCSYOzlBedN/E6ssnG5z1A4PeXaPM/K1EaPY7uUHcIPOZ/oRdzSLpXQySYNfm04yUVWtiSsqy4ggnDIBm+sPjoDBmlcPPPDzFWo0rhSrhUv32KTMe3Yc3i/4e0nhIvjvFDc1hiibYf0fNFZs2DRu4+6LDXPOGouuoiwzJJ1Ueteaj2gFgQBiCAlovS/ABIapbvWBNOWrTC5Qi/c9v3G/p7UsgxGNlI/Qe78iBeK26deXVA7BMH99FnoubsJD+XUY89x+OFn9reyHFJIO4c0dAgOy5bBrF17rPV+L6wkoZYFal1QFwROnIiYM5x8tB03Dmvs6gkv2BuXtsPOgTXVJVSJ4ggYMQJx13n1nuA8ZknnSuhZU/FVqOpAvIhekOfm8CZRMnPZOPnDB6b5FXXsr+9epTYk806dYNm7j0ROSP88C8TYQ7yqsnUFB2zsk12fS9aYJdn/0utgDN/zkO3SrGxRbOuvXiLygrWIOri1reiA9Tk0zSRZM22rIV4kzZhme1VkQKnES2RkLGbN2oUNG3gLQYMGFeDh4QAdHW18+hSCu3dfIyYmAR071sO6daNQrJidKnIi9pwa4iX3VCWmpMM3NAYfw+LhHxYH/29xoIsp/7BY0EWSojDuySG0+PiADf/KyhUTGv6ikKmIeCECxtnSEMWsjUEnBq7W9LeRWLZ9ojoN1NfvtHo1tAz5nVt54eq7UBx68EkosJZz3OI2xpjRthy8SvPPWPC8uYg8dIg9thk7DtbDh8srFInGCX70FJH9eYk1IWHv36hSTXJxPYkm/cE3Fj0hFJTzRh07hqCZM9jKjRt5wXmzaoi2vFIfEJGAU0PHofFrfvFx3akSUifPwMjmlbLtcujBZyw5+wpEMAogaM8hAVN/0nWJ5RpGRp4N4LJtW6E42lSdRFVKBBJWJYFVAUTbppzWrYNJs6wqkEKxOCmDpGoXqnohWG7ajjoXooQjkegoEeTqhoKIl4BRoxB35TIL237hQph36SpcwvlXQRi5l1u9E4lIZKKi8b5mdaHrl8fFS8wBpv/Oe7iVSXCt7lEFHasoXnBd3HXShXPQzJn8812nLtKWbxDaXtNzoqSluGOqw3bva9ZgLmyEfq1mI8zADLsG10LDkrYKD08diBdaJLWg0I04AlUvUkWEvEHVUuQwFnHoENKjsr5PBPMYVqsOy359mUFDQVh3+b2wmphIYCKDVYWnAZHosonfwFLntjuqvqa8EeSRMw3xoqp3nGZeSTKgNOLl9Ol7GDJkBUxMDDBv3kBGrpiaZj9RSk5OwcWLj7Fw4T5GwmzYMBqjRilP4DO/xEVFxSElJRU2Nllf/v9l4oWqUkgI8nNEPN4Hx+BTJsniFxYnLI+W5I0ouq2lkS4jMYqaGcDB3BBOmW1AzhaGKGpmyNqCciLp5Uv4d+dl2wS3I0ehX748e0x3jqn/NjYphfWrk94F/c3/pbDKm6+Riex/qsQha2VZQPG5WBqLVMsYwsXTd+MAACAASURBVCWTqLE10UfC/fv4NGigcAqDqlXhsm0HihhLd+FAVURPP0fivl84XgZG4dnnSITG8hMWURjoFkGr8g6o51gEneuWh7Z2loiZqNBjsV27YFirtiwpkGnfq+17wMGXl8ner9ka/f9UrSOVTItRg507b7qFZwH8rrqgXF1UX8J2/HhYDc1yiVGDkFkIwa/eI7JblnjsoBYzEGxkCTtTfZQqaspaDen9LorB9dwxq1059hR9xuizRqBWDvd/Thaa6pAvkQlosIxfkBPuTWsGW1N99jh01SqE79jOHlsOGAi7qVPV5ZApLI7EJ4/xsW9fNr6OnR0eLt+Lacefs7/lUaKuqMALIl5EW0rMOneGw6LFwlDiktNQcS53mSMomlwS1UzRtrFBietcY4ZioFgI1yY2ZtWf6oLUr1/h27SJMJzSr15D1NGlazVnLO+meF0UeeaDBJfp95h91k2sMaAZr0Sl9lBqE1U01IV4mX/qJXbd9mfLlWe7UW75y0hMRPSZMwjfs0coeC26nY6tLdNhsujZCzp2uZNf4w4/xYmnvNWN3nP03lMVRH8/nCwMcWNy1mdEVTHlNq+o/bY8Kro0xIs6HV1NLHllQGnES6dOc1gFy9Kl/4OR0fcXzqIBpqWlY9Omf7Bs2SF8/qxay8/Y2AT067cUJ05wzYs6dcri+PG5sLe3wn+BeCEnA06uxOJjeBw+fosHkSuktyItWKWIlTEczQ3gaEFEiiGrHrE3N4SHjeS9tVSq/bF7N6R84T96dNeQ7h5Ki8j4FARExjMyidb+KTyetUPRY6rikQVEfhAp0+PNBXheFylzLVcBxbbtgKFV9rs6JB5MVUIR8aRrk8w0biLikpGWnsHCePQxQng3Mq+4yIGiew0XRrrQ/DntpDPi45lNrQClHj6ClpHqTq79L1xB0tifWTjxOnow+Ps8ynoUbocKWd4zsuxLhAsRLwIILuA/NG8m/Ly47tsPIv/UEf4//YSkG9dZaMeLN8C2irkT8Q7mBljZo4rQvjN4/jxEHjwoXJLLzp0wqltPHZeYZ0wj9j7ChVfcElRU3yHuxnUE/PQTe57IZSKZf3SIOsJZ/W8oJlo2wA2fULbsnALE6pSLgogXEnymCiYCtRlRu5EoSFuFNFYI1BI6pD63TFYE6PNCnxuCScuWcFq9Bm+DY9B6Lf/82Zjo4f509auuopbJZH9+gU43Dd46lhbe7afnVOkuI81xity3D8GL+PnLxWI1sapaT/ZYWaLG6kK8iLoblbU3w+lflaMtRCRvxIGDiD7FNcZygj4bVn37wrBG9jY20RscR0fUQ7Viqm0BFbgF6esUwev5BVfsSPNelXWfbltu43Gm/bY83NI0xIusR0SzvzIyoDTihSpYiLSQBNLsI8n44mz7228HsW3bady4sQbGxgZo23YGypRxwY4dE34I4uVrVCLTV0lKTUNyajprTeGtQXGg16QFVX24WZuw1hs3G2O4WfN/Jezkf8fmU//+SHjE+1mLmJvD4+Qp0B07RYHaIBgxIyBkGCmTgM/hcRK1UrX1u43Rz44Jw/Q1d8S0+j8hRk9y8innWkvamaJzVSd210Vwp1ywTU7iJZuThZo4vtxs3Aq2wVxc71bzvhiylpeTayBZBn49+ASnngeynQS2tNnubKtISFncVcTfvYPPQ4awzRN09NG31Wz2vyhoXaQ7QYLZhJAlSxCxZ7dwE6shQ2A7cZK4U6rNdqIXHlbGeng4g1/0UuvU+1pZJ/0lHzySulpObRabTyCka+PTwFPYMmZz+Bhq7v8g3OPm5Ka5VkGqw9oKIl4oxrflss6LSGuJNJcEIPt3soEnkB7X3v8prhIxcPIkxJziwvR206bBsv8AiIp0tihnjy39sgh6dcgvxRA8fz4iD/IbdFbDhjOtF9ELOmXp48grH1/GjUXsee6Os6pqT1x0rQlzQ108mSWb44u48akL8UIt6+XmZBGRj2a2AFVDKwtpERGIOnoEEQcPgiqrckLPzQ2WAwbAvENHdqOqyoILrJqaQAQlEZWqBDksUVU34ensljJpEypqHaLtZPKoptMQL4o6Uppx5ZkBpREvokF//RoGBwfrXNdBZEulSu4FVsXIMwn5jVW9+kh0794IU6f2YpsdOXINPXosRHr6Bfj5+bHn3NyUbwlM81JlBrXKxCRRGw1vmxG0z4i20rDHSamIT8rSQaD9qR2F2oWkhb2ZAdxtjJm+CYnR0sU+CdKWLCp/ciWvGEmngvQqBCj2524Y1lSdoB6dLHwKjwORM1QhFBCewEgsqpYJiIgHvS6KxgGPMfnhfuFTfmb2GN/wVyTqSPajTeWkVVwsUM3VErXdrfO1X8xJvIRt24Zva1azGCx69kTROXOlfUvIbb83B/6C1gJOtoQZmMLhwhX2XtNA/AxQVRpZSAsgsOUM27gR3zZuYE+bd+0G+wULxB9UBVv6tW+PZF8fNnORatUR3HkAHlm4498vUehewxl0QSiAaBsOPWfarh0cly1XQdTymbLF6mvwCeUaNSu7V2FkKoFsdIlAI7js2AGjej+u+1fM+XMIHDeOrZWswB/OWo8pf/E2I7qrTHeX1RXiEC/UQkV32QlOGzbApElT4XKI3PdacUX4N1nUklWtIiBaBSdo1Z1w5ClIAJOgrpVFsRcv4MuYMSxG/QoV4Xb4MC6+DsZPmeKidLFOF+2FBUQypoVxO/n/NZuKQBMbKLPiQ12IF1p/3x13QQQ0gcRqSbRWFSAdpvD9+xF/K6t6VBAHkS4GbdphQIQrPpkWZe6Zz+e0VEWY2eZstuoqPmSe318a7yVVNbkiF5GTWPuwuK3M02mIF5lTqBlACRlQCfHSo8cCDBnSCq1aZb9APnfuAVq3no7w8GOwtDRVwvILnsLMrAN+/30iunXjVpWPH79H9eo/sxgjIkKR1LsPitALRsYoYmICLVNjaNFjY2NoGRujiJkZuxvJnjMxAYyNoW1lDZ0ysgmGTvr7DbzfcRtFRcLWRA+ulgZwtjRAMUtDuFsbwsncACVsVdeKIlhv/JGjiFmdpf9hNmUKDDuqhyZQXsckLD4FXyKTmJ7Ml8hkBEQmwOzJPfQ5tVG4yxXnKlhWox/7W19HC9bGerAx1mVW2FZGOuxOCt0BszLSg42JLkraGrPnxUVERDjMzS1QJPNXKmLSJCRnnlCYz5oFg9bqUZb6plUHWEbzMvu7Hf+HjlP+J+4SNdsB2HD9I36/yy+aqjiZ4fe+3I0kbOAgpL7nluIWK1ZAv576XrhSjAmnTiF6cZb2BT2nW64cjPv3h36jRsJjHbdrF2JFxHP1mzSGxcJFhfq9cORpEJZc4NUdZYsaY99ArlcRvWolEo7yVkXjQYNgoiIxbGUkN2LCRCTf4a2+pr/8gim6lXHrA9csmtzMA72qqW8bYkxMNPT1DaCnlzeRHrNxI+L37WPrMerTB6ajR2dLa/utj/Els/p0Xdey8Cwu/xaG9G9hCO3Qns+rr4+iVzjZ03HbI3yO5Hphf/StiMpO6nFeJpqgjNhYhLTIIlbsLl5k517ttj5GoCBv3crB0yOrkkgZ71tp5kgLCMC3Hj3YrqnmlmjfmAugNyphidVdJKsYl2Z+2ic9PR1RUZGwtFS8fXlBMdLvF/2OEbpULoqZLVXrXJb+JQBxR/9iv0kZmeLHomt4ZlMcN+t2xPwJHYB8PvMFrVserw/d/y8eB0SzoXb0qYBqzmbyGFZuY/iFJ6DrDu4CRdcUJ3+S3QXKykr+341yW7BmIE0GMjOgEuKFnI1IQPf8+SVo0YLbnB06dBW9ei1Cy5Y1cPLkAujqin8hqaijmZGRgSJFWuDUqYVo25aX+L569RHlyw/Fx4/7kJoai6Q20rO0Wo6OgIsLiri7QcvGFlp2ttCysoKWtTVgnr+C+29XA3H+3fcq7JLmwkRfG3bGOrA10WX/FzUlokUf9ia6cLHQg562lqRDKmX79Bs3kbJkiXAu7bZtoTOK64IURqR7eyNlZRaJpDtyJIq0b6eUpST16g1E8x9ovW3boOWsHq4V7/eeQLH93IUmuYgOTDaug5arq1Jy8iNM0unPt4hO4hVW85o7o4G7KRAcjKTBvHUnw8AABrnYaard2pOTkbJwEdIf8nZCcaBVuzb05swWZ1O13iYxNQPd9rxDfGal3IaObihX1BDpN28iZTH//tOqWBF6vy1V63VIHVxUFLu5IUDqzj/R/iTXdiEc6VcS1hKQzlLHocAdM+7dQ/K8+fxYli0DvZUrs8229mYQTryKYM91Km+JX+vLn2jK9n6qVBF6S5ciMjENXXZzgpZwebhyLvylSXXy2HHIeMdj1Z01E0Xq1sXvD0Kx9wkn7puWMMOMJurxu5bf+tIvXEDKmrVsky8Va2No8e7sccdyFhjjqZpqD2mOh7z2eR2aiFHHeWW5o5ku9vYqIa+hZRsnORlpV68i7eQpZPhy9zlRZOjrQ7tuXWg3aYwiNVRj5TzvUgCufYhhYc1u5gwvD/UiTe9+isX0c59ZfNWcjLGibTHZjgkADw/VdB/IHLhmgP9UBlRCvBCjPmbMJmYrTeSLn18QRoxYi169vLBr12To6yuvj7Ogo00VL3/8MQldu3Jhr+8qXmQgXgqaW9vBAUVsbZleCfvfzg7atvzxzneJ2PdFC0ScGOtrs/JGU3qsR/902PNUIcFf46+z//X437SdMvtlC1qrJK8nnj6DqEzxOdpPt1pVWG3IqhiRZCx12jZ6+QokHM9qm7LasgW6lbLb58ojXtGKF7qDE9qd32HTMjOD3bksFw15zCXrGJc7DUD5EN5mkmzvBJf9ewCD/MW5ZZ3zR9j/7+chmH+O583RXB+nfuLaDPEHDiBm/Xr2WL9pM1gs4Bd86o7k5GQk/PsCGUeOIukat5jOC3p1asNyFW+d+xGw3PsDDjziIrsty9hgSYdSSA8LQ2j7zAoFPT0UvXr1R1jqd2uIP3QIMWv5hahezZq4MWwm5p7h9qPVXcyxvTd3rlNXiFPxQja2oSJVhuxYitwtv/khAr8efc2W6GKhjxPD5a+zErNmNeIPH2FzCCqorvpEYPwxPm8lRxPs6if/3yJ5HbfYrVsQ9yfXdTLq0R2mY8fBPzwRXXbwFi66gXT519ow0mX1yWqLqAULkHiW65rcaz8Ic7V5leJYL1cMqKUc4kidKl5o7Z6r7wqJ57Mja7Cbg+qElH//xZMte+D6mLuA5YSOhwe03T1gULcu9OrVRRERDSdFruO3Sx9w6DH/3VDHysCDj4Ow7BKv5pRXNZOm4kWR7yjN2PLKgEqIFwqeqkkmTdqGlSu5I8Po0R2xZs3P0NZWrx9G0njp0aMRpkzJW+PFxcQMaTGxyIiLQXp8PNKiotjf6bExSI+JRVpMDHucFhvL/k759FHoKCLrgSQhPm1bO+ja2zObTZ2iRaFrT/8cmO2dtl3RbGJ9ss6n6v2/rV2DsK1bhWHoOjnB9cjRH2aN2SxwbWzgfuy43IWCRTVeSLn/6+TJLJ/GDRrCWSS3qj7WNP+SPTfQfMUYmKYksHBM27aF4/IV6hCaWscgqg0yvU1ZDPXkd4I+9euHhMeP2GPHlSth2rqNWq9DEFxsbCxiYqLg4OCEZJ/3+LZpM2LOnWUtndTKWcTIGFqGRtAr7gGHBQuhpZ9dgLdQLDKPIMlJrfFK3vqhXUQLt6c2BdnSf2jVEimfPrHn1dmZSpbci9rcOyxdinERDrjylle8zO9YAf1qq3cFnDgaL7QWv7ZtkJypGVds714YVssiV+KT01Bp3jlkGtnh1pSmIBcvecK/ezckvXzJhnTZth1Gnp5Yeu4Ntl3nd/PJTYlcldQV8Tdv4vPwYSw8/TJl4Zap+9Z+ww28DOTVnKIaSeq6DlGdnT3DFmN/KCcZ1vSsig6VHZUStjppvNCCh+15AO/XIWztS7tWQo/qLkrJgyST/HLgMW4+8kGjz08wMNkHRm//zXN3g0qVYezpCZNGDWFQUXFk5sYrPlh5keuAjWxUHJNalpFkSQrfVtQunGKjGGWFRuNF1gxq9ldGBpRGvBCLni44cxBZ2YwZv2PZssN48+Z3FC/Of1h0dBQjHidNQpcuPYjt27mrkYmJAdq0kY+rUUZCApLevUWSjw+SP35CStBXpAaHIC0kGCnBwchIlN5RKLd16jo7g77wSYldS0sL2tZW0HN2hra1NbStbRlJo+4InDQRMadPC8MkoUWXzZuh4/DjlODS3U86CU4JCGDrJMvCYruzHFrkcYxEiZewTRvxbQMXWrX59VdYjxgpjynkNsbzL5FYPGs75t39XTim/fz5MO/GS7A1+D4Dr4Oi0XYdv/tGQpx3pjVjjgZp4eHw8cwSYS354CEjLgoDRImXwhCvvGMc9Md9XH/PCYdfmpTEuGalICosbjthAshm+UcCEWx+HTqwJRGR5uB9HZVXZN1VfjCjOdO/UmeIS7xkO5bjx8NqKCcRBOi38x5u+/K2GXkTTnQu8q56lr5CyfsPmB5dj6138PAj15Hb1Lc6WpWXf4uTvI5delw83tfMIqsETl87bnzA4rO8aqdhSVvsGlxLXlPKfZzU4GD4NvZi45I747g+y/HqKyeNlGlPrG7Ey67b/qCLdEKHyk5Y07OK3HMv64DtN9zEy0De+n/85/oor5PIbgxEnzuPxOfP8hyebpwaN2zESBjjevXZcZcXDj/8jKnHuAg5kVVEWqkThu95iEuvg1lIG3pXQ5uKsp/Ha4gXdTrCmljyyoDSiJdOnebgxAkukFcQ1ElcNyYmHr17L8bp0/dY2DVrlsLff8+Ho6O1Qu2k06OjkRoSjNTQUKR8DeKPgzkpkxr6DalBX4XK9wXlU9zXGQljYwsdWxvosP9toWNjw0gZekyiwLp2dsw6T5mIv3ObWUYmf+QiawST5i3guGSJ0mNRxrqTfX3h37MHMuLj2XRFZ8+GBemwyAmixItvk8ZIDeLlqOp617zpqqtoeXkvOn7gjgJaenpwWr0aRnXrQUvTdvTdu6L/znu4lXmRNqCuG+a25+0YUcf+QtBM7hRFJ3vOW7bI6R2l+GH+68TLlbch+N+fD1iiBdbS0ceP4+uM6YXyeIrzjiFCmIhhArlTPR84AT/v49VatdyscHB4XXGGUek24hIv5MxH5Av7bHp5wXnT5mxxixIITcsUxfYB8tONSLh/D58GDWLz6ZUsBfcTJ9jjsrPPIimVa0TdndYMdqbqXUXm360bkl5lr9oJik5EPRFnN3Um62LOnEbgxIn8PdC4CTo5dkJ4XDL7WxFVTnl9MNSNeHkfEoOWa66zcG1N9XFvWjOVfqZzm7zi3HOIS05jLz2e2QIWIrbXaZGRzA0p9to1xN28Afo7LxhUrgITLy+YNGwA/bKyVZiJ/mZ4lbbD7wNV5/aZ23rpmNKxJZwY5YmKTrKTThriRe0+GpqAcsmA0oiXCxce4uNHXi5YEAYMaK5WOi8Ub0REDJKSUmBvn6X0/uED709UlZ00zZ0SGIi00BCkBgUjhciZkFBePRMSitTgIEbWZCRxVwJ5QcfeHgaVK8OoWnUYVavGXBB0SY9GznfPE589RcjqNaATQ1HYjB4N659HyWs5ajkOVfZQhQ+B2seKX5GfhoOAeEl59RIfe/bkc9jZovhVfnKjbhCUzG72XgG3GE4SCUA2unSSYlAmu/CjloE+q/D6r+GBfzh6brvDlq2rrYUrE5rA0YK3JXwePhzxN3nFgP3ChTDv0rXQpOe/TrxkZACey7zxNdOlZUX3ymhnlQa/1q3YMaQKBapU+JHg3707kl7ykn1qL5wb7yS0Np7Sqgx+aih7abqi8yUu8ZLs5w+/ttxNju56l7xzN1tob4Ji0GYd/36mKrZnc1pCp4h8hO/DNm/Ct0zdJ4tevVB09hw8+RyJrps50U3fHzcnZ1lcKzpn0o4fsmQxIvbsYbtb//QTbMaMZY/77LiLu5mWxLPalcPgeu7STqHQ/YLnz0PkwYNsDssJk1DHt6hwPt9FbaEln8Nd4BrUjXihgKssuIDohBQW+/kxjVCyqEmB61DWBqGxSai9+BKbjrQTX8zl38l5IfHpU8Rev47YGzeE32+5battZQXjRo1g2sgLRvXqcVdUCfAsIBKdN/HPcAUnc/wzylOCvRW/qSixm5OsknZ2DfEibeY0+ykzA0ojXpS5KGXNpQ7EizhrpfaV1JAQ9i8l8AtSgun/QE7KpPAfs7Swb0gJCgKVHUsLbUtL6Ll7sHYmPTdX6JcqBV0XV+i5u4k9ZHpsLJLevkHE3n2IOZ9d6LXI/9m7Cqiqsja6kQZBRUFFUQGxu1uxu3WcMcbusfU3xxhj7O4cY8yxxsIO7MFOQFFARQQTFSn/9Z0Dj4sSL+4rPN9aswZ4J/e57/nuvt+3t50dcs6YgYy1Df9LoNIbTqVhQNMmiIon9+Qsr0kgXl4vWIDXa9ewFSR84ZZj3XKPkfDU0uVDKBafmgfLuBilpsi1ZMkPc60kANJiqTduP+Mpz9Jsl7iPH+FXPvEpef7zF0DvV2OJH514oXOSZj0UzmGPg4Oqw79GdcSG8RIUylSgjIX0ELHh4fCvnnij4H7+IiouvYI3n/i/V0eH1ER+J9VuRPSBi7LEC63Nv0plxdNw138PwMI9KbFUbtoxRQbE5h6VUMU9qyxbIm0U0kihyDlrFuybNktyrZG2CGmMGHpEHDuKZ4MHs2Valy2HPPEkzLargRi75zb7e4ncmbC3v2HdgCbgGtCsGaIecUF0s1UbUe8Qf1Cpa+LLEImXwduu499bzxkeE5sVxa+Vlf9Oqe3rVvqwo5RLZuzul1jOm9bcsW/e4OO5s4g4cxYfz3uDMt2TC8o4NyeB3sKFYVOmNLu+iZhJLZ6/jWRkPUV2eytcHG0435ulZJWlWQbcn8JJZ01DEC+aIij66wIBnREvr169haNjZpX2pE4flSbQsLGxEC+qbJPSIGNfhiCaSJrgYERTJs3zZyyjJubFc0bYqBMWrq4wz8PJGIu8eWHBLIsTH+F8OH2a/cMT5ccdK74Nh27d4NCrd7oR0VUGw/f79+HF6NGsKYkIux3jT1U0jQTi5WnjRogO4nZ+LqvXwKaq8l8YNF2Dqv07rrmEi4/DUeBNIIZnCIC777U0BaqJqHPdtx+UofUjxKkHoeixkWc90JeZsyNrs9RsCqo3fz5sGPuZhDtJwNOYQhAvwIfIGJSfdgxRsbz8Y1efKsixYIqCoM4+fjwy/9LRmI41xbVKP/usSpdG2PSlaLeSlyq7ZLHGmZG1jWKfqhAvwQMG4OOpk2xfOSZPRqZ4t7mEjf7vn1vY6cM/rynbh7J+5AjSRiGNFAq3o8dAenB9N/+Ho/e4/oLcmjJyrDm5Mb7VsCp4j2u7UAlI6SleiInXGDw9whN5HHRbLp3Wnul7FxFvFCbW1gjdfhRd1vFM37J5s2BnnyppDSHb64ZIvEj1SuoVyY6VneQrtdMUOHpP0nuTokWpXJjfXn0Nmsjr1xFx9gwiznkryuZSWh/p/1GWuVWRIrAuVgwWHh7svZsQ0bFfUXDCIcXvj6c30XSrsvW/9vQN2sZ/nhfJaY8Dv3HXWE1DEC+aIij66wIBnREv7dv/gdatq6FDB0+l9nXp0n306TMfN2+uUqq9PhqlR+JFGRyj/HzxxdcPX/z9EPnwIaKfPEHUkyfKdFW5jX3LVnAcMoQ5Nv2I8bhuHQXZlXP6DNi3bKkxDES85IyKQWDrVmws+sebhFYNOXZdC8aoXVykLuHGi8Q3I4iwu3hJkblFr5NrGGV3UViVLoO8W7YY8tZkW1ujhWfx8CWvme5V3Q1jGiWWXz0fPhwfDvMvYU5jxiBL5y6yzauLgQTxwlEes+cWtl/lN9/NSjhjcuw9vJw2lf1u16AhnOenDxttIgmJLKTINmgw1rrWwooz3GGna5V8+L2pYdtIJ7wnVCFeXq9di1dzuWObffMWIBcnaRy89QK/beP2yIVz2uHgbzU0futF+T5EQPy/KabZsiH/WV6KWGbqUbyNzy46PKgGCuaw03guXQxA5VpUtkVBn/v0+U/RZ/N/OBZPJCWIU+tiPcrOEXHiOJ799htrTtplF/tPwuj4m3l6ny/soLuMI0MkXp69/YzqszgpSaV2dyY11FnpVVpnONvrAZbHfzaR6DldX3IEEYns+825c/h44TziPvB/21MLKkeyLFgIVsWKwdLDA93OvcENa/7gyWd8fWSRaM+kNZY2X9934xmG7rjBpiDRbhLvliME8SIHimIMbSOgM+Jl9uwdGDVqNdq1q4Fp07rDw4MyHr6PkJDXoLbz5v2Dzp3rYuPG/2kbA7XH/1GJl5QAIztMuun94ueHqCdPGRkT9SSAuamoEtYVKjCFd7t69VUqU1JlDmNpSzXfVPtNQZlCroeTll+psw8iXuwPHUkUrmzcBM5zDNuimZ5alpt6VCH2SM4BJXMnn0En1UsgfEgPiHSB0nMcvhOCAX9z4VH6Yur9vzqKL1kkSv2kZQuF1pPbsRMwz6Uba1K5MBfEC0fS72UEGiw8w34ma+lzbXLjXUeu0yS9cZYLd32N41exguJGg6yBm3uFsr1TbOpeEVXzZ9PX0lSaVxXihZ52P+34CxvfPE8euB3xSjLX+8gYlJqS+Dc5hGLfbtvKhOspMjZogFzzF+DRq4+oN59riimjWaESIFpunMQdauhQliVLISWtXBxscGaEcg8AtbxcxfChs2bhzYb17Pdsv/2GTR51segkz/6VM7tJmf0YIvFC6645+ySC3vBSeCrnobIeQwj6d5f+/aUggoyIMm1EojbMWYX1u7LzPMrkDPcKpeBUpjgrV7IsUlRlzRhl51Km3eKTfph/3Jc17VndDWMlD4mU6Z9SG0G8aIKe6KsrBHRGvNCGfHx80bv3fFy75o9KlQqjbt0ycHFxhIWFGYKCXuHy5QfMPSh37mxYmBSZ2QAAIABJREFUvnwwmjatpCsc1JpHEC/KwUZpzFH+vpyIeRqIL48fIe5DBMu0IIbeNKMtKyGyLlES1uXKCaeab2B9VKsGE0umIJFJuyaapYwS8WIydCii/Hg9ea6FC5lLlKHHkO03sP/mM7ZMqvGmWu+UQurgQ22o3p/qotNr1F9wBv6h/MZ0oKcHhtVL1Pqgmzm6qaOgsg1yrzK2EMRL4ol1WHURV55wMntQbQ80GfNzYqmI11GYu7gY2/EmWS/dYDz9hbu4kbaB5V4v1JjNn3ZntDTDrYkNjGZ/qhAvtKmHRRKz1PKf8wY5DUqj7YoLuBb4hv2JBJZbl04sLVAHlOejRuLDgQOsa0Im3A6fIEW2hWdBJ6w1MDeU1Pb5fu9evBg7hjWROreROxMR9wnOM4cG1UAhA8riedK+Pb7c4To0eTZuxKSnloqysj9aFEPHinnVOV61+hgq8UI6PaTXQzGyQSH0q2kY4tpNFp3D/RCuzfLvwGoo6qy5O09aB0eOl5H37yHy7l2WfR7p66u4ftLqm/A6lWDbN24MEytr5hRpniM7qHzJ3Fk7xJF0XZS9TFnMFHKWMgriRdnTF+30iYBOiRfaaExMLLOVvnbND9ev+8PHxw+fP39B2bIFULq0O0qUcEPbtjWQMaO1PnFRam5BvCgFk2ikIQL0JIyeiFFYuLnB9cBBjUZ85H0WMb37KMYo8J+PUdhyn/V7ha7rr7B121uZsdRZeuqfUpDQIgkuUtANnOv+f5ljSHqLPdefYfhOnrZrZ2WGc6PqMHwo3vy1AaEzZyq27Lp/Pyzyy5MKrUscBfGSiPah2y8wcCsvOclkbY79wbvw6RwvEck5bTrsW/ESQmONsIULEL5yJd9f69bwatILk//lNsGNiuXE0l94+YgxhKrEy9OOHRF5nZ8tlY1R+Zg0pE+Km5ZwxiINS1Ae16ur0MrKt2MHLIsVx8hdN/FP/E3RqAaF0NdAbnCVOW/SLHvcgD9EMLGxAf3blhD0GUmflRRUhknlmIYQ5DrpWzpRF6TAtevovOUGLjwKZ8tb3bk86hTWXam1oRIvJK5LIrsUJCxNAtOGEIUmHFbobhEpTOSwviLq4QNE+vnhy/37iHzoizc+12H5hes3qRP0QJRE+E0dsvL/Z8kCMwf63YH/nDUre2hqmjkLzHLmVHqKDqsv4koAf3iwvmsF1CzgqHTf1BoK4kUWGMUgWkZA58SLlvej0+EF8aJTuH/Yychp6lGd2grHC0oHp7RwdcN/9kzErt/AutvWqoXcy5arO5RO+5Glbvnpic4eqzqXQ93CiZab3y6GHAICWrZATAhPA7Zr2hTOs2brdM3aniw27itqzzuNoNf8y9XwegUxwDM/+5mVGLVojq9RUex30srI2revtpeklfEF8ZIIK2mEVppxDGER/Fz/srwPp+1r2c9kEU5W4cYcT9q2VQhLUjZe/6BM8Pbnzk1z25VCq9LJlykb4p5VJV6kpFPmjh2Rfdz4JNuSWsQSuXp9QgO1tS4oi5KyKSlMrKxAN/wUnnNP4Wk4/zzZ0bsKyuUzHvczWrM0Q9R1715YFCjI9iIlqGt4OGJDtwoGcclIS8wsixZFvp27UHvuKTyJPwPS8iFNH12FoRIv7z5Ho/Qf/EGKhWkGZqlOIvL6jATHRVpDVlsLUPmfIcWUA3fx78lbyPfuBXo5fUHRiOfMOUtbmoxEdpoRQZM1GzLY28OMCBoHB2SsXg0mpomE1IC/rykc2ua1L4Wcmaw0hu1rXCwyxgtUazyYGEAgoEUEBPGiAbiCeNEAPNFVJQToCTB9KWdfOvJ7gDIX1I2HLZoD8e5RdJNGN2vGEjMO38fqc4/ZchsVy4Glv6QuykZPj+kpckJ4XLyUrrJetl4JxLi9PEU9s405vEfVgY2FKfudyjWobIOCarrz7dplLMf83ToF8ZIUkqWn/DH32EP2x8Z4hd/28qwmi3z54HqIi9IaY5A1NllkJ4TLhcsoMfsc4g1pcPP3Biyry1hCVeLlk/c5BPXmuiQWBQvBdc+eJFsl8rnUH17M4YpCE62LD15H8HzoUDYO6arl2fAXs+suO5Xf3FI2Idm8mqWSVWiI5yAVZpY6fRFRWWH6MY6taQbcmdzQIPb2et06vJrDHwgkkG0e4w+BSHWKGxPqw97aXGdQGyrxQgA0WnQWD0O4yKyclurqgktOi+S4SEEEJRGVhhQk+kvivxS9a7hjdLwTGmVZUVYMOZZGvwhBdMgLxLwIQUx4OGLDwxD75rWifNWQ9pPWWgo/4E5mIgQChoyAzogXb+87GDZsOf75ZyI2bjzG9FxSir//HitKjQz5qhFr0zkCcR8/sqwXyuKgUDfrhbI/HtVOFBbMf/4CSxk1lpCKi9KalUntfdKuHb7cvcO2mGPSZGRq395YtpvmOivOOI5XH76wdiRQR0J1FNLyNPo93/5/YZmfZ8IYYwjiJemphX+MYtbSFES07dozCibR0ex3cqYhoV1jDKlGB5EB90fORL8tvFxE17a6cuCnKvFCemhk75wQHleufieCOWT7dey/+Zw10cRFJXT6NLyJt5XP2qcPsg0egiN3Q9A/Hu9yeR2wow+3ODamePv3FryMz/qya9gIzvPmKZbfYMFZ+IXyG/ctPSuhsltSDR197PPZwIGIOHmCTU0i99E166Fc/HtbH+LGhky8TD14D+vOBzCsKLOTMjz1GVKb67ZlcmNW25L6XM53c0vdINuUyY3ZKq4v5uVLTsK8e4eYsHDEvHmDWPrvdfzPr+N/f/NaZRMNbQAliBdtoCrGlBsBnREv58/fwYgRq7Bjx3hs2nQcV67wp3XJxebNowXxIvdJi/GMHoHwFcsRtmgR24eFRwG47tun8p7ebNqE0BnTWb+Ep5wqD6LnDk0Xn8O9F5yAmtGqBH4qn7qYaJI9l6+APH/9pecdyDP9hgtPQKnEFI4ZLXF2VG2Wev3p4gUE9eihmMSYS4wSNiGIl++vGam19Eqf1cgTxP9NVZeUleeq1GwUabaC44iR+NO+rEKE0dj0RggJVYkX6vOkTRt8uX+PAemyahVsqiVmANHfpCUzZfJkwa6+6j1lf9KurcIdxWXVathUq4Y/DtzD+gv8xrZ/rfwYUV+/N7bqXE1Si2wzJ0e4nz6rGIY+L+lz05D251+tquKm1e34CfjCFs2WeLM15nfKiKNDaqoDg9p9DJl4OfUwFD3+usr2VtolM/7pV1XtfcrR8c8jD7DqLLe5NyTB34S9nfF9hW4buC6eLsrrYt++ZcRM3Ns3iHn9mv0c8/oN4t6/Q2xEBDPVCHv5Gr5PQxFrYgI7GysUz5MFJhlMKcUuhf+bwoSy7jKYwsQ0Q8r/NzOH06D07V4pxzUrxtA/AjojXvS/VflXIEqN5MdUjJgyAt9lvSxejIx16qoEWWDnzvjs8x/r4zRmLLJ07qxSf0NoTE+86MkXRfl8DtjeO/WnsrHh4fCvXk2xdPeTp0CK/sYc5NJR+c/jePuJZzlMalYUXSrnQ0xoKLOOpi9AFMZeYpRwRoJ4+f5qDX7zGTXnnASVn3S5fxg/P+RPzek9Te9tYwy/CuURF8HduVz/PYDKWx+x8hcKr8E14ZE9o1FtSx3ihYhxIospEjJRpJuWZjvR39UpRSFXFN9yksyay1eQwc4OzZd6486zd2y6tV3Kw7OQ7kRd5TxYv/LlQP9eUrgdPQbz3Nz96cT9UPTaxG/ci+fKhH0DEv9dkHN+ZceSigGTALz7mbNJso5IdJTER3UZhky8fIqKRckpXooyrDuTGipKa3WJUcJcfTf/h6P3XrJfl/xcBo2LKy8wq4v10nuZ3tMURXLa48BvSUlcXazh2zk2XXqKift5BrLcWUJCXFcfJyrmVBUBQbyoipikvSBeNABPdFULgfBlSxG2ZAnra+HhAdd9ymu9fDxzGsH9+inmNVYCgm48Kk4/ptB9uDC6DnLYpy7OFtSzJz5dOM/27jh8BBwkGSFqHYSeOy077Y85R3mGAwnTnRrhyXQLAjt1wudriU4exl5ilACzIF6Sv+ASLNbLvvTF1Iur+OdCMtoger5clZqerlu6finIIePdun/QduUF9rtLFmucGVlbqXEMqZE6xEvE0aN4NmQw24Z1mbLIE18OJN1XsyXncPc5z/pT54bv06WLCOrePcm/I0TmFpl4mBF5JiZgejr6dGjR5ByD+/TBx3M80yXn9Bmwb9mS/fztjbs6pJUm6/q27/sD/+LFqFHszxnr10euBQtZxhFlHlF0KJ8H01sVl3PKNMcyZOKFFt92xXlcC+QPFtIS2E9zsxo2aLDwDKj8mULXIsjKLP3l+0hU/pMT8pQVe3msag/qlJlD1TbTD93HGm+u0zesXgEM9JTPZVEQL6qehmivDwT0QryQffSBA5fw77+X8OBB4Hf7Pn58FuztbfWBh0pzCuJFJbhEYxkQII0X/9qeoCeWFM6Ll8CuTp00R/4aGYnHjRqCanb5l7wGyLWAi/UaY1C6MaUdK/uPt1Q7wrJgQeTbs9cYt83WTMKa1WadUAhs/tm6BNqXc8GrefPwes1qxb5yzpwJ+2bNjXaf0oUL4iX5Y/QPjUD9BWdgHR2FXQfHgnl8mJjA48p/yGBrY1Rn/2r+fLxezcmjzD/9hI2VOoDEISm6VsmH35sWNar90GLVIV4oW80/wZ3D1BQFr98AzJIKChPpSuQrBb336TNAlZAS+KR5RdpXFx6FodPay2yYQjnscGgQdzwyxghftQphC+azpZMleY6p0xTbaLfyAnyevmG/L+tYFg2L6i/78eXkSXi7fTtbi9OoUcjStRukN6bD6xfEgFq61eYydOJl3jFfLDnlxzDrVsUVE5oW0dsl6jb2oGLue5Mbwcpcvy5LyQEhXePj6U30hlXCxP02+8DrHneaXPBTaTQv6SzbmgTxIhuUYiAtIqAX4mXOnJ0YOXIVqlcvBnd3Z1hYJP1SMX9+P9jYaG4vpkXc2NCCeNE2wmL85BCgjBf64kyhbCnJq7lz8Hott5yFtRVzPrHIrr8vnJqe7MFbL/DbtmtsGGWehpNopX/VygprZSpjsHB313QZeulPbjbkasP27mCDk8NqIfL8OdBT3oTI3KEDsv8+US/r08akgnhJGdX+f/vgyJ0QLDq9AB5vg1nD3CtXwra6cd04S22kyeK+1XUT+L/iT5MNwcFEnetaHeKF5glo3Ehh+Zp3yxZYlS6TZPrLAa/x8+qL7G8Othb4T0UbW7rhp2wL+lzMOWsW7Js2w4Ljvlh0kt/QdqqYF1NaFFNnywbRR+pmZ+GaD64HE52+pPvUR0aJFKCAVq0Q9ZAbTeTdtg1WJUpiwN8+OHyH35jqwz7d0IkXqZNQgex2ODJYP59zz95+RvVZJ9k5Zbe3wsXRaT8A08ebg1zKEso1r4yth2wZLfSxDMWcTRafxf0XXOB6V9+qKJMns2zrEcSLbFCKgbSIgF6IF3f3zvD0LIU1a4ZrcWvaH1oQL9rHWMzwPQLfZr3kWrocGT1rpQhVlJ8fAlq1BOLiWBvT/v3g2m8ATE257bCxBtV6K2xV+1dFqdyp/wP+bOgQRHh5se0mp51gDDi8+xwNEhemL30U89qXQtOcZgho3gxxH/iXGUbGbd0KmOvOglTb2AniJWWE74e8R5NF59Dn9l60fMTr+R169oLjsGHaPhbZxqfPNL9KFfl4pqawOnwanst49gXZR1PZizGGusRLyPhxeLd7N9tytiFDkTXeYlqKQfFJR/AxKpb9SSX9m5gY+JYtg68JLljnvGGaNSvLdqGsF4pFHUqjaQn5nkTr/OxiYvCwdCkgluOT/8JFmGbm/z5QtgtlvVDkzmKNs3oqYSNLX98ypcFquySZTa2WncfNYF5Ks613ZVTI56BT+AydeCEwCv9+GFQaR6EvMkFKAFVyzYq/e1XS6TkpO1nDhWfh+5J/NyCSisgqfUbRiUfwOZq/L6+Oq4estvIRQYJ40efJirmVRUAvxEvlyoPg6VkS06cnOm8ou2BDaieIF0M6jR9rLWGLFyN8+TK2acuiRZFnzVpkyJQpWRCeduiAyFs32Wv0RC12+lTkzetq9MTLuL23sfUKL1XsXCkvJjdP/Qntx1MnETxgAGtvnisX3I4dN7qLRlpileB48fSXnxF54wbbSwZ7e7ju3Wf04sHfHowgXlK/VOm6iDp1HOOvbOTv89JlQJkSxhLf6poc7TuFlVxQtCiVC/PblzKWrSRZp7rEi7Q0kjKXKIPp2+i72QdH41P2xzYujJ7VuJV8WvH5ymUEdu3Kmlm4usL14CH2s/Rmlp7e01N8Yw6pkHyuhQuRsV59xXaKTTrC9F4oTo/wRB4H3ZflSXV2pO/XSjOOI/TDF7a2MyM8WVajLsMYiJcu6y7D21+/JOHfVwIxfu9tdjTkrEgOi4YYUkJ1U4+KqOqeTW/LJDOAMlOPsvmtzU1xd3JDWdciiBdZ4RSDaQkBvRAvS5fuw7x5u3D37lpYWcnHdmoJoxSHFcSLrhEX8yUgQDoAj+rUxtfPPPOBymZc1q4H2WdK493OHQiZmFhyQmK8waYm6YJ4uRb4Bm1X8CeXmazNcX1C4hfrlK4Uv4oVFJkhCandxnJVSd0AaM3/9K2CXNtW482G9YotuKxdC5vK6tnLGjIOgnhJ/XRuBL9FtwVHse1Q4nu9wPUbMLG0NORjVawtZNJEvNuxg/2ebeBA9Dcrg6tPXrPf1RGPNZRNq0u8RAcH43H9emwbGWxt4XGVO9FJg0hnIp8pquXPho3d4zOG0tg8aZ+QBgpF5p9/QfYJE3DW7xW6rue2s/rMApHz3KT7zNK5C5zGjFEM33PjVZx8wDXCprYsjl8q5JFzaqXGogcn9ACFwqF7d5B9OoW+NTmMgXhZefYRZh7hJVrqaBwpdUBpNJJq8YxpVBi9qitHfMoxtypjDN1xA/tuPGNdKEO2ZalcqnSXte3tZ+/QIt5lqWB2OxyWuUxMEC+yHpcYTEsI6Ix4mTFjK65e5S4cUVExOHjwMipVKoycOb9Po9y48X/ImNFaS1uWb1hBvMiHpRhJdQQ+HDyI5yNHKDqSRTKRL1TTTpasbzZvxuu1q1kdP/ty16MnHIcPx+PH/umCeKE91ZpzCoGv+f6UcTggEorIKIrMHTsi+7jxqgOvhx5+oR/QfIm3Ir26X0139Ld4geAB/RWroRvWrP15Rk96C0G8pH2inddexq8rR8Il4hVrnGfTJliXLZd2RwNo8bheXUQ/4zcHDus2oeJ+LgJOcWui8brrqEu80L4f1ayBmFf8LF337GFuVdJ4/jaSiWwnhLLink/atcOXu9zONdfixchYp24SQdc2ZXJjdtuSBnBVaLaET97eCOrdiw3yrRbahgtPMOXAXfZao2I5sfSXpBo6ms2sXG9aG61Reg5BZBE/W7+6IcZAvNx5/o79e0ihjMabcieiWqteG//DiQf8c0qZ7x6qjS5faylBpEpmnHwrSBzp0O0XGLiVa/PVLZyd4SZnCOJFTjTFWNpCQGfEyx9/bMbly5yhTiu2bRsniJe0QBKvCwQAZpkpFVUlUKzLV0DknduKbBj6m7mzM1wPHISJlVW6Il5IDJLEEikaFM2B5R3LpnpdfP7vKgK7dGFtTB0ckN+bW0wbclAtO9nHkoMNBT0p2t/WHU9at1Jk79hUqwaXVYmORoa8H3XWJoiXtFG7HvgGZ/oMRaOnXBvFss8A5Bs8MO2Oem6RNLvDBrdX7cOInbw0soaHIzZ0q6DnFao/vSbEy/Phw/HhMC8Dyj5+PDL/0vG7hdSff0YhQLyuawXUKpA04/HbDkm0dAB4XLmKDBkzourME3jxLpI1X9m5HOoVzq7+pg2kJz1w8Cuf+O+Bx1UfhdMXEdkNFnC7aXsrM9zQg4aQX/lyiPv4ka0hf7zOjlQ0mTTLdvevqnM0jYF4IVCkGm/6KMmSvveODqkJKv01xFh97jFmHOZlmz2ru2Fso8J6Wya51M324veB3au6YnwTeR2pBPGit6MVE6uAgM6IFxXWZDRNRcaL0RxVul7olzu3EdizJ+hLdXJh7uKCnDNmwLoM/xKanjJegl5/Qs05p9i+zDKYMHcPe+vURWWpRCvmxQuWwp976TJYVzDsGzuqI6d6cgpzUxMcHFQDZv264ss9/sSWSLV8/+xOUeMnPVz8gnhR7hTnjpqPpgd4GUlw/hKos59b1RpySMshbT1rY1qV7vC6y11dyFmHHHaMNTQhXt5u/Rsv//iDbd2uYSM4z5v3HQx/HLiH9RcC2N9/rZwPE5ulbrkdcewong0ezNpbFS+BvNu3MyFXEnSlsDTLgJsTG8DC1PBscdW5Bp60aYMv9++xri6r18CmaiKRUX7aMYR/jGKv7elfFSXTEGdXZ/6U+nzx98eT5s3453fu3HA7eoz9vPt6sIJ01FcmjrEQL/22+Cg+J0hfhXRWdBn5xx1E3Fc+o9/UxjDNYKLL6ZWeS3pN6Vsva/TuW9jxXxBbO31W0WeWnCGIFznRFGNpCwG9EC97954HZcD8/fdYFCyY+GHZseMM2NvbYPly/sXA0EMQL4Z+Qj/O+qKePkVQt66ICeE3LBQ2lSrDoUsX2NZK6niUnogX2udPqy4q9CCmtSyOn9Oo1w9buADh8WKVdg0awnn+fIO9UC4FhOOX1ZcU6/tfw0Jo5b2NlZElRL7du2FZSH9PsXQBniBelEP5wY2HMPmlJWv8ycwC9icuwN3RVrnOemoldRujzI5qvlkVwqcXRtdBDiMWedWEeIny80VAixbsVEi7y/00z9CQxjn/V/h1Hddmcctmi+PDUna3ozZkI/12OyfjEpzdSCuDNDMompVwxsIOpfV0Jcg/beiM6XizaRPfb99+yDZokGKS4TtvYM91Xt42umEh9K7hLv8CUhjx3T+7EDJhAnuVrLzJ0pti6Wl/zD3KS/JJLJlKQ3QdxkK8SDXPmpd0xoKfdHfdSkvC9FXqpOx1cf5RGKgMlYKEdUlgV1/Rcc0lkBsUhTIZeqquUxAvqiIm2usDAb0QLy1bTkRcXBz27+dPcxJi374LoNfCw3fDwUG/lmfKHIYgXpRBSbTRFQKkBxDcty+sChdClq7dYJk/f7JTpzfiZfvVIIzZc4vttUyeLNjVN3VxWdKSIE0JFmZm8PA+z9yADC3+e/qafWFKsM2kvf1V8EsSXZfsEych808/GdrSZV+PIF6Uh/RahcqwjYi3o+0+FRNHtFG+s65bfv3KbKQTrNBfLdmELse5bkLxXJmwb0A1Xa9I1vk0IV5oIb7lyuLrJ65h5eZ1FJS9KA36bCg1xUvxGXFuVG3kypyyPt7jBvURHcSfOLus3wCbihVZxiBlDlIs71QWDYrkkBUDfQ724YgXng8bwpZgU748XP7irl8UUlcaXWeXvBg7Fu/37mHrIHFjEjmmkDr1TWpWFF1kzghQ5iyMhXh59Ooj6s0/zbaULaMFs5XWVZBYLYnWUqgibK2r9UnnefjyAxot5KRtoRx2ODSohj6WweaUavIdHVoT+R3lLc8SxIvejlZMrAICeiFeChbsin79mmPIkNZJlhoW9g6Ojm3h47MMZcp4qLAN/TQVxIt+cBezaoZAeiNePkTGsHrvhFDGHlRqNSr94qsZsvL1JpeaTmsuKZ78O2a0xM6muRHZ7ReFdo9dkyZwnj1HvkkNeCRBvCh/OH4DByPuJLfsXFm8BXrMH4OizslbzSs/qnZafrl7F0/atWWDU1bHmsFLQEQqxfB6BTHAM3nyWDurkX9UTYmX4H798PEMv7nMOX0G7FvybCZpkBsRuRJRzGpbEm3L5E52I1LCmdyuyPXq3ov3aLr4HGtP9q7XJtRn5UbpJWLDwuBfozrbjomFBQrc4NpBFLeevUXLpbzEiiybSSdEVxHQpBGiAp6w6aQZi9KzXNGpLOrrgQQzFuKFsJNabx8ZXAMFsuvmge3SU/6Ye4xnJmlDq0TO6zAsIgoVpvNStqy2Frg6TncE1bf7kDp23Z/SSPbPGkG8yHnliLG0hYBeiBdPzxGwtbXCgQNTk+xr+/bT6NBhGp482Yy8eQ1f3E0QL9q6LMW42kQgvREvhBUp5ZNiPsWg2h4YUrdAqhC+37cXL+LtRS2LFUe+eCtbbeKu7NgPQj7gp1UXQIQSBVll7+5eFujXDVH+fuxvFu752ZpNrA3f/U3ZfafWThAvyqP4dts2vJwymXU4n7M4znQajr+66S+9PLWVv16zGq/itUvsW7VGE+uaePspmnU5+FsNFM6pmxsp5dFVraWmxMvrtWvwau5cftPUfwCz2v429t54hmHxT9+JQDg93BMmychNvNu1EyG//86621SpCpc1azDn6EMsO+3P/qbrrA/VkFS/dUCjhqBSXIq8f2+FValS7Ofo2K8o9PshfI3X6SCBXRLa1XZEP3uOx/XqsGno87uAD3d5oai/4IxCRJ2yvSjrS9dhTMSL1Cp5QtMi6FbFVSdw9d/igyPxOlRz25VCq9L6s2hOa8N0fbuPO6ho9mhak2Q/H9IaR9PXyX2SMl4oHO0scXlMfNaxpgNL+gviRUYwxVBaQ0AvxMv8+f9g2LAVmDmzJ5o0qYgcORxw8uR1jB+/nm30/v11yGAE7yBBvGjtuhQDaxGB9Ei8nPZ9he4buNZBHrr5SOPp5dfISPhXr6qw2nb99wAs3HVX45/S8b58H4mGC8/i3Wd+85nR0gw7+lSB/bwp+HDgAP+ybmmJfLv3wMJVN18ytXgpKj20IF6UhgpRfn4IaNGcdXhnYYsOjSdje+/KKJ/PQflBdNQyqHt3fLp0kc0WPXYKmt+zYT/nzmKNsyNr62gV2ptGU+Lly4P7eNKaZwan5sJWbtoxvI4Xil33a3nUKuj03aaeDx2KD15H2N8dR4yEQ/fuqDPvNALCuLMOWSoT+ZLeImT8OLzbvZvve/hwOPToqdgiZfsZ5pR/AAAgAElEQVRQ1g8FaV+QBoa24/3+fXgxejSbJoEAS5iz2KQjiixHEop3sLXQ9nK+G9+YiJd/rgVj5C6exVSnUHas7iKvPXFK4JPlN+m8UHgNrgmP7PKWzMh96BWnH8eriC9sWCI8iPjQdUi1ZsrmzYKdfVIvCVdnfUZw26jOtkSfdIaAXoiXmJhYkJDujh1nksDp5JSZZcGUL1/QKGAWxItRHJNY5DcIpEfiJTbuKyrOOK64+aB/1Okf99QiZPx4vNv9D2tCmjhOo0bp9VohTRd6kkapwRRW5hmwpWdluF0+pnhSTX8ndxNyOfmRQhAvqp22VBukV51RyFzQA/sHGpZeyteoKJCl7tdoTjIemb4ZC69wcfCuVfLh96apO/Sohoh+WmtKvNCqpbosuVetgW217y2GF530w4LjvmyTyWpOfKOlk3fnLjzJmgeNF3HtByovuj6hAfvMSW9BpAuRLxQZa9ZEruUrFFuUuqyMqF8Q/Wtpv7SNMi0p45Ii25ChyNq7N/uZyPbSf/ASQXLIIaccfYQxES9EJhCpQEGlcncmNdR6Nsf7z9EoFX9O5KT44I/GMFBDI8Xl02TxWdx/8YH9/u/A6ijqrHtNu61XApmGEUXLUrkwrz3PPJMzBPEiJ5piLG0hoBfiJWEzly/fx40bj/Dhw2d4eOSCp2dJ2NsbtgOD9CAE8aKty1KMq00E0iPxQnhNPXgP685za9VfKuTB1JbFU4Ux8vp1PO3IRQ1Te5qszbOgsSkVeMkpPyw84auwpyTb6E09KqFkzGuF7Si1zdS2HXJMmaLtJRnc+IJ4Ue1Igvv3w8fTXBtkYel2OJK3IlZ3Lo86hb/PhFBtZPlaf7pwHkE9efaBRcFC6FNziKLMYnOPSqjinlW+yfQ0khzES/iypQhbsoTtwL5FS+ScMeO73VB5Vvnpx0AENMXRITWR3ynxKTxZKpO1MkWGTJngcfES5h/3xeKTvHSxYdEcWNaxrJ5Q0u600YGBeNywAd97xozwuHJVMaFUYLdhsRxY9ov2MXhUqwZiQrkmD9l5k603hVRvxzWbLU6k4VClLdSMiXghDGrPPYUn4VwcelffqiiTJ7O2oGHjXngUjk5rudNgKZfM2N3veyJUqwtQY/Bf11/GOb8w1nPdrxVQq6CjGqNo1kXqnqZMObg6swniRR3URB9dI6BX4kXXm5V7PkG8yI2oGE8XCKRX4kX6xZVq9almP60IaNwIUU+4yGHuZcu/s95Oq7+mr/uFfsCk/XcVFos0XnZ7K3YTVNolM4J698Ynby5+aeHhgXw7drJSox8tBPGi2om/XrsWr+Zy4eXjLuUwt2wHFMxuh8OD9edo8e0OaH20TgqzDp1QL5I/AVX2vasaIvppLQfxQi5ElPVCkcHWBvm9LyT7GUAlF1R6QfEt8SzVirFr0BDO8+cn0RMhC2mykk6vQQK7JLRL4bpvP/sspbjz/B2aL/Hmn/86KG9LQgLZ2sDjqo8C8pMPQtFzIyeF9Gn7a2zEy4R9d7DlMtfwGV6/IAZoOWtpjfdjTD90n83XsWJe/NGimMG/bUbsvInd1/lnw+y2JdEmBQFubW5EqsOnLV0cQbxo8wTF2HIhIIgXDZAUxIsG4ImuekMgvRIvBKhUnHBKi2LoVDFvqjhLb0gy1quPXAsX6uRcbga/xVrvABy49TzJfNXzO4JugjLbmOPTxQsI6tFD8brrwUM/lK6LFBhBvKh2WUbeuomnHTqwTi9tHNC1/lj284KfSqN5ScO4waYMDMrEoLgz5A+MfMKForWVhq4agvK0loN4oZU8adsWX+7dZYsi0oTIk29DSjxT6dClMXWZMDcFfY7Q5wlFjsmTEVaricKKl/52e1JD2FqYyrNpAxxFqm+T/feJyBz/3qClSp1Wrk+or8BMG9t4t3MHQiZOZEPbenoi99Jlimk2X36K3/fdYb+3L+uCP9vwTBhdh7ERLyRySyW6FJXdsmJLz0pahUwq6Ptn6xJoXy6pxbtWJ1dz8D+PPMCqs49Y7/81LIQ+NXSvZ0cEJxGdFDv6VEa5vPJrjgniRc0LRHTTKQKCeNEAbkG8aACe6Ko3BNIz8UJkxrRD/GZOmXRtqd0o9cl/4SJMM2svVfnwnRdY4x2A64Fvvjv/oXUL4Lfa/EksRUDLlojy5ZaVmTt2RPZx4/V2zeh7YkG8qH4CvmVKg0SkKTo1/B3hVvZKCU+rPpPqPWLfvoV/lcqKjtN+WwnvIK5BsLxjWTQomkP1QQ2wh1zEy5sN6xE6axbbYcY6dZFr8eJkd9t+5UWQVhTFmEaF0au6G2JevcKjmomZTm5Hj2HmzfeKskyyLCbr4vQcb7dswctp3EXTrkkTOM/m2WAU0hvCv7pXAJHf2ornw4fjw+FDbHinMWOQpXMXxVTSUgxy5aNyDH2EsREvVGZXZirXxqHQhk2x9BykD3f+HVgNRZ117zyl6nVBJdhUik2hL/trOqMExzptCfwK4kXVK0O01wcCgnjRAHVBvGgAnuiqNwTSM/HyMSoW1WedUPwDP6ddSbQunTtVrKV6GFKxQ7kOiNa07Uog/roYgOB4JwTp2IVz2GNCsyKo5JqoaUGivyT+S5HB1hZux45rlRCSa6/aGkcQL6ojG9itGz5f5loES6p2wUFH/gR9Wsvi+LlCHtUHlLHHh0MH8XzECDaiefkKqJurvWJ0Esi0SSfZF3IRLzEhIXhU21OBkcely8hg/71ApvTpv3NmK3iPqoOwRYsQvmI560slNnf/WIFB264rxlrwUyk0L2m4drhyXHZRDx8goFUrNpSZkxPcTycaO4zdcxvbrgay17QtsOtfvRpiw8PZXNKSJ/p9yPbr2H+TZ0DObFMC7crqJ5PC2IgXwqvZEm/cjc+moIwXynzRRnyOjkXRidwZjOLx9CbamEb2Mem6ouuLgjIeKfNRl/EhMgYlp3hpHTdBvOjyVMVc6iIgiBd1kaMP3cePWe98+dw0GEV0FQjoFoH0TLwQkqvPPcaMw7wG2yWLNc6kYUv78cxpBPfrx9qTfoqb1zGYOWn+1JOsoakenEgXIl++jQZFcqBbNVdU+Mbm9+vnz0wMkp5UU3xrgarbq8UwZhPEi+rnQIKsJMxK8aJmE3TPwm/cnews2XuCylH0FS9GjcL7A/+y6V/+3AtdP3Mnw5oFHLG+awV9LUv2eeUiXmhhgZ0747PPf2yNVC6UqV0iWSVdeJU/TyDkPc90GlavABqO6wLKMKKIHT0Rbfwz4UtMHPudLMbJavxHCL/yZRH3kYuwEpFtnouTTUS6EPlCQZ/Jy7WU/RPl74eA5tzmnbIqKbtSGu1WXoDPU54JublHRVTRgbV1cudujMTL9MP3seYc/z5OzlREoGkjbgS/Retl59nQ9MDk4KDq2phG9jEvPg5HxzWchNdFOda3G5CWQZLoN4l/ayME8aINVMWYciMgiBcNEBXEiwbgia56QyC9Ey+R0XEs6yX8I7dlVqYOW3pTk5JziLIHRl8yqJ464emltB/d7LYvlwc9qrmyso/kQupiYpYjB9xPnlJ26nTbThAvqh8tZbtQ1ouJhQVsa9REm5zNEfrhCxtobKPC6Fldfw8MqMwogQzY2HsmtoZyfRFyIiNh2PQSchIvb7dtw8spkxk01uUrIM9ffyUL08qzj0BlKxSNAy7ht5u72M8m2Rzxa+OJIEKYgsRk9w2ojiw2XAcmvUdwnz74eI7bZ+ecORP2zTgJIr0pzJXZGudG1dYKFG82b0bo9GlsbLuGjeA8b16SearPOolnbz+zv5GjEZXK6iOMkXg56/cKXddfYXCVyJUZewdox2lo06WnmLif6/C0LZMbs9qW1McRqTwnifg3WMCvfW0SHyktzOtuCPrF6/DUKuiEdb+WV3kPynQQxIsyKIk2+kZAEC8anIAgXjQAT3TVGwLpnXghYNdfCMAfB3hNc0LKfWqAf/H3T2LbnG/3blgWKqzSGVGa/1rvx4qnltLO5FTUpXI+5oJAri0pBaWhP6pXV6HN4TxrNuyaNlVpHemxsSBeVD/Vr9HR8KtYQXEt3Z6/BaPOvGADkXgzlaHoo6Tn840bCPzlZ7YOKvtoXnMMKIWfggRhKSMnvYScxEvcu3fwq1oFiOPZKvnPecM06/clFe8+R6P18vN4EhaBdV7TkeMzz6LYXbENVufk2S3W5qbY078qCmS3Sy9Qp7mP8FWrELZgPmuXqW075JgyRdFHKrDrM76+VsioZwMHIOLkSTbntwK/9DfpGu5NbgQrc/1kpBkj8fIpKhbFJiWWAN38vQHsUvl3Ns2LJYUGo3ffwo7/gtirk5oVZf+mG0O8/hiFctOOKT77r43nLmm6CnoQRQK/FIQZYaeNEMSLNlAVY8qNgCBeNEBUEC8agCe66g2BH4F4IXArzjiOV/FP+MnykUiP1CJk/Di8272bNbEqXgJ5t29P84zohpG+iK0/H4DA1zyNXRokvNenhhuaKmnVSroupO9CYVm4CPL9w3/+0UMQL+pdAc8G9EPEqdOsc/bx49HiWU4ExesMkXgniXjqOqSaIx/rN0NbG552XjxXJuwbUE3Xy9HqfHISL7TQ4D698fEct5d3HDESDt27p7j+DXM3o/JanmHx2cwCHRtOxGczTmqt6VIetQs5aXXvhjb4Jx8fBHXuxJZl4eoKcolLiBZLvXH7GXdc2dCtAmp4aF5qmmT/X7/Ct3w5fP3E/41wPXgYFq6JN+0v3kWi6swT7LWstha4Oq6e3uAzRuKFwPpp1UVcfcKFpVd1Loe6hbPLjqFUiHlX3yookyeL7HNoa0ApsadrbRpy6yLXLorxTYowgV9thCBetIGqGFNuBATxogGignjRADzRVW8I/CjEi9Sek56i09P01IIcjh41qA/SWKHIOWsW7Js2S7YLlTER2bLx4hNEfIn5rk2jYjnZl4uyeZX/Yhbl54uAFi0UY+XZvBnWZdK324iybwJBvCiLVNJ20vIU2+o14NPvd5AdKgU9UT83qg670dNlSK2RT3b6H2ZH8Jvc4fULYkCt/Lpcitbnkpt4ef/vfrz43//YukkoN9/2HTCxskp2H4Fdu+LzlcvstR35PbG+GBcC1baArNZB1WCCh0USsxjzn78A0yz883n83tv4+woX2B1eryAGeMp7HZIVOF33FGbZs8M9ngxN2Appu5DGCwWR9eSWo68wVuJl4Qk/LDzhy2D7tXI+TNRCVoWUvDA2EfDKf55QlBme/18d5MyU/OeGNq67X9ddwTl/rlm3snM51NMCKUZjC+JFG6cnxpQbAUG8aICoIF40AE901RsCPwrxQgDTU0R6mkihTGpw+MqVCFu4gH9BdnKE22EvmFhbK84qIOwjVpx5hJ0+PN1YGrYWpky/pVtVV6afoGpIXWhSs4xVddz00F4QL+qdYkxoKB7VShQyLOBzDQ1WXoF/aAQbUNfWot/at/fuMAdB/O0JryE14OGUvkpf5CZeSByWRGITggR2SWj325C6+NBr20evwIYHEXpxNFHvytVOL6mWF1ly0+csBWUtUhkJBd0U0s2hnPF67Vq8msstrJPTEPv31nMMjnea0qbArzJ7MlbiRUpeaUPH5H7IezRZxLPN3B1tcWxoLWXgNJg2Uuen/QOroZgObbDrzDsN+u5EcWRwDa2VOArixWAuN7GQVBAQxIsGl4cgXjQAT3TVGwI/EvFCBMn//uFfqMnh6M82JdO0miTbVrJvpcjc4Wdk//13pttCrgle9/jfpUGCjN2ruTLShcgXdeKTtzeCevdSdHU74gXzPOlHZFQdTKR9BPGiPoIBzZoh6pE/GyD3suW4kL0w+mzi7jgUF0bXQQ573Tz9fL9nD16MG8vmjStdDk3ydlC8N9NyH1MfAf31lJt4oZ1Ib+Lp91yLFiFj3aSlKS9Gj8b7/fvYxjO1bo0cU6fhwqMwlM3roFc3K/2dBJ+ZNF5I64Uiy69d4RSfPSS9qaZMAMoIkDOCevfGJ29+055zxgxGvkhDqoHRtUo+/N5UOxoYyuzJWIkX2htZPSfoRV0eWxeOGeXTi/rnWjBG7rrJIGxWwhkLO+jWklmZs0utTfe/ruL0w1DWhMRtSeRWV6GrTCFBvOjqRMU8miAgiBcN0BPEiwbgia56Q+BHIl4IZGldNv2+vGNZNCiaI0X8Pxw5jOfDhilef5Y1N34v3QnPM2ZL0ofsJAfWzg8qK9I0yGaU7EbZDUGnTnAaO07TIdNVf0G8qH+cr+bOxeu1a9gACUSi9Oln+3IuzPlLF/F86FB88OIimHdbdscIFGE/6zrzRhd7pTm0QbzQuMH9+uHjGa7dk8HODq779oMc0Cher1uHV3NmK7boeuAgLNz052ClK6yVmYfIDyJBKCyLFUe+HTsU3aQ3h1fG1kO2jPKV4PmWLaMoYaUyIyo3kgY55ZBjDsW4xkWY652+wpiJl24bruCMLy9pWfBTaZbhJVdM+vcuKy2mGNOoMHrp0RVOnT3RA6iETN0/25RA+7Iu6gyjcp/nbyNRbRbXL6L3FL23tBWCeNEWsmJcOREQxIsGaAriRQPwRFe9IfCjES8fImPQae0lhXiiiQkwq01JtCmTO9kzCIuIwp1efZHz5kXF65/MLLC4VDuczl2aPSnqU8MdFV0dZDnDd//sQsiECWysDLY2cDt2AqaZM8sydnoZRBAv6p/k5/+uIrBLFzYAuQi5nz4Dqf1qBhPg1HBPuKRgb67+zN/39CtfDnEfecr5tPaT4B2Vkf28pWelNDPR5FyHrsbSFvES9/49Alq1RMwL7lJFWlDZx4zG8/ETQGVGCWFbqxbLchLBEfi2VKvAfz4wsbFhr7Vadh43g9+yn9d2KQ9PmcSHI2/cwNN4Fy+LvHnhejjRfSfhXHpuvIqTD3g2wuIOZdCkhOZkvrpnbszEy+pzjzHj8H22dbntnkmDhzJfKTZ1r4iq+ZM+iFEXb131m+X1gJVJU+hST+vi43B0XHOJzVvKJTN299OO1TeNL4gXXV1NYh5NEBDEiwboCeJFA/BEV70h8KMRLwT0x6hY/LruMq4F8i9OFOToUsHVAbYWZsiRyQoh7yKx1jsA+28+Y683f+SNfrf3Jj2nxi1QYNpkmFjKk8JMQr4k6EvaFxRpOZXo7aLR88SCeNHsAHzLlU10VNm3nwmzdlh1EVfiXUCaFM+JxT+X0WySNHp/9vkPpLFB8TV7TjSuPJz9nMnaHNcn6NbeVKsblQyuLeKFpoi8fQtPf/opxa1YFi2KXHPniZLFbxB60ro1vjzgN+cu69bBphK32JZmnQyrVwADPT1kuUzCVywHOXmxa719e+SY9L0mT9PF53DvxXvWZu+AqiiRS3/EuzETL4QhYUnhnNkK3qPkKxkju2qyraYgO+bMNuayXB+6GmTDhSeYcuAum06X5Wy7rgVjVHyJVvOSubDgp1Ja27IgXrQGrRhYRgQE8aIBmIJ40QA80VVvCPyIxAuBTV+afl1/WfHUSpkDKBMdhrFXN8I29LmiuYV7fqarQJakmkbY4sUIX76MDWOeKxfcjh3XdMh02V8QL5od67OhQxDh5cUGcRw2DA49ezESsu0K7qRCcXZkbbVEoZVdGYmLkj4Jxd3y9TEiFydbOlXMiyktiik7jFG10ybxQkC82bwZodO5ZXRCkMuR49BhyBJPchkVYDpYLOFFuFFk7T8A2QYOZD9L9cDIipgsieUIqbuU8/z5sGvQ8LthS0z2UrjjXR5TF4528hD76qzfmIkX2m+ZqUfx9lM02/rpEZ7II0Mm3+Owj6g7j5f2kXA+fVYaWxy49RyD4gWcdUG0J+Az99hDLD3FNcbILYxcw7QVgnjRFrJiXDkREMSLBmgK4kUD8ERXvSHwoxIvBHhkdBx6/HUFlP6aWpC7Su8abqwc6euXL3g5dSqoJCgh6OYm+/jxyNS6jdrnGBsejkd1auNrVBQbw3n2HNg14ZavIpIiIIgXza6Id7t3I2Q81w2yLlMGeTZvYT9LBRcru2VlJT/aiictmuOLH9cx+r1Sd1zNwfVdvAbXhEd2XnKU3kLbxAvhFTxgAD6eOsmgs6lSFTmnTlXovaQ3POXYz/sjR/Bi2FCOV8UKcFn/F/tZKrDrZGeJS2O445EmQZ/tpO+CWJ4p4XHxEjJkypRkSCIJiCygsDTLgPtTGmkypcZ9jZ146b/FB0fuchH86a2Ko0N5zUXqpa5T9YvkwIpOic5iGgOuowEuBYTjl9W85KdCPgds680zvbQdQ7Zfx/6b/MGVtrVlBPGi7dMU48uBgCBeNEBREC8agCe66g2BH5l4IdC/xMTB624I7j5/h3vP3+PO83d495k/IatTKDtzKKKb0G8j4thRvBg3DnER3IqXwq5hI+ScNi2J5bSyB0vuLuTyQmFZtBjy7dypbNcfrp0gXjQ78m9tnD0uXUYGe3v4vvyAhgvPKgZf1rEsGqYiPK3uKsgljNzCEqJFsxmIMjVHubwO2NFHNzcA6q5dk366IF7o8yioRw84dOvKPo9EpI6A9L1gYmGBAje4Uw2FVGBXDlecz1cugzJeKCw8CsB1H3eaksbtZ+/QYqk3+5M2bJBVvR6MnXj5+0ogxu+9zbYtV2bH0B03sO8GL0GWswxN1bPRpL3/qwjUn3+GX+fZbHF8mG7ssFsvO48b8dpJW3tVlk0bLzksBPGiyRUi+uoKAUG8KIF0TEwsXrwIh6NjZlhZJSrdC+JFCfBEE4ND4EcnXpI7EFLej42LS1NglMQsnw0dishbiV/WrUqURJ516xQijcocODkYBbRoAXz9yprn/XsrrEppr/ZZmTUZchtBvGh+Ok/btkHkvXtsIOdZs2HXtCn7edqhe0zbiIKsdOkLubW5erboKa3y7bZteDmFa1vcyVUYI8v3YD/L7TyiOUryjqAL4kXeFf8Yoz1u2ADRgYFss3n+3grr+M/eNsvP43pQvMDur+XhqaHlbtjCBQhfuZLNQ6VfTmO4lbo0Dt1+gYFbr7E/EfG/uos8JU7qnqSxEy9Pwj+h9txTbPukw0J6LJpGo4Vn8fDlBzbMhm4VUMPDUdMhdd7//edolPqDZ1bZW5nhxu8NdLKG8tOOIfwjz+olzR3S3tFWCOJFW8iKceVEQBAvaaD555/bMGYMr0unaNeuBlasGAIHBzsI4kXOS1GMpSsEBPGiOdIklkiiiQlBGSt51q9HhozKlUxI6/4z1quPXAsXar6odDyCIF40P1zpNWvftBlyzprFBo34EoM6c0/jVcQX9nu/mu4Y2aCQ5hNKRgge0B8fT/GboeXFW2K/ezV2U0TWomZkq5ROQxAvhnmwVHZH5XcUUkFzqcDu4DoFMLiOZgK75GZErkYUuZcug61nYtZXAjLLzzzCbC/uRPVr5XyY2KyoXkEzduKFwKsw/RjInZDiwG/VUSSnvdqYhryPRJU/uR2yuakJbk9qCAvTDGqPp8+OBcYfQkwcf9jz8I/GbD/aDMouLvz7YTYFfcz7T9NuKbUgXrR5mmJsuRAQxEsaSK5efQju7jlRqVJhPHr0AnXrjsKoUe0xfHg7QbzIdRWKcXSKgCBe5IH79epVeDV/vmIwSiXP89dfaVpBR5w5g2f9+vJ+GTLAzesoE9YVkTICgnjR/Or4fP0GAjv+zC+7jBnhcfkKQN7qAKQaBkSEUNaLHKKUNPbX6Gj4VayAr5GRbK4edUbhuZ0T+tZ0xyiZCR7NUZJ3BEG8yIunXKNJNY8y1vZEriVc4FwqsFu7kBPWdCmv9pTMurpShUR9l6s+yGDLraulMWbPLWy/GsT+NKFpEXSrorlou9qLBpAeiJeRu27in2vBDIaxjQujZzU3tSHZfPkpft93h/X3LOiItb9WUHssfXesOvMEXrzjn8PaFlOnOR6EfEDjRbyUNW9WG5wa/j3xKCcmgniRE00xlrYQEMSLisj27DkXAQEhOHFitiBeVMRONDcMBATxIt85hC1ZgvBlSxUDWuTNy4RLTbN+rxHDGsXGIqBpE0Q9fcp+zdKpE5zGctFTESkjIIgXGa6Or18ZAZKgUeSycRNsyiWWNZDwIgkwUsgptPvR+zyCe/dk4z63yYoe9cewn8+Nqo1cma1l2JjhDiGIF8M8G/r8DWjE3YWIDPG46sN+lt4oZrW1wNVx9dTegJRgtypWDHl3JK/h1WntJVx4xN935KREjkr6jPRAvOy98QzDdvBMI03Jkh4br+LUg1A2FrmvkQubsUbLZd64FfyOLf+fflVR2kW7tuVH771E383/sfmqe2TDX90qahU6QbxoFV4xuEwICOJFBSCjo2Pg5tYZv/xSGzNn9lIQLzlyOKswimiavhDgaZvGFM+eBYOuWVMjTZc1NKzfLluKd2sSyxEtihSBw6hRsCxR4rulRvyzG+HTprK/m9hYI/fBQ9+5XBja/gxhPZ8+fcanTxHIls34ausNAb+ENYSNH4+Phw6xX+27dkWWQYMUywsI/4wmSy8qfp/RsghalMih8fJfz56DD1v/ZuPsda+GlcVbooZHVqz4uaTGYxv6AK9ehcLW1g42NumbYDL0c0hufUH16iEunBMezrt2wdyNZ0WUnn6aCbBTnBlWDY4ZE3X9VNnnm/nz8H4Tt63+9r0mHaf+4osIfvOZ/enffpXg7vh9Vowq82raNjY2Fi9fhsDZ2XizMKnMqMY8LlhMelU+Y2qqBQtdB5VmnVVcDycGV0XOTPqz+lZrE5JO/bfdxGlffs0v7VACngWyxb+qnZKjjZeD8KeXL5vjp7K5MLGJvCWs3+JhY6M9/RhNsRf9BQIJCPywxMvTpy+xdSuvOU8uBg1qiW/fxL17z8e2bafw4MF6ODtnVRAvGQTN+gO/o7TzD5Y2Af3yJRKWlvTlwfjWrk1cNBk7ev16xGzfnmQI09q1Yd6jJ0yyOiDu7l3E3X+A6F07gbdcvNGidy+YamBHrcl6ja1vXFws6IbA3Fy9mxRZgJ4AACAASURBVCBj26+21ht75gyiZsxgw5u4usJqeaJOEf1t1aUQ/H0jjL1uZZYB69rnh7O9ZphH9uyBr8HcEWR85d7wyV4AMxvnRcU8dtrapsGMGx0dBVNTU2TIIK9YscFs0IgXEjVtGmLPnWM7sJwwHhmqVmM/D9j7GHdDPrGfZzTKh8p5ldPt+haKyIG/4as/t0+3nDEDGUqXThatWit4GQuFV8+isDTT77/LX79+RVTUF1haGvdN7K/b/fD0DdetWtrSDUVzqE5oXQqMwOhDT9gYbg6WWNdeM80ffb9dZp8JxsH7/PvHiJq50LRwlvglaecB4kLvF9hz5zWbo1/lHPipZAqZwDIBky9fPplGEsMIBLSHwA9LvPj5PcPy5ftTRHbKlK7ImDHxKdXkyZswadJGXLmyBOXLF2T9hLiu9i5MMbL2EBClRtrB9vXatQhbvAhfo7ioX2pBmi5ux46n1Uy8Ho+AKDWS51KI+/CBlRslhPvpMzBzclL8HhkdhwYLTiMo/gl8UedM+HcgvyFVJ6KDgvC4AXcViTQ1R6tmM5A7izXTF/gRQpQaGe4pv9u5AyETJ7IF2lavgdzx7kOT/r2LjRf5zfag2h4YUreAypuIe/cOfpUrKfoV8LkGE+vvs56CXn9CzTn8AaCjnSUuj6mr8lxyd0gPpUaEycT9d7HpEj/HoXUL4LfaqpMmpO1CGi8U2hAdl/vs0hpv7rGHWHrKnzXThS1297+u4vRDXqa1vGNZNCiqeQZlansUz8DTugLE64aAwA9LvCgLflxcHEaNWo1Vqw7i9Om5KFMm8cNbEC/KoijaGRICgnjR3mnEhL5C2KIFCseMlGZynjsXdo0aa28h6WxkQbzId6CBnTvjsw+vu88xZQoytW2XZHCy0yVb3YToU8Md/2uoXor4m82bETp9GhvqSvbCmFi5BxuLxvwRQhAvhnvKsW/fwr9KZcUCPS5eYmWfu68HY8TOm+zvtQo6Yd2vqgvsRhw/hmfxZXzW5cojz8aNyQJx4VEYOq29zF4rkycLdvWtonfA0gvxcuz+S/TZxD/nKrpmxdZeiUSYsiBLxWjpbOiMjDmIiCJCiqJzpbyY3LyYVrdTf8EZ+IdGsDk0dZdSZqGCeFEGJdFG3wgI4iWNE+jRYw7WrfPC4cPTUaiQi6J17tyOCAzkTHi+fOorpuv7AhDz/3gICOJF+2ceFfAEobNm4uOZ04CpKSwLFoJ1qVKwKV0aVqVKCRcjFY9AEC8qApZKc6kbl12dOnBevOS71otO+mHBcV6bT7Gtd2VUyOeg8iKCe/XEx/OcxFlWoiVulK2Ho0NrwdLMOO1YVQVAEC+qIqbb9kHduuLTZU585Jg6DZlat8bDkA9oFO/Eoq7A7ss//sDbeF2jbAMGIuuAAclubOuVQIzbe5u91qJULsxvX0q3ACQzW3ohXj5FxaLYpCNsh6YZTHBnUkOVPnekQst2Vma4MaFBggmc3s9I3QUcvPUCv227xro3LJYDy34pq+5QSvXLP+4g4t2rceP3BrC3MlOqn7qNBPGiLnKiny4REMRLGmi7u3fG48ch37Xy9d0AU1NePyqIF11esmIuTREQxIumCCrfP+rxY5g7O8PEyrjr5ZXfsXZaCuJFPlyj/PwQ0KI5G1Dq6CKdgb4sU9bLzWCuB+CY0RJHh9ZEJmtzpRfy9fNn+JYto2j/a/1xWDi4MSq6qk7gKD2pgTUUxIuBHcg3y3m7fTteTp7E/mpTrTpcVq1iN4pFJx5WCKpeGF0HOexV+/wOaNYUUY8esXHzbN4M6zLJ3+DOPPIAK8/ydlQKQyUx+o70QrwQjlIXnw3dKqCGh/Li7MtO+2PO0YfsOJqXzIUFP+mfFNP02rgS8BodVnMB9bJ5s2BnH+1lWL18H4nKf55gc9lbm+PGBF5yqs0QxIs20RVjy4WAIF40QFKUGmkAnuiqNwQE8aI36MXEaiIgiBc1gUuh26NaNRETymvvXdath02l79PwyWml0cIz+BgVy9qpWnYRcfIUng3sz/oGZnTEkZGLMLed8d+8qHISgnhRBS3dt01SbpQhAzwuX0EGW1u0XXEB1wLfsAWpavEcGxYG/xrVWV8Tc3OQvgvMkn/S/9vWazh4+wVrO6ddSbQunVv3IHwzY3oiXmZ7PcDyM5zYUrVkst3KC/B5yq+BhR1Ko1kJ43cvfRL+CbXnck2hvFltcGq4p9aut/+evkb7lZzkKZ4rE/YNUF8rTNlFCuJFWaREO30iIIgXDdAXxIsG4ImuekNAEC96g15MrCYCgnhRE7gUuoVMmoh3O3awV7N07QanUaOSbbn/5nMM2X5d8VqdQtmxuks5pRZzos9Q5D7HU/0PFayFrlsWIYuN8hkzSk1i4I0E8WLgBwQgqNuv+HT5CltoQrnRlAN3seECF2Yd6OnBhEiVjQ8HD+L5yBGsuW3Vqsi9ek2KXZsv8cad5+/Y69t7V0Z5Ncr5lF2Xsu3SE/Ei1dDJbm+Fi6PrKAXDu8/RKP3HUUVbytagrA1jj4gvMSgx2YtfmxamuD2poda2tOf6MwzfeYON37h4Tiz5OTH7UVuTCuJFW8iKceVEQBAvGqApiBcNwBNd9YaAIF70Br2YWE0EBPGiJnApdJNmo1i4ucH1wMEUJyChURIcTQhlMl/IrSWorieyRr5n3QLHzES9zry86UcKQbwY/mm/3bYVL6dM4Tej1asj98pVkN401irgiHVdE53A0tpRyIQJePfPLtbMcdgwOPTslWIXurmnm3wKIgWIHNB3pCfihbAs/Hti2diyjmXRUAlnHSnhTGQYkWLpJaR43JvcCFbm2tHbWnjCDwtPcJ2wvjXdMaqBegLtquAuiBdV0BJt9YWAIF40QF4QLxqAJ7rqDQFBvOgNejGxmggI4kVN4FLo9q3+itvxE0yLKKUYvfsWdvwXpHi5qns2bOpRMdnmO32CsHHrScw59Cd7PcrcEsVv8iefP1oI4sXwTzz29Wv4V6uqWKjHpct4HJkB5MhCQVlaPuOV16d4WKSwYqx8O3fCsmjyzjEfImNQcgrPPqB4PL2JQYCV3oiXWV4PsCK+3Mg1my1ODKuVJs6U5UfkC0V6c2GrOfskgt58Zns7M8ITLg42aeKhTgPKdiECk2J6q+LoUD6POsOo1EcQLyrBJRrrCQFBvGgAvCBeNABPdNUbAoJ40Rv0YmI1ERDEi5rApdItuHdPfPTmjkPZJ0xA5p9/SXWSecd8seSUn6JNubwO8CzkhFIumVHaJQtITHHsnlu4+DgcbXxPoec9nkVjWq0G8q9aKf8GjGBEQbwYwSFRudGvXfDp6lW22IRyo6ITj+BzNNc3UlZg98OJE3j+20DWx8zJEe6nziAlK5x7L96j6eJzrG1+x4xMvNoQIr0RL5RRVG3mCYVW1ey2JdGmTMpaOnTmLZZ6K2yQjw6pifxOGQ3haGRZA4mmXw/ioun/9KuK0i6ZZRn320GkGjmbe1REFfdsWplHOqggXrQOsZhABgQE8aIBiIJ40QA80VVvCAjiRW/Qi4nVREAQL2oCl0q3N5s3I3T6NNbCtlYt5F62PM1Jtl8Nwpg9t9JsN/K/v1E7mNuW5pg0GZnat0+zT3psIIgX4zhVsn4mC2j2XqheA7lXrmTCoCQQSrGycznUK5w9zc08GzQIEcePsXZZ+/RBtsFDUuzjdTcE/bb4sNeVKd9Lc3KZGqQ34oVgWXrKH3OPcYeiXJmtcW5U7RTR+uPAPay/EMBeJ8KFiJf0FH03++DoPe7UuqJTWdQvkkMr2yNHIyLjKc6MrA2XLNZamUc6qCBetA6xmEAGBATxogGIgnjRADzRVW8ICOJFb9CLidVEQBAvagKXSrfoZ8/wuF5d1oLszgtcSxTRTW22Uw9D0X+Lj8Ju99u2uWI+YM2ByYo/u58+AzMnJ/k3YAQjCuLFCA4JQGx4OPyrJ7quULnRtLPBihvwAZ75MbxewVQ3823JkpvXUZi7uKTYZ9XZR/jzyAP2epfK+TCpWVGDACs9Ei/kzFZ91gm8/cT1dCY3L4rOlfJ9h/fN4LdotYxnAVIYiuCxnBfG+L238feVQDbkHy2KoWPFvHIOz8b6EhPHtHUSQldldIJ4kf0oxYBaQEAQLxqAKogXDcATXfWGgCBe9Aa9mFhNBATxoiZwaXQLaNIIUQHcvcVl9RrYVE3UukitK7ljkNXqf09e4+qT16AbFvqyTU/uJ76+gMjVK1j3hOwB7aze8EcVxIvhn1HCCgO7dMHn/3i5Uc5p03HStQKG7eDaRDU8HLGhW+oCu282/oXQP7mukXXZcsizaVOqmx+39za2xt8Aj2tcBD2quRoEWOmReCFg150PwNSD9xjGmazNcWlMXViaJQrLxsR9Rf35p0GWyxTtyrpgZpsSBnEmci5i/nFfLD7JS0YH1fbAkLrKO3Ypuw7/0AiFRlLuLNY4OzLlDCNlx1SmnSBelEFJtNE3AoJ40eAEBPGiAXiiq94QEMSL3qAXE6uJgCBe1AQujW6hs2bhzYb1rBWRLkS+qBsPX35Awex2eFSrJmJCQ9kwVL5EZUw/agjixXhO/u3fW/By6lS2YAv3/IhdtxX153OBXbpRvz4hdYHdgBbNEeXHb2iJuLFv1SrVzXdZdxne/mGsjbKlTLpAM70SL4SdtPxlZINC6FfTXQHpopN+WHCcu/BktbXA8WG12Lmnt9hy+Skm7LvDtvVLhTyY2rK47Fs8/TAU3f/iJGZlt6zY0rOS7HMkN6AgXnQCs5hEQwQE8aIBgIJ40QA80VVvCAjiRW/Qi4nVREAQL2oCl0a3qKdPEdCooaJVng0bYF0hebciZVbw8dRJBA8YwJpSeRGVGf3IIYgX4zn9mFev8KhmjcT3wvr1KHPwjaKkzntUHThnTt7u+cu9u3jSti3ra2JjA4+z59j/U4vac08psisOD67BSEtDiPRMvJAzGzm0UdhYmKJekRyoXyQ7nDNbJykxWvBTaTQvmbLLmyGck7prIH0X0nmhIH0X0nmROzZefIJJ/95lw5KbEbka6SIE8aILlMUcmiIgiBcNEBTEiwbgia56Q0AQL3qDXkysJgKCeFETOCW6hUyaiHc7drCWFh4ecN23X4leyTcJ7tMbH89xp5ZsAwcia39OwvyoIYgX4zr5kAkT8O6fXWzRViVKYlTtwayUjmJ5p7JokIIQKWXKUMYMBWW6UMZLWuE2lrt+Udyd3BDW5qZpddHJ6+mZeCEA68w7jYCwjyliWdU9Gzb1UJ981skhaTDJ9cA3aLPiAhuBHI3I2UjumHboHtZ6c4HibzOL5J5LOp4gXrSJrhhbLgQE8aIBkoJ40QA80VVvCAjiRW/Qi4nVREAQL2oCp0S32LAwPKpbB1+jolhr59lzYNekiRI9kzaJfv4cj+vW4X80MWHZLmaOjiqPk546COLFuE6TXcMkOP31K1v4mb6T8WeILfu5f638GFE/GYHd6Gj4VauKuA8fWDuXTZthUzb1LIJnbz+j+qyTrD2VtVwdV89ggErvxMvx+y+Zdg/pVH0bpPlyYphniplNBnNIGiwk6PUn1Jxzil+rDjY4M8JTg9GS79p7038gnCkW/1wGTYrnlH2O5AYUxItOYBaTaIiAIF40AFAQLxqAJ7rqDQFBvOgNejGxmggI4kVN4JTsFrZgPsJXrWKtzXPlgtuhw4C5avoG0jHs6taF86LFSs6efpsJ4sX4zvbFqFF4f+BftvBPRUqiTYHO7OfqHtnwV7fvMyE+HPHC82HcNpq9d44dT3PTFx6Fo9PaS6xdKZfM2K2FrIM0F5FCg/ROvNC2Y+O+wifwDU49CMXJB6HwC+Wk2eiGhdC7RqLui7oYGnK/6NivKDjhEFuiWQYT+E5tLPtyGy48C9+XHNM9/auiZO7Mss+R3ICCeNEJzGISDREQxIsGAAriRQPwRFe9ISCIF71BLyZWEwFBvKgJnJLd4iIi8MizFuI+8hR8pzFjkaUzv+FUKmJi4F+jOmLfvmXNc69aA9tq8qewK7UWA2okiBcDOgwll/Kt7tHQGr/hgUNe2Fub40YyArvP+vZBxNmzbPRsg4cga58+ac4k1RohLRHSFDGU+BGIl2+xDnkfCRKEJT2SHyGKTzoCstimuDWxATJamsm6bbKSJpc7Cp/x9ZHFRjUSX93FCOJFXeREP10iIIgXDdAWxIsG4ImuekNAEC96g15MrCYCgnhREzgVupG7EbkcUZhmyQL3Y8fTFAhNGD7i2FE8GzyY/Wru4gI3r6MqzJx+mwrixTjP9vnQofjgdYQt/qaTB0ZX4WTKmZG14ZLFWrGpz5cvIbBbN8XvrLzOySnNTc85+hDLTvuzdgNq5cfw5EqY0hxFOw1+ROJFO0ga7qi15pxC4Gtum31iWC24ZuPldHJEWEQUKkw/xoai0q37UxrJMaxSYwjiRSmYRCM9IyCIFw0OQBAvGoAnuuoNAUG86A16MbGaCAjiRU3gVOz2qLYnYkJCWC+n0aORpcuvSo0Q1KMHPl3kgo2Ow0fAoUcPpfql90aCeDHOE47yfYiAli0Vix9W4zfcd8iLJT+XQeN4vYov/v4I/LmDIkvM1tMTuZcuU2rDg7Zdx4Fbz1nbP9uUQPuyLkr100UjQbzoAmX9ztFu5QX4PH3DFrGtV2VUcHWQbUHXAt+i7YrzbLzCOe1w8LdEpzDZJklhIEG8aBthMb4cCAjiRQMUBfGiAXiiq94QEMSL3qAXE6uJgCBe1AROxW7v9+7Fi7FjWC8TS0u4HjwEc+fUbVXfbtuKl1OmKGbKf+EiTDPrpqZfxe3pvLkgXnQOuWwTBg/oj4+nuAipj1MBjK/SG31rumNUg0Ig62kiXUiMl4K0XfJu3/H/9u4DuopqbeP4S+8QelWqiALSDB2pN3T1ShEExAICIl1FmlIEwStFEJAiIIrIFRVRkGYBLlVBAUF6MfTQQwkEwrdmIvmCBHJmz8zZc3L+Z627Fpp597v3bx+98jCzR1Jk8+03sP+etEa2HI59LG9Oh8pSpUh2x+ZtdyCCF7uC3q9/ec4mWbI9NmCPHyY6MfOFW45Iz3m/m0PVL5lHJrdx/nXVd5snwYsTO8gYbgsQvNgQJnixgUepNgGCF230NFYUIHhRhFMoO9i8uVzdsd2szFCrlhSYNPmuo1xa+bMc7tIl7uchrVpJ7jffUuiaNEsIXgJ3X69u/0MOtmgRt4BzqTPIb5UaSodh3eRw585ydeef5s+SZ84sBefOk9SFC/m82EeHL5czl2LfIramb13JmyWtz7VuX0jw4raw/vEHf7tdZq87aE6kQ40i0r/hQ45NauJPe2X08l2ujJ3YJAleEhPi514QIHixsQsELzbwKNUmQPCijZ7GigIEL4pwCmX//A1n/gkTJGPdeneMdHX7djnU5pm411CnLVdOCs75TKFj0i0heAnsvQ3v0EEur419bOJuH+M7b3z3ff0Yh44ah48an+TJRPYOt/7qdl97qVxH8KKiFlg101fvlxHfxwaHbSoVlGFPlHJsAa/P3yLzNx82xxvyeClpV7mgY2MnNhDBS2JC/NwLAgQvNnaB4MUGHqXaBAhetNHTWFGA4EURTrHsxJDBcm7ePLM6RY4cUnTZckmW9v//VP76iRNysHkzuXH6tHmN8ahFoflfSvIsWRQ7Js0ygpfA3lfjLV/Go3S7J06VrFGxr8eN/8k/frxkrPcvS4s8cOqSPD9ro3m4adGcGWR5r1qW6t2+mODFbWH943//xzHp+tlmcyK1HswlM9qHOjap1tPWy4YDsf+/MOv5ivLYAzkdGzuxgQheEhPi514QIHixsQsELzbwKNUmQPCijZ7GigIEL4pwimUxFy7I/oYN5MbZ2AMYsz73vOR6/XXz1xeXLpWICePl2v795l8bYUvBz+dJ6oL++5NNxWX5vYzgxe/krjRsM329ZP1hkbTY/YPkuRL7z4SVw6fjT8q4G8C4K8D4NCiVRyY9478zMHzBIXjxRSmwrzHOFzLOGTI+xXJllGU9azq2oGqjfpBj56PM8Vb0riVFHHxjUmKTJHhJTIife0GA4MXGLhC82MCjVJsAwYs2ehorChC8KMLZKLvwzQI51i/2oF3jk6NHTzn/9VcS/ddft41q9VELG1MKuFKCl4DbsgQnbDyWYTyeYXyGZjoqDbPekOydOystLv75Gn3+9aB0rV1MaRy3ighe3JL1zrinL12T0OHOv/L5RsxNeWDg4riF7nm7kaQwnqfz04fgxU/QtLElQPBig4/gxQYepdoECF600dNYUYDgRRHOZtmhNm0k6rfYW9IT+uR77z3J1MhbZ1TYXLKj5QQvjnJqG8x49bPxCmjjU7Vodvn0xcrKc4n/Kt+Png2V2iVyKY/lRiHBixuq3hvTOGfIOG/I+GwaGCZZ06eyPUnjMbq6Y342xzEOjDYOjvbnh+DFn9r0UhUgeFGVExGCFxt4lGoTIHjRRk9jRQGCF0U4m2VX9+6Vg483vWOULM2aS9b27SVNMW/9ab3N5TpeTvDiOKmWAQ+evix1Rse+WjpT2pSy5c36yvN4+K3vJSo69je8G/rVk5yZ0iiP5UYhwYsbqt4b819jf5Z9EZfMiS3sWl1K5bd/PtfK3RHm+UXGp2LhbPJ5xyp+XTjBi1+5aaYoQPCiCGeUEbzYwKNUmwDBizZ6GisKELwowjlQFvGfd+XMzJmSKl8+CWndWkJatDRfocsncQGCl8SNAuWKMkOXSmTUdXO6P/WpLQWzp7c89b0RFyVs7EqzLkfG1LKxv7WDeS03VCggeFFAC8ASIyAxghLjY5wzZJw3ZPfz6YZD8uY3f5jDNCtfQP7TvIzdIS3VE7xY4uJiTQIELzbgCV5s4FGqTYDgRRs9jRUFCF4U4RwouxkVJRd//kkyNWjowGjBNQTBS9LZ77YfrZe1+2Lf1jK+VTlp8kg+y4tbuOWI9Jz3u1lX+8Gc8lH7ipbHcLuA4MVtYW+MP2DBNpm7Mfa8rgGNHpYXqxe2PbH4ZyH1qldcutV5wPaYVgYgeLGixbW6BAhebMgTvNjAo1SbAMGLNnoaKwoQvCjCUaZVgOBFK7+jzUcu2SlTV+0zx+xYo4j0a/iQ5fFHLP5Tpv8v9pDerrWKSZ+wBy2P4XYBwYvbwt4Yf9LPe+W9ZbvMyTxXtZC82aSk7Ym9PGeTLNl+3BxnbMuy8kTZ/LbHtDIAwYsVLa7VJUDwYkOe4MUGHqXaBAhetNHTWFGA4EURjjKtAgQvWvkdbb5o2zHpNjf2oOkqRbLLnA7WD9g1Xku9bn/sXTMTn6kgDR14vMPRRYoIwYvTot4cb+GWo9JzXuyB0WEP55YP2z5qe6JNJqyWHccumOPM71RVyhfMantMKwMQvFjR4lpdAgQvNuQJXmzgUapNgOBFGz2NFQUIXhThKNMqQPCild/R5uFnLkvN92IP2M2QOoVsG9zA8viPDFkqF6/GnhOz8tXacl826+fEWG5qsYDgxSJYgF6++a+z0vzDtebsH86bWb7rVsP2SkoNXiKXr90wx9FxcDTBi+0tZAA/CBC82EAmeLGBR6k2AYIXbfQ0VhQgeFGEo0yrAMGLVn7Hm8c/YPeH3rWkcI4MPvf468xlqfV3cJM5bUr53cabkXxuqnAhwYsCWgCWHL8QJVVH/mDOPHO6VPL7oDBbq4i4eFUqjVhhjqEaTNqagIgQvNgVpN4fAgQvNpQJXmzgUapNgOBFGz2NFQUIXhThKNMqQPCild/x5u1mbJA1e0+Z477fqpw0tXDA7uJtx+QVm48qOb6gBAYkePGHsv4eN2+KFB+0WG7E3DQns2NIQ0mbKrnyxDYcOCOtp60z641XUxuvqPb3h+DF3+L0UxEgeFFR+7uG4MUGHqXaBAhetNHTWFGA4EURjjKtAgQvWvkdb24cRmocSmp8XqtfQrrULOpzj9HLdsnEv2s71Cgi/RUO5/W5mY0LCV5s4AVYqXEHlnEnlvFZ0uMxKZ47k/IK5v0SLv2+3mrWP14mv4x7uqzyWKqFBC+qctT5U4DgxYY2wYsNPEq1CRC8aKOnsaIAwYsiHGVaBQhetPI73ty428W468X4FMmRQVb0ruVzj+dmbpRVeyLM68e0LCtP+vmNL75OlODFV6nAvy7+K9KnPxsqdUrkUl5U/Dd29axXXLr7+VXSxsQJXpS3j0I/ChC82MAmeLGBR6k2AYIXbfQ0VhQgeFGEo0yrAMGLVn7HmxuPZZQeskSiomPMsdf0rSt5s6T1qU/882GW9qgpD+TO6FOdvy8iePG3uL5+fb/cKl9sCjcnMOTxUtKuckHlyXSY/Yv8uPOkWT++VTlpYuExPOWm/ygkeHFKknHcFCB4saFL8GIDj1JtAgQv2uhprChA8KIIR5lWAYIXrfyuNO/06a+yfMcJS79ZPXY+SqqNij3INGXyZLJzWCNJnsyV6dkelODFNmHADDD+xz0ybsVuc74daxSRfjYef6sz+ic5eDr2saVvX6khJfNl9rsDwYvfyWmoIEDwooB2q4TgxQYepdoECF600dNYUYDgRRGOMq0CBC9a+V1p/tnGv2Tggm3m2MajGcYjGol9jKDGCGyMT7n7QuTLLtUSK9H2c4IXbfR+b/zl5sPy2vwtZt9GpfPKB63LK83BuBPswUGL5e9zeuXPoQ0lTUr1g3qVJsGjRqps1PlZgODFBjjBiw08SrUJELxoo6exogDBiyIcZVoFCF608rvSPP5reI23wPw2qH6iv8k07iow7i4wPm0qFZRhT5RyZW5ODErw4oRiYIyxfv8ZeWZ67JuIyt4XIl8pBoJ7Iy5K2NiV5jh5MqeVtW/U1QLAHS9a2GlqUYDgxSJY/MsJXmzgUapNgOBFGz2NFQUIXhThKNMqQPCild+15vXfXyl7Tlw0x5/9QiWpXizHPXt1/OQX+eHP2PMvRvy7tLQKvd+1udkdmODFrmDg1IefvSI1//Oj1tCyWAAAIABJREFUOeGcGdPIhv71lCa/bMcJ6fz3HV1Vi2aXT1+srDSO3SKCF7uC1PtDgODFhjLBiw08SrUJELxoo6exogDBiyIcZVoFCF608rvW/J3v/5Rpq/eb479YvbAMaPTwPXtVGfmDnLgQZV7zTdfqUjp/FtfmZndgghe7goFTfz3mphQfuDhuwrvfbmSeQWT1M2XVPhm1ZKdZ1rZSQRmq6Y4ugherO8f1OgQIXmyoE7zYwKNUmwDBizZ6GisKELwowlGmVYDgRSu/a83X7jstxqt4jU+xnBllWa+ad+11Ieq6lB261Px5smQiO4c2klQprP/m1rXF/GNgghd/SXujT/V3f5Cj52JDQeP16MZr0q1+4r8daVCTh+X5qoWtDuHI9QQvjjAyiMsCBC82gAlebOBRqk2A4EUbPY0VBQheFOEo0ypA8KKV37XmVl4r/fOuCHnh443mXB7Km0kWdXvMtXk5MTDBixOKgTPG01PXyS8Hz5gT/vj5SlLjgXs/NpfQylpMWSubDp01fzSjfUWp9WBOLQAEL1rYaWpRgODFIlj8ywlebOBRqk2A4EUbPY0VBQheFOEo0ypA8KKV39XmXeZskqXbj5s93n6ytDxTMeFzW8au2C0T/j5Yt3n5AvJu8zKuzsvu4AQvdgUDq77PF7/L178dMSf9zr8fkadD77O8gEeHL5czl66ZdateqyMFsqazPIYTBQQvTigyhtsCBC82hAlebOBRqk2A4EUbPY0VBQheFOEo0ypA8KKV39Xm834Jl35fbzV71Hsot0xt9+gd/aKiY6TaqBVy9nK0rd/YurqQfwxO8OJPbf29Ri/fJRN/2mtOpGvtYtLnXw9amtT5K9FSbtiyuJr9IxpbqnfyYoIXJzUZyy0BghcbsgQvNvAo1SZA8KKNnsaKAgQvinCUaRUgeNHK72rz05euSejw5WYP47XS295qICn+cTDpjDUH5O1FO8xrsqZPJWv61jOv9fKH4MXLu+P83OIHiE+UzS9jW5a11GTzobPSfMpas6Z47kyypIe+R+kIXixtHRdrEiB4sQFP8GIDj1JtAgQv2uhprChA8KIIR5lWAYIXrfyuN280fpXsPB5p9vnkhUpSLd5rpa/diJEa7/4oEZFXzZ/3bVBCOj1W1PU52W1A8GJXMLDqV+85Je1nbjAnHVoom8x7qYqlBczffFhen7/FrGlQKo9MeqaCpXonLyZ4cVKTsdwSIHixINuv30cycuTncvbs1xISklEIXizgcalnBAhePLMVTMRHAYIXH6G4zFMCBC+e2g7HJ/Pu0p3y4cp95rgdahSR/g0fiuvx2ca/ZOCCbeZfZ0mXSv7Xt65kSJ3C8Tk4PSDBi9Oi3h7vwKlLUnfMz+Yk84ekk9Wv17E04fj/DLxcq5i8GmbtUSVLzRK5mODFSU3GckuA4MVH2Vmzlsrzz79nXk3w4iMal3lSgODFk9vCpO4hQPDC1yMQBQheAnHXfJ/zr4fOSMsp6+IKRvy7tLQKjT1k17jb5ci5K+ave9UrLt3qPOD7wBqvJHjRiK+pdZH+i+I6Wz2jpfOnm2TZjthDpt9rUUaeKldA0ypECF600dPYggDBiw9YK1dulaZNB8q0ab2lVavhBC8+mHGJdwUIXry7N8wsYQGCF74ZgShA8BKIu2Ztzm2mr5d1+0/HFQ15vKRkSJNSXv0i9vGLdKlSyLp+9SRz2pTWBtZ0NcGLJniNbSu/s0JO/v1InNW3EoWNWyl7T140Z//Vy9WkbIEQbSsheNFGT2MLAgQviWDt2XNEKlToIvPnvyn58+eQUqU6ErxY+IJxqfcECF68tyfM6N4CBC98QwJRgOAlEHfN2pyvRN+QZ2dskE2HziZYqPKmGGszcPZqghdnPQNhtKcmr5Hfw8+ZU/2sQxWpXCSbT9O+EXNTHhy0WGJuxl6+9a36kjGNvoCR4MWnbeMizQJBG7wcOnRC5s796a783bs/KVFR0RIa+rL07t1cunZ9QrZvP5hg8BISklXzNtIeAd8FTp8+JdmyZZdkyZL5XsSVCGgUuHbtmkRFXZHMmbNonAWtEbAmcOHCeUmbNp2kTp3aWiFXB5TAlegY6fT5H/LHsdg/+b/1SZMymSx9OTRg7nYx5h0TEyPnzp01/xuBT3AIvLFwlyzbGXvX1rDGxaVxyRw+LfzI+ShpOmWzeW1IulTyY7dQn+rcuihbNn4v5pYt4zonELTBi3Eny+TJC+8qOXToc/L99xulZcu3pVevp8zfpEZEnJdPPlkhXbo0lY4dG0mWLLGvBcyQIaNzO8JICLgscP78OcmUKbMk548HXJZmeKcEjOAlOvoa/651CpRx/CJw8WKkpE6dhuDFL9p6m1y6dkNemb9Ldpy4FDeRNhVyS/fHYs98CZSPEbxERl6QLFn0PTISKFZJZZ4frA6XT36NPaelc7X88nzFfD4tbe2B89JrwW7z2kfyZZRpT///4dI+DeDwRblz53J4RIZDwHmBoA1efKHcseOQLFiwJu7S48fPyoQJC2TgwDbSunVtSZv2hvmzQoWK+DIc1yDgCQEeNfLENjAJCwI8amQBi0s9I8CjRp7ZCr9M5ELUdWk5Za3sPhEpqVIkk3Vv1JNsGQLrbiceNfLLV8VTTT5Zf0jeWviHOaeWFe6Tkc0e8Wl+H/3vgAxfvMO8tkWF+2SUj3U+Da5wEX+WqIBGid8FCF4skN/tUSOCFwuIXKpdgOBF+xYwAYsCBC8WwbjcEwIEL57YBr9O4tzlaGk9bZ1UKpJdBjct6dfeTjQjeHFCMbDG+Hl3hLwwa6OkTZXcfCvR20+W9mkBxuvSjdemG583GpSQlx4r6lOdWxcRvLgly7hOChC8WNAkeLGAxaWeFSB48ezWMLG7CBC88NUIRAGCl0DcNftzNsIX49DdvFnS2h/MzyMQvPgZ3APtjDcaGW82Mj4ZUqeQbYMb+DSr1tPWy4YDsWfDTG33qNR7KLdPdW5dRPDilizjOilA8GJDc//+/WY1d7zYQKTU7wIEL34np6FNAYIXm4CUaxEgeNHCTlMbAgQvNvACuLTaqB/k2PkocwXfd39MHsyTKdHVVHpnhUT8/RrqZb1qSrGces+7JHhJdMu4wAMCBC82NoHgxQYepdoECF600dNYUYDgRRGOMq0CBC9a+WmuIEDwooCWBEq6zd0si7YdM1cy4t+lpVXovQ+Fvnj1ujwyZKl5ffJkIruGNZIUxi80fgheNOLT2mcBghefqe68kODFBh6l2gQIXrTR01hRgOBFEY4yrQIEL1r5aa4gQPCigJYESj5ed1CGfLvdXEnz8gXk3eZl7rmq/acuyXMzN8jhs1ekUPb08mOf2toVCF60bwET8EGA4MUHpLtdQvBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQEsCJduOnJcnJv7PXEnRnBlkea9a91zVjDUH5O1FsW80alAyj0xqU0G7AsGL9i1gAj4IELz4gETwYgOJUs8JELx4bkuYUCICBC98RQJRgOAlEHctuOdM8BKc+3895qaUHrxErl6PMQG2vlVfMqZJeVeM52dtlJW7I8yfD32ilLStVFA7HMGL9i1gAj4IELz4gETwYgOJUs8JELx4bkuYEMEL34EkKEDwkgQ3NYkvieAliW/wPZb39NR18svBM+YV058NlTolciV4tRHSlHpriVy7ERvSGI8ZGY8b6f4QvOjeAfr7IkDw4ovSXa7hUSMbeJRqEyB40UZPY0UB7nhRhKNMqwDBi1Z+misIELwooCWRklFLdsqUVfvM1bxcq5i8GvZggitbu++0tP1ovfkz45Xpa/rW9YQAwYsntoFJJCJA8GLjK0LwYgOPUm0CBC/a6GmsKEDwoghHmVYBghet/DRXECB4UUBLIiXLd5yQTp/+aq6mSpHsMqdD5QRX9u7SnfLhytiAxnj7kfEWJC98CF68sAvMITEBgpfEhO7xc4IXG3iUahMgeNFGT2NFAYIXRTjKtAoQvGjlp7mCAMGLAloSKTl7OVoqvL3MXE2alMll+5CG5qui//lp+sFq2X70gvm3P2hdXhqVzusJAYIXT2wDk0hEgODFxleE4MUGHqXaBAhetNHTWFGA4EURjjKtAgQvWvlpriBA8KKAloRKao/+SQ6dvmyuaGHX6lIqf5bbVnfhSrSUHRYbzhif3weFSeZ0qTwhQPDiiW1gEgQv7n0HCF7cs2Vk9wQIXtyzZWR3BAhe3HFlVHcFCF7c9WV05wUIXpw3DaQR+3zxu3z92xFzykMeLyntKhe6bfrfbj0qPT7/zfx7ZQqEyNcvV/PM8ghePLMVTOQeAtzxYuPrQfBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQEtCJXM2HJJB3/xhrujxMvlk3NPlbltd3y+3yhebws2/17VWMelzlwN4dZAQvOhQp6dVAYIXq2Lxrid4sYFHqTYBghdt9DRWFCB4UYSjTKsAwYtWfporCBC8KKAloZI/j0VK4wmrzBXdlzWdrHytzm2rCx2+XE5fumb+vc86VJHKRbJ5ZvUEL57ZCiZyDwGCFxtfD4IXG3iUahMgeNFGT2NFAYIXRTjKtAoQvGjlp7mCAMGLAloSKom5KVJmyBK5dO2GuapNA8Mka/rYM1z2RlyUsLErzV+nS5VCtrxVX1ImdPquJg+CF03wtLUkQPBiiev2iwlebOBRqk2A4EUbPY0VBQheFOEo0ypA8KKVn+YKAgQvCmhJrKTdjA2yZu8pc1WT2lSQBiXzmL+etfagDP1uu/nr2iVyyUfPhnpq5QQvntoOJnMXAYIXG18NghcbeJRqEyB40UZPY0UBghdFOMq0ChC8aOWnuYIAwYsCWhIrGbtit0z4cY+5qg41ikj/hg/F/nr2L/LjzpPmrwc1eVier1rYUysnePHUdjAZghfnvwMEL86bMqL7AgQv7hvTwVkBghdnPRnNPwIEL/5xpotzAgQvzlkG6kir9kTIczM3mtMvf39Wmd+5qvnrUoOXyOW/H0Fa1rOmFMuV0VNLJHjx1HYwGYIX578DBC/OmzKi+wIEL+4b08FZAYIXZz0ZzT8CBC/+caaLcwIEL85ZBupIkVHXpczQpXedfq5MaWR9v3qeWx7Bi+e2hAklIMCjRja+FgQvNvAo1SZA8KKNnsaKAgQvinCUaRUgeNHKT3MFAYIXBbQkWFJ/3CrZczIywZU1K19A/tO8jOdWTfDiuS1hQgQvzn4HCF6c9WQ0/wgQvPjHmS7OCRC8OGfJSP4TIHjxnzWdnBEgeHHGMdBH+S38nPy086RsOnRGthw+F/eIkbGucU+Xk8fL5PPcEglePLclTIjgxdnvAMGLs56M5h8Bghf/ONPFOQGCF+csGcl/AgQv/rOmkzMCBC/OOCa1Uf48fkE2HTpr/m9Ao4clR8bUnlsiwYvntoQJEbw4+x0geHHWk9H8I0Dw4h9nujgnQPDinCUj+U+A4MV/1nRyRoDgxRlHRvG/AMGL/83paF2AM16sm8VVELzYwKNUmwDBizZ6GisKELwowlGmVYDgRSs/zRUECF4U0CjxhADBiye2gUkkIkDwYuMrQvBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQKPEEwIEL57YBiZB8OLed4DgxT1bRnZPgODFPVtGdkeA4MUdV0Z1V4DgxV1fRndegODFeVNG9I8AwYt/nOliT4A7Xmz4EbzYwKNUmwDBizZ6GisKELwowlGmVYDgRSs/zRUECF4U0CjxhADBiye2gUkkIkDwYuMrQvBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQKPEEwIEL57YBiZB8OLed4DgxT1bRnZPgODFPVtGdkeA4MUdV0Z1V4DgxV1fRndegODFeVNG9I8AwYt/nOliT4A7Xmz4EbzYwKNUmwDBizZ6GisKELwowlGmVYDgRSs/zRUECF4U0CjxhADBiye2gUkkIkDwYuMrQvBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQKPEEwIEL57YBiZB8OLed4DgxT1bRnZPgODFPVtGdkeA4MUdV0Z1V4DgxV1fRndegODFeVNG9I8AwYt/nOliT4A7Xmz4EbzYwKNUmwDBizZ6GisKELwowlGmVYDgRSs/zRUECF4U0CjxhADBiye2gUkkIkDwYuMrQvBiA49SbQIEL9roaawoQPCiCEeZVgGCF638NFcQIHhRQKPEEwIEL57YBiZB8OLed4DgxT1bRnZPgODFPVtGdkeA4MUdV0Z1V4DgxV1fRndegODFeVNG9I8AwYt/nOliT4A7Xmz4EbzYwKNUmwDBizZ6GisKELwowlGmVYDgRSs/zRUECF4U0CjxhADBiye2gUkkIkDwwlcEAQQQQAABBBBAAAEEEEAAAQQQcEmA4MUlWIZFAAEEEEAAAQQQQAABBBBAAAEECF74DiCAAAIIIIAAAggggAACCCCAAAIuCRC82IA9f/6SREdflxw5stgYhVIE/Cdw9mykXLlyTfLly+6/pnRCAAEEglQgMvKynDt3UfLnzyHJOYQgSL8FgbPs69dvyIkTZ83vKx8EvCxgfFdTpkyR4BSPHz8jmTOnl/Tp03p5CcwtCAUIXhQ2/eLFK9K27Uj55pu1ZnXlyg/J118Pljx5simMRgkC7gsY/ydUs2Zv2b37iNns4Yfvl379WkvbtvXcb04HBBwQWLRogzRpMlC+++5tady4kgMjMgQC7gkY39fevSfH/Tt369apUrp0YfcaMjICNgSM38T26DFR5s9fbY4SEpJBhgxpL61a1bYxKqUIuCOwb99RKVasvRw8+KkULJg7rsnevUekceMBcf/effHFBjJ5cg9JlSqlOxNhVAQsChC8WAQzLh816nOZOnWRrF49TjJkSGv+Q16ixH0yfXofhdEoQcB9gaNHT8usWUvl2Wf/JZkypZdx476S0aO/kOPH/8ufCLjPTwebAlu37pfq1XtKZOQVgheblpS7L/Ddd+uladNB0q9fK2nfPsy8KzZdutT8u9Z9ejooCkyfvlh69/5Q9u2bLTlzhpj/vdC9+0Q5enSeZMyYTnFUyhBwXqBKle6yfv2f5sD/DF4aNOhn3ukya9ZrEh4eIaGhXWXSpO78IaPz28CIigIELwpwFSp0kRYtasobb7Qyq7/4YqW0bPm2xMQsk2TJkimMSAkC/hU4cOC4FCnSTlavHivVq5fyb3O6IWBB4Nix01Kx4isycmQH6dLlfZk7dwB3vFjw41L/Cty8eVPKlu0kZcoUldmz+/q3Od0QUBQYMuQTmT17mWzf/pGkTZtajDsHHnjgOTlw4BMpVCiP4qiUIeC8gPEHieHhJ6Vy5e63BS/Go/TZsj0la9aMk6pVS5qNu3X7wAxgFiwY4vxEGBEBBQGCFwW0zJkflxkzXpXmzR8zqzdv3iMVKrwsZ858JVmzZlIYkRIE/Cswc+ZSeeGF9+TkyS/MP93ig4AXBS5fjpJatfpIw4YVzdvejX/3Erx4caeY0y2BiIhzkitXC3niiapy7Vq0GI8m161bXl5/vaWkS5cGKAQ8KWAELdWq9ZQ8ebJK//7PyLx5P5t3uhAeenK7gn5SR46ckgIFWt8WvOzYcUhKluwgR49+Lnnzxp5j+P77X8ns2ctl06bJQW8GgDcECF4s7oPxp1nJk4fddrv7rX/YDx2aI/ffn8viiFyOgH8F/vjjgFSt2kN69Wpm/maWDwJeFIiJiZHWrUeYU5s7t795MCnBixd3ijnFF/jtt71SvnwXeemlRhIW9qgYfwprPMLRunVtmTKlF1gIeFLACLmNswuNoPDPP/+Sw4dPmWcXPvlkNU/Ol0kFt0BCwcvatdvN8DD+H4Ibx0IMG/aphIfPDW4wVu8ZAYIXha0w/uN/5szXpFmzGmY1d7woIFKiReDgweNSo0YvqVWrjMya9bqkSJFcyzxoikBiAsbtxPnzt5KOHRtJpkyxZwyMGfOlNG1a2Tyr6NYdh4mNw88R8KfAreAl/t2EM2YskZ49J8n589/wOLI/N4NePgv06/eReW7GDz+8Kzdviowd+6W89tpU2bZtqpQqxaHQPkNyoV8E7nXHy7Fj8+JedsIdL37ZDppYECB4sYB161LjjJeWLWtK376c8aLAR4kmge3bD0qdOq+Zt8Abh43d7TV8mqZHWwRuEzD+5HX8+K9v+3sDBsyUtm3ryjPP1DEfP+KDgNcEbp0zsH79eKlU6SFzelOmfCedO78vN24s5ZXSXtsw5mMKVKzY1TzvbcyYLuZfG3ccpkhRXyZP7i6dOzdFCQFPCSQUvCR0xkvXruPlyJHTnPHiqd0L7skQvCjs/8iRn8u0abFvNcqYMa00asRbjRQYKfGjgPFWmDJlOpm/YR027DlJnjz2EGjjGW7jjRt8EAgEAR41CoRdYo6NGvWXmJibMn/+m3LixFlp3Xq4+Rjy/PlvgYOAJwWMg8u/+up/snbt+1KkSF7z182bD+VwXU/uVnBPKjr6unlgbtGiz8ru3bOkUKHcca+LDgvra561OXPmq7zVKLi/Jp5dPcGLwtZERl42zx5YtGiDWR0aWlwWLBgq+fLFHubEBwGvCRgH5bVqNfyOabVrV4/D87y2WcznrgIEL3w5AkHAeGtc8+ZDZPPmveZ069QpK3Pm9Iu7/T0Q1sAcg0vg9OkL0r//RzJ37k/mwh94IL/07t1c2rSpG1wQrNbzAsZ/B0RGXombZ65cIXLixBfmX+/aFS5G8L1//3Hzr597LkymTOkpqVOn8vy6mGBwCBC82Nhn47a2q1ej+Y8pG4aUIoAAAgggkBQFjHOKUqVKwZvjkuLmJtE1Xb9+Q44fPyMFCuRMoitkWcEgYDyKlDlzesmUKX0wLJc1BpAAwUsAbRZTRQABBBBAAAEEEEAAAQQQQACBwBIgeAms/WK2CCCAAAIIIIAAAggggAACCCAQQAIELwG0WUwVAQQQQAABBBBAAAEEEEAAAQQCS4DgJbD2i9kigAACCCCAAAIIIIAAAggggEAACRC8BNBmMVUEEEAAAQQQQAABBBBAAAEEEAgsAYKXwNovZosAAggggAACCCCAAAIIIIAAAgEkQPASQJvFVBFAAAEEEEAAAQQQQAABBBBAILAECF4Ca7+YLQIIIIAAAggggAACCCCAAAIIBJAAwUsAbRZTRQABBBBAAAEEEEAAAQQQQACBwBIgeAms/WK2CCCAAAIIIIAAAggggAACCCAQQAIELwG0WUwVAQQQQAABBBBAAAEEEEAAAQQCS4DgJbD2i9kigAACCCBgSSAmJkbOnImUHDmyWKrjYgQQQAABBBBAAAFnBAhenHFkFAQQQAABBDwn8OWXq6Vnz0ly+PApadq0ssya9bpky5bJc/NkQggggAACCCCAQFIWIHhJyrvL2hBAAAEEglbg+vUbkj9/Kxkx4gV54omq8uSTb8lTT1WX3r2bB60JC0cAAQQQQAABBHQIELzoUKcnAggggAACLgscPXraDF727v1YihbNJ927T5TTpy/InDn9XO7M8AgggAACCCCAAALxBQhe+D4ggAACCCDgAQEjGMmaNaMMGdLe8mymTVssH3+8TCZN6i6PPFIkrr5Bg34SHn5SqlcvJVOnLpbvvntbGjeudNfxlyz5RUqXLiz58+ewPAej4PLlKFm4cJ00aVJZMmZMFzeGMYc2bd6R+vUflQED2iiNTRECCCCAAAIIIBCoAgQvgbpzzBsBBBBAIEkJ1K37muTKFSJz5w6wtK6//jopBQu2kdGjO93xGNH585ckJORJc7wuXZqawczdPp9+ukLatRsl5csXk7Vrx0uaNKkszePSpSgZO/ZLGTRoluzZM0uKFct/W/28eT9Lq1bDZfPmyVKuXDFLY3MxAggggAACCCAQyAIEL4G8e8wdAQQQQCDJCKgGL8bZLUePnpJ16yZIihTJb/P47rv10rTpIClePL9cvnxVDh2aI8mT336NUbBnzxEpXvw5eeONVjJjxhJp27aujB7d2Wdbo+bFF0fHXZ9Q8GL88KmnBsvhwxEJztXnZlyIAAIIIIAAAggEmADBS4BtGNNFAAEEEEiaAv8MXg4cOC6dOo2VkiULydixXRJc9JYt+6Rs2c6ydOk7Ehb26B3XtGw5THbtCpfhw18wA5hVq8ZIjRqlb7vu6tVoqVq1u+TOndV8FGnFis1Sv34/Wbx4uDRsWNEn7MjIyxIRcV5WrtwqL7zwXoJ3vBgDbd26X8qU6WRpbJ8mwEUIIIAAAggggICHBQhePLw5TA0BBBBAIHgE4gcvxpkoVav2kLx5s8nSpSMla9aEXwE9e/ZyeeWVCXLmzNeSMmWK27CMg3Rz5Ggm48d3lZdeaiw5czaT1q1ry5QpvW677tVXp8jUqYtkz56PzfDF+PTtO00mT/5Wdu6cKfnyZfd5E4wzYho27H/X4MUYqEyZl6RVq9rSr19rn8flQgQQQAABBBBAIJAFCF4CefeYOwIIIIBAkhG4FbwYj/jUqNFTcuXKKt9/P0JCQjLedY1GaLJ//zH56qvBd1xjhCmdOo2TI0c+N8OTbt0+kA8++EYuXfpW0qdPa17//fcbpVGjAWafBg1C48a4dReM0XvZslHmI0zGW5KM/936pE6d8raDfI2/70vw0qPHRDl+/KzMmzcwyewdC0EAAQQQQAABBO4lQPDC9wMBBBBAAAEPCBjBixF4RESck7RpU8uqVWMlS5YM95yZUVOmTBEZM+bOR5GqVOku165FxwUca9fukPbt35XPPx8gTz9dyxx3zZo/5Nq161K7dtk7+hw5ckp++22v+UYkI4AZMuQTGTx4dtx1BQrkkPDwubfV+RK8jB79hUyatFD27fvEA+pMAQEEEEAAAQQQcF+A4MV9YzoggAACCCCQqIARovz44++SKVM6iYy8Ir/+OlEqVCh+z7pH4OBOAAAGTUlEQVTatV8130L0z4NwjXNdSpR4IcHahg1DZfHiEYnO558XGI8unTp1Pu5vp06dSgoXzmM5eBkzZr5MnPgNwYvlHaAAAQQQQAABBAJVgOAlUHeOeSOAAAIIJCkBI3iJjr4uCxcOk7CwvrJzZ7hs3PiBlChx/13X2afPh3Lo0AmZP/+t264x7kwx7lDZtm2qpEmTOu5n06cvlnff/W/c40dOA/pyx0uvXpPFuJvmv/8d5HR7xkMAAQQQQAABBDwpQPDiyW1hUggggAACwSYQ/3Bd43Gj6tV7yrlzl+SXXybK/ffnSpBj1qyl0rfvdDNIuXW47o0bMVKoUBvz8aHZs/veVnfrtdFjxnSWXr2aOUZ85kyk+Zro1au3ySuvfCALFw6VggVzS7Fi+eLOk7nVrEKFLtKsWQ3p3/8Zx/ozEAIIIIAAAggg4GUBghcv7w5zQwABBBAIGgHjLpecOUNkzpx+5pr/+uukhIZ2lZCQDLJ+/YQE32xknMFSvnwXWb58lNSrV96sM8KPxx7rfceBubcgK1bsap4ls2XLVMdsjTtpOnYce8d469ePl0qVHor7+9u3H5RSpTqar61u3LiSY/0ZCAEEEEAAAQQQ8LIAwYuXd4e5IYAAAgggkIhAkyYD5dy5i7Jq1RhJnjy5p71athwm+/YdlQ0bPrjj9deenjiTQwABBBBAAAEEbAgQvNjAoxQBBBBAAAHdAgcPHpfChdvJuHFdpEePp3RP5679589fJS1aDPPp0GDPLoKJIYAAAggggAACCgIELwpolCCAAAIIIOAlgcmTv5WZM5fI9Ol95JFHinhpauZcwsNPSuvWIyQsrIK8+WY7z82PCSGAAAIIIIAAAm4KELy4qcvYCCCAAAIIIIAAAggggAACCCAQ1AIEL0G9/SweAQQQQAABBBBAAAEEEEAAAQTcFCB4cVOXsRFAAAEEEEAAAQQQQAABBBBAIKgFCF6CevtZPAIIIIAAAggggAACCCCAAAIIuClA8OKmLmMjgAACCCCAAAIIIIAAAggggEBQCxC8BPX2s3gEEEAAAQQQQAABBBBAAAEEEHBTgODFTV3GRgABBBBAAAEEEEAAAQQQQACBoBYgeAnq7WfxCCCAAAIIIIAAAggggAACCCDgpgDBi5u6jI0AAggggAACCCCAAAIIIIAAAkEtQPAS1NvP4hFAAAEEEEAAAQQQQAABBBBAwE0Bghc3dRkbAQQQQAABBBBAAAEEEEAAAQSCWoDgJai3n8UjgAACCCCAAAIIIIAAAggggICbAgQvbuoyNgIIIIAAAggggAACCCCAAAIIBLUAwUtQbz+LRwABBBBAAAEEEEAAAQQQQAABNwUIXtzUZWwEEEAAAQQQQAABBBBAAAEEEAhqAYKXoN5+Fo8AAggggAACCCCAAAIIIIAAAm4KELy4qcvYCCCAAAIIIIAAAggggAACCCAQ1AIEL0G9/SweAQQQQAABBBBAAAEEEEAAAQTcFCB4cVOXsRFAAAEEEEAAAQQQQAABBBBAIKgFCF6CevtZPAIIIIAAAggggAACCCCAAAIIuClA8OKmLmMjgAACCCCAAAIIIIAAAggggEBQCxC8BPX2s3gEEEAAAQQQQAABBBBAAAEEEHBTgODFTV3GRgABBBBAAAEEEEAAAQQQQACBoBYgeAnq7WfxCCCAAAIIIIAAAggggAACCCDgpgDBi5u6jI0AAggggAACCCCAAAIIIIAAAkEtQPAS1NvP4hFAAAEEEEAAAQQQQAABBBBAwE0Bghc3dRkbAQQQQAABBBBAAAEEEEAAAQSCWoDgJai3n8UjgAACCCCAAAIIIIAAAggggICbAgQvbuoyNgIIIIAAAggggAACCCCAAAIIBLUAwUtQbz+LRwABBBBAAAEEEEAAAQQQQAABNwUIXtzUZWwEEEAAAQQQQAABBBBAAAEEEAhqAYKXoN5+Fo8AAggggAACCCCAAAIIIIAAAm4KELy4qcvYCCCAAAIIIIAAAggggAACCCAQ1AIEL0G9/SweAQQQQAABBBBAAAEEEEAAAQTcFCB4cVOXsRFAAAEEEEAAAQQQQAABBBBAIKgFCF6CevtZPAIIIIAAAggggAACCCCAAAIIuClA8OKmLmMjgAACCCCAAAIIIIAAAggggEBQC/wfd6pYw2TuBmcAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from larch.plot.plotly_xafsplots import PlotlyFigure\n", "fig = PlotlyFigure()\n", "fig.add_plot(gsim.k+0.3, gsim.chi*gsim.k**2, label=\"FEFF simulation\")\n", "fig.add_plot(gexp.k, gexp.chi*gexp.k**2, label=\"EXP data\")\n", "\n", "fig.set_style(title=\"Wurtzite ZnO EXAFS\", width=800, height=500, xaxis_title=\"k (Å^-1)\", yaxis_title=\"chi(k) * k^2\" )\n", "fig.set_xrange(0, 10)\n", "fig.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "*Note: the agreement is not very good because the experimental EXAFS data stops at 8 $\\AA^{-1}$ and the structure parameters are not optimized.*" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2: structures with multiple sites\n", "\n", "Here an example when the input structure has multiple sites for a given absorbing element. The number of non-equivalent sites is found via the [SpaceGroupAnalyzer](https://pymatgen.org/pymatgen.symmetry.analyzer.html#pymatgen.symmetry.analyzer.SpacegroupAnalyzer) in Pymatgen, which is based on [Spglib](https://spglib.readthedocs.io/en/latest/).\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : Frames: 1, Absorbing sites: 4. (Indexes for frames and abs_sites start at 0)\n" ] } ], "source": [ "from larch.xrd.struct2xas import Struct2XAS\n", "mat_obj = Struct2XAS(file = \"../structuredata/struct2xas/ZnO_mp-997630.cif\", abs_atom=\"Zn\")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idx_absspeciefrac_coordswyckoff_sitecart_coordsoccupancyidx_in_struct
0Zn[0.6667, 0.3333, 0.1651]4f[-1.5277 -0.882 -5.0195]10
1Zn[0.6667, 0.3333, 0.5825]4f[ -1.5277 -0.882 -17.7146]14
2Zn[0.0, 0.0, 0.75]2b[ 0. 0. -22.8074]18
3Zn[0.0, 0.0, 0.0]2a[0. 0. 0.]110
\n" ], "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat_obj.get_abs_sites_info()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "it is possible to select one site and get information on the local environment and visualize, as shown before" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coord. Env. from absorber atom: Zn at site 2\n", "['T:6']\n", " Element Distance\n", "0 (O) 2.21120\n", "1 (O) 2.21120\n", "2 (O) 2.21120\n", "3 (O) 2.21124\n", "4 (O) 2.21124\n", "5 (O) 2.21124\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n jupyter labextension install jupyterlab_3dmol

\n
\n", "text/html": [ "
\n", "

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n", " jupyter labextension install jupyterlab_3dmol

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : {'Zn': 'red', 'O': 'green'}\n" ] } ], "source": [ "# analysis for second site\n", "mat_obj.set_abs_site(2)\n", "print(mat_obj.get_coord_envs_info())\n", "mat_obj.visualize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "to create the FDMNES inputs simply range over the sites" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : written FDMNES input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/fdmnes/ZnO_mp-997630/Zn/frame0/site0/job_inp.txt\n", "[struct2xas] INFO : written FDMNES input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/fdmnes/ZnO_mp-997630/Zn/frame0/site1/job_inp.txt\n", "[struct2xas] INFO : written FDMNES input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/fdmnes/ZnO_mp-997630/Zn/frame0/site2/job_inp.txt\n", "[struct2xas] INFO : written FDMNES input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/fdmnes/ZnO_mp-997630/Zn/frame0/site3/job_inp.txt\n" ] } ], "source": [ "mypath = None\n", "for site in range(mat_obj.nabs_sites): \n", " mat_obj.set_abs_site(site)\n", " mat_obj.make_input_fdmnes(radius=7, green=False, parent_path=mypath)\n", " mypath = mat_obj.parent_path" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/feff/ZnO_mp-997630/Zn/frame0/site0/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/feff/ZnO_mp-997630/Zn/frame0/site1/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/feff/ZnO_mp-997630/Zn/frame0/site2/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/struct2xas-dg_zjl4g/feff/ZnO_mp-997630/Zn/frame0/site3/feff.inp\n" ] } ], "source": [ "for site in range(mat_obj.nabs_sites): \n", " mat_obj.set_abs_site(site)\n", " mat_obj.make_input_feff(radius=7, parent_path=mypath)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3: grab CIFs from Materials Project\n", "\n", "In this example some CIFs files are grabbed from the Materials Project database (MP) via a query and the inputs files are generated.\n", "\n", "A personal API key is required to query the database (-> [here](https://legacy.materialsproject.org/open). *NOTE* the legacy version is used in this example, that is, the \"old\" version of MP. Export `your_api_key` to the environmental variable `MP_API_KEY`.\n", "\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "import os\n", "from pymatgen.ext.matproj import _MPResterLegacy\n", "from larch.xrd.struct2xas import Struct2XAS, save_cif_from_mp\n", "\n", "api_key = os.getenv(\"MP_API_KEY\", \"\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we search for materials containing 2 elements, Zn and O, plus further filter those IDs not present in the ICSD database" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "ename": "MPRestError", "evalue": "REST query returned with error status code 403. Content: b'{\"valid_response\": false, \"error\": \"API_KEY is not supplied.\", \"version\": {\"db\": \"2020_09_08\", \"pymatgen\": \"2022.0.8\", \"rest\": \"2.0\"}, \"created_at\": \"2023-09-23T10:26:36.044472\"}'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mMPRestError\u001b[0m Traceback (most recent call last)", "File \u001b[0;32m~/xraylarch/lib/python3.10/site-packages/pymatgen/ext/matproj.py:288\u001b[0m, in \u001b[0;36m_MPResterLegacy._make_request\u001b[0;34m(self, sub_url, payload, method, mp_decode)\u001b[0m\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m MPRestError(data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124merror\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m--> 288\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m MPRestError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mREST query returned with error status code \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n", "\u001b[0;31mMPRestError\u001b[0m: REST query returned with error status code 403", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mMPRestError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[25], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# criterias to query the materials\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m entries \u001b[38;5;241m=\u001b[39m \u001b[43m_MPResterLegacy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mapi_key\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcriteria\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43melements\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mZn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mO\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnelements\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m$gte\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproperties\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmaterial_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43micsd_ids\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m mp_ids \u001b[38;5;241m=\u001b[39m [e[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmaterial_id\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m entries \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(e[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124micsd_ids\u001b[39m\u001b[38;5;124m'\u001b[39m]) \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m] \u001b[38;5;66;03m#: skip materials not present in the ICSD database\u001b[39;00m\n\u001b[1;32m 4\u001b[0m ids \u001b[38;5;241m=\u001b[39m mp_ids[\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m10\u001b[39m]\n", "File \u001b[0;32m~/xraylarch/lib/python3.10/site-packages/pymatgen/ext/matproj.py:1014\u001b[0m, in \u001b[0;36m_MPResterLegacy.query\u001b[0;34m(self, criteria, properties, chunk_size, max_tries_per_chunk, mp_decode, show_progress_bar)\u001b[0m\n\u001b[1;32m 1012\u001b[0m count_payload \u001b[38;5;241m=\u001b[39m payload\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[1;32m 1013\u001b[0m count_payload[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moptions\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m json\u001b[38;5;241m.\u001b[39mdumps({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcount_only\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28;01mTrue\u001b[39;00m})\n\u001b[0;32m-> 1014\u001b[0m num_results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/query\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpayload\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcount_payload\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mPOST\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1015\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_results \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m chunk_size:\n\u001b[1;32m 1016\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_request(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/query\u001b[39m\u001b[38;5;124m\"\u001b[39m, payload\u001b[38;5;241m=\u001b[39mpayload, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPOST\u001b[39m\u001b[38;5;124m\"\u001b[39m, mp_decode\u001b[38;5;241m=\u001b[39mmp_decode)\n", "File \u001b[0;32m~/xraylarch/lib/python3.10/site-packages/pymatgen/ext/matproj.py:292\u001b[0m, in \u001b[0;36m_MPResterLegacy._make_request\u001b[0;34m(self, sub_url, payload, method, mp_decode)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 291\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mexc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. Content: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mgetattr\u001b[39m(response,\u001b[38;5;250m \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;250m \u001b[39m\u001b[38;5;28mstr\u001b[39m(exc))\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 292\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m MPRestError(msg)\n", "\u001b[0;31mMPRestError\u001b[0m: REST query returned with error status code 403. Content: b'{\"valid_response\": false, \"error\": \"API_KEY is not supplied.\", \"version\": {\"db\": \"2020_09_08\", \"pymatgen\": \"2022.0.8\", \"rest\": \"2.0\"}, \"created_at\": \"2023-09-23T10:26:36.044472\"}'" ] } ], "source": [ "# criterias to query the materials\n", "entries = _MPResterLegacy(api_key).query(criteria={\"elements\": (\"Zn\", \"O\"), \"nelements\": {\"$gte\": 2}}, properties=[\"material_id\", \"icsd_ids\"])\n", "mp_ids = [e['material_id'] for e in entries if len(e['icsd_ids']) >= 1] #: skip materials not present in the ICSD database\n", "ids = mp_ids[0:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "save the corresponding CIF files" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'ids' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[26], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m cifs_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m \u001b[38;5;28mid\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[43mids\u001b[49m:\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 4\u001b[0m cifs_path, cif_fname \u001b[38;5;241m=\u001b[39m save_cif_from_mp(api_key, \u001b[38;5;28mid\u001b[39m, parent_path\u001b[38;5;241m=\u001b[39mcifs_path)\n", "\u001b[0;31mNameError\u001b[0m: name 'ids' is not defined" ] } ], "source": [ "cifs_path = None\n", "for id in ids:\n", " try:\n", " cifs_path, cif_fname = save_cif_from_mp(api_key, id, parent_path=cifs_path)\n", " except Exception:\n", " print(f\"ERROR: cannot retrieve {id}\")\n", "print(f\"CIF files saved in: {cifs_path}\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "load the CIF files and generate the FDMNES/FEFF inputs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from glob import glob\n", "import tempfile\n", "\n", "parent_path = tempfile.mkdtemp(prefix=\"struct2xas_ex3_\")\n", "cif_files = glob(f\"{cifs_path}/*\")\n", "\n", "for cf in cif_files:\n", " s2x = Struct2XAS(cf, abs_atom=\"Zn\")\n", " for abs_site in s2x.get_abs_sites():\n", " s2x.set_abs_site(abs_site[0])\n", " s2x.make_input_fdmnes(radius=7, parent_path=parent_path)\n", " s2x.make_input_feff(radius=7, parent_path=parent_path)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the next steps consist in running the simulations and comparing with experimental data. This is beyond the scope of current example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4: from XYZ (single or multi-frame) to XAS\n", "\n", "This example shows the case of XYZ files as input. In particular, in the case the XYZ file contains multiple frames. This is a typical output format of molecular dynamics simulations.\n", "\n", "Here the case of Ga K-edge of a GaBr solution is taken as example:\n", "- Cécile Da Silva, Olivier Proux, Jean-Louis Hazemann, Julianne James-Smith, Denis Testemale, Toshio Yamaguchi,\n", "X-ray absorption spectroscopy study of solvation and ion-pairing in aqueous gallium bromide solutions at supercritical conditions,\n", "Journal of Molecular Liquids, Volume 147, Issues 1–2, 2009, Pages 83-95, ISSN 0167-7322, [https://doi.org/10.1016/j.molliq.2008.06.022]\n", "- The experimental data are taken from the SSHADE database [DOI:10.26302/SSHADE/EXPERIMENT_ST_20180418_001](https://www.sshade.eu/data/EXPERIMENT_ST_20180418_001)\n", "- The input structure is manually generated by simply changing the Ga-O distance\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : Frames: 5, Absorbing sites: 1. (Indexes for frames and abs_sites start at 0)\n" ] } ], "source": [ "from larch.xrd.struct2xas import Struct2XAS\n", "gabr = Struct2XAS(file=\"../structuredata/struct2xas/GaBr_multi-frame.xyz\", abs_atom=\"Ga\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "it is possible to select a given frame, visualize and get the coordination environment" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n jupyter labextension install jupyterlab_3dmol

\n
\n", "text/html": [ "
\n", "

You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
\n", " jupyter labextension install jupyterlab_3dmol

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : {'Ga': 'red', 'O': 'green', 'H': 'blue'}\n" ] } ], "source": [ "gabr.set_frame(2)\n", "gabr.visualize(5)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coord. Env. from absorber atom: Ga at site 0\n", "Elements Dict = {'H': 2}\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ElementDistance
0(H)2.64949
1(H)2.64949
\n", "
" ], "text/plain": [ " Element Distance\n", "0 (H) 2.64949\n", "1 (H) 2.64949" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gabr.get_coord_envs_info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "generate FEFF EXAFS inputs (for FDMNES is equivalent)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/feff/GaBr_multi-frame/Ga/frame0/site0/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/feff/GaBr_multi-frame/Ga/frame1/site0/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/feff/GaBr_multi-frame/Ga/frame2/site0/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/feff/GaBr_multi-frame/Ga/frame3/site0/feff.inp\n", "[struct2xas] INFO : written FEFF input -> /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/feff/GaBr_multi-frame/Ga/frame4/site0/feff.inp\n" ] } ], "source": [ "import tempfile\n", "outdir = tempfile.mkdtemp(prefix=\"gabr-\")\n", "\n", "for frame in range(gabr.nframes):\n", " gabr.set_frame(frame)\n", " gabr.make_input_feff(radius=5, sig2=0.005, parent_path=outdir)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "run the simulations" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : GaBr_multi-frame\n", " : 2023-09-23_1237\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.34750E+00 1.17999E+00 1.15000E+00\n", " : 1 1.14900E+00 9.82254E-01 1.15000E+00\n", " : 2 1.04613E+00 8.81502E-01 1.15000E+00\n", " : : mu_old= 2.387\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 5.00000E+00 0.00000E+00\n", " : Rmax 5.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 837 868 5 4.3943\n", " : 2000 819 930 5 4.6309\n", " : 3000 666 930 5 4.8558\n", " : 4000 117 930 5 4.9986\n", " : Paths found 4224 (maxheap, maxscatt 930 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 40, total paths 936\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 6.000 2 1.9010\n", " : 2 17.363 12.000 2 2.5704\n", " : 3 35.732 24.000 3 2.7086\n", " : 4 35.828 12.000 4 2.8468\n", " : 5 19.179 24.000 3 3.2452\n", " : 6 2.683 12.000 3 3.3384\n", " : 7 4.589 24.000 4 3.4766\n", " : 8 4.578 12.000 4 3.5162\n", " : 9 1.441 12.000 4 3.5162 neglected\n", " : 10 2.506 12.000 5 3.6148 neglected\n", " : 11 2.517 24.000 5 3.6544 neglected\n", " : 12 9.831 24.000 5 3.6544\n", " : 13 11.954 12.000 6 3.7926\n", " : 14 32.116 12.000 6 3.7926\n", " : 15 16.274 6.000 3 3.8020\n", " : 16 30.993 6.000 4 3.8020\n", " : 17 7.995 6.000 4 3.8020\n", " : 18 9.012 24.000 4 3.8020\n", " : 19 4.124 48.000 3 3.8342\n", " : 20 5.460 48.000 4 3.9724\n", " : 21 3.785 24.000 4 4.0528\n", " : 22 2.849 48.000 4 4.0528\n", " : 23 7.384 24.000 5 4.1910\n", " : 24 3.449 48.000 5 4.1910\n", " : 25 2.602 48.000 5 4.3835 neglected\n", " : 26 6.869 24.000 3 4.4463\n", " : 27 11.192 24.000 4 4.4714\n", " : 28 3.790 24.000 4 4.4714\n", " : 29 8.597 24.000 4 4.5845\n", " : 30 6.579 24.000 4 4.5894\n", " : 31 13.592 24.000 4 4.5894\n", " : 32 7.045 24.000 4 4.6096\n", " : 33 13.463 24.000 5 4.6096\n", " : 34 14.179 24.000 5 4.6096\n", " : 35 4.941 24.000 5 4.6096\n", " : 36 4.513 24.000 5 4.6096\n", " : 37 16.496 24.000 6 4.7478\n", " : 38 7.880 24.000 5 4.7478\n", " : 39 6.229 24.000 6 4.7478\n", " : 40 2.627 48.000 6 4.9182 neglected\n", " : 35 paths kept, 40 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.951 Global sig2 0.00500\n", " : Done with module 6: DW + final sum over paths.\n", " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : GaBr_multi-frame\n", " : 2023-09-23_1237\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.36815E+00 1.20382E+00 1.15000E+00\n", " : 1 1.15562E+00 9.86379E-01 1.15000E+00\n", " : 2 1.04336E+00 8.74827E-01 1.15000E+00\n", " : : mu_old= 2.273\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 5.00000E+00 0.00000E+00\n", " : Rmax 5.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 710 738 5 4.4607\n", " : 2000 627 738 5 4.7010\n", " : 3000 360 738 5 4.9296\n", " : Paths found 3480 (maxheap, maxscatt 738 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 40, total paths 936\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 6.000 2 1.9310\n", " : 2 17.473 12.000 2 2.6093\n", " : 3 35.402 24.000 3 2.7500\n", " : 4 31.353 12.000 4 2.8906\n", " : 5 18.570 24.000 3 3.2964\n", " : 6 2.672 12.000 3 3.3893\n", " : 7 4.539 24.000 4 3.5300\n", " : 8 4.524 12.000 4 3.5689\n", " : 9 1.399 12.000 4 3.5689 neglected\n", " : 10 2.428 12.000 5 3.6706 neglected\n", " : 11 2.347 24.000 5 3.7096 neglected\n", " : 12 9.260 24.000 5 3.7096\n", " : 13 8.720 12.000 6 3.8503\n", " : 14 20.837 12.000 6 3.8503\n", " : 15 15.869 6.000 3 3.8620\n", " : 16 30.047 6.000 4 3.8620\n", " : 17 7.833 6.000 4 3.8620\n", " : 18 8.431 24.000 4 3.8620\n", " : 19 4.034 48.000 3 3.8932\n", " : 20 5.246 48.000 4 4.0339\n", " : 21 3.646 24.000 4 4.1154\n", " : 22 2.763 48.000 4 4.1154\n", " : 23 6.758 24.000 5 4.2560\n", " : 24 3.214 48.000 5 4.2560\n", " : 25 2.468 48.000 5 4.4505 neglected\n", " : 26 6.767 24.000 3 4.5148\n", " : 27 10.932 24.000 4 4.5403\n", " : 28 3.763 24.000 4 4.5403\n", " : 29 8.349 24.000 4 4.6555\n", " : 30 6.336 24.000 4 4.6618\n", " : 31 13.047 24.000 4 4.6618\n", " : 32 6.841 24.000 4 4.6810\n", " : 33 12.999 24.000 5 4.6810\n", " : 34 13.625 24.000 5 4.6810\n", " : 35 4.842 24.000 5 4.6810\n", " : 36 4.435 24.000 5 4.6810\n", " : 37 15.116 24.000 6 4.8216\n", " : 38 7.310 24.000 5 4.8216\n", " : 39 5.769 24.000 6 4.8216\n", " : 40 2.415 48.000 6 4.9935 neglected\n", " : 35 paths kept, 40 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.951 Global sig2 0.00500\n", " : Done with module 6: DW + final sum over paths.\n", " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : GaBr_multi-frame\n", " : 2023-09-23_1237\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.38811E+00 1.22707E+00 1.15000E+00\n", " : 1 1.16169E+00 9.90134E-01 1.15000E+00\n", " : 2 1.04083E+00 8.68755E-01 1.15000E+00\n", " : : mu_old= 2.186\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 5.00000E+00 0.00000E+00\n", " : Rmax 5.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 588 619 5 4.5295\n", " : 2000 471 619 5 4.7734\n", " : Paths found 2940 (maxheap, maxscatt 619 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 39, total paths 888\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 6.000 2 1.9600\n", " : 2 17.598 12.000 2 2.6495\n", " : 3 34.996 24.000 3 2.7921\n", " : 4 23.701 12.000 4 2.9347\n", " : 5 18.000 24.000 3 3.3459\n", " : 6 2.655 12.000 3 3.4413 neglected\n", " : 7 4.519 24.000 4 3.5839\n", " : 8 4.453 12.000 4 3.6242\n", " : 9 1.350 12.000 4 3.6242 neglected\n", " : 10 2.368 12.000 5 3.7266 neglected\n", " : 11 2.032 24.000 5 3.7668 neglected\n", " : 12 8.707 24.000 5 3.7668\n", " : 13 4.061 12.000 6 3.9095\n", " : 14 9.184 12.000 6 3.9095\n", " : 15 15.492 6.000 3 3.9200\n", " : 16 29.154 6.000 4 3.9200\n", " : 17 7.672 6.000 4 3.9200\n", " : 18 7.906 24.000 4 3.9200\n", " : 19 3.949 48.000 3 3.9526\n", " : 20 5.034 48.000 4 4.0952\n", " : 21 3.520 24.000 4 4.1780\n", " : 22 2.670 48.000 4 4.1780\n", " : 23 6.208 24.000 5 4.3207\n", " : 24 2.963 48.000 5 4.3207\n", " : 25 2.329 48.000 5 4.5187 neglected\n", " : 26 6.677 24.000 3 4.5836\n", " : 27 10.684 24.000 4 4.6095\n", " : 28 3.723 24.000 4 4.6095\n", " : 29 8.109 24.000 4 4.7262\n", " : 30 6.103 24.000 4 4.7319\n", " : 31 12.539 24.000 4 4.7319\n", " : 32 6.643 24.000 4 4.7521\n", " : 33 12.538 24.000 5 4.7521\n", " : 34 13.082 24.000 5 4.7521\n", " : 35 4.729 24.000 5 4.7521\n", " : 36 4.343 24.000 5 4.7521\n", " : 37 13.682 24.000 6 4.8947\n", " : 38 6.723 24.000 5 4.8947\n", " : 39 5.291 24.000 6 4.8947\n", " : 34 paths kept, 39 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.951 Global sig2 0.00500\n", " : Done with module 6: DW + final sum over paths.\n", " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : GaBr_multi-frame\n", " : 2023-09-23_1237\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.42868E+00 1.27476E+00 1.15000E+00\n", " : 1 1.17353E+00 9.97844E-01 1.15000E+00\n", " : 2 1.03739E+00 8.59043E-01 1.15000E+00\n", " : : mu_old= 1.982\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 5.00000E+00 0.00000E+00\n", " : Rmax 5.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 458 507 5 4.6651\n", " : 2000 144 507 5 4.9165\n", " : Paths found 2220 (maxheap, maxscatt 507 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 36, total paths 816\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 6.000 2 2.0190\n", " : 2 17.834 12.000 2 2.7289\n", " : 3 34.577 24.000 3 2.8759\n", " : 4 19.979 12.000 4 3.0230\n", " : 5 16.971 24.000 3 3.4466\n", " : 6 2.646 12.000 3 3.5449 neglected\n", " : 7 4.487 24.000 4 3.6919\n", " : 8 4.362 12.000 4 3.7329\n", " : 9 1.301 12.000 4 3.7329 neglected\n", " : 10 2.282 12.000 5 3.8390 neglected\n", " : 11 1.977 24.000 5 3.8800 neglected\n", " : 12 8.187 24.000 5 3.8800\n", " : 13 2.467 12.000 6 4.0271 neglected\n", " : 14 5.764 12.000 6 4.0271\n", " : 15 14.787 6.000 3 4.0380\n", " : 16 28.801 6.000 4 4.0380\n", " : 17 6.695 6.000 4 4.0380\n", " : 18 7.299 24.000 4 4.0380\n", " : 19 3.801 48.000 3 4.0712\n", " : 20 4.692 48.000 4 4.2183\n", " : 21 3.278 24.000 4 4.3036\n", " : 22 2.528 48.000 4 4.3036 neglected\n", " : 23 5.476 24.000 5 4.4507\n", " : 24 2.662 48.000 5 4.4507 neglected\n", " : 25 2.113 48.000 5 4.6543 neglected\n", " : 26 6.501 24.000 3 4.7212\n", " : 27 10.800 24.000 4 4.7479\n", " : 28 3.402 24.000 4 4.7479\n", " : 29 7.704 24.000 4 4.8682\n", " : 30 5.694 24.000 4 4.8743\n", " : 31 11.615 24.000 4 4.8743\n", " : 32 6.312 24.000 4 4.8949\n", " : 33 12.398 24.000 5 4.8949\n", " : 34 12.895 24.000 5 4.8949\n", " : 35 4.231 24.000 5 4.8949\n", " : 36 3.820 24.000 5 4.8949\n", " : 28 paths kept, 36 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.951 Global sig2 0.00500\n", " : Done with module 6: DW + final sum over paths.\n", " : ======== running Feff module feff8l_rdinp ========\n", " : Feff8L (EXAFS) release 0.1\n", " : GaBr_multi-frame\n", " : 2023-09-23_1237\n", " : site 0\n", " : ======== running Feff module feff8l_pot ========\n", " : Calculating potentials ...\n", " : free atom potential and density for atom type 0\n", " : free atom potential and density for atom type 1\n", " : free atom potential and density for atom type 2\n", " : initial state energy\n", " : overlapped potential and density for unique potential 0\n", " : overlapped potential and density for unique potential 1\n", " : overlapped potential and density for unique potential 2\n", " : muffin tin radii and interstitial parameters\n", " : : ipot, Norman radius, Muffin tin radius, Overlap\n", " : 0 1.40806E+00 1.25046E+00 1.15000E+00\n", " : 1 1.16758E+00 9.93896E-01 1.15000E+00\n", " : 2 1.03884E+00 8.63537E-01 1.15000E+00\n", " : : mu_old= 2.082\n", " : Done with module 1: potentials.\n", " : ======== running Feff module feff8l_xsph ========\n", " : Calculating cross-section and phases...\n", " : absorption cross section\n", " : phase shifts for unique potential 0\n", " : phase shifts for unique potential 1\n", " : phase shifts for unique potential 2\n", " : Done with module 2: cross-section and phases...\n", " : ======== running Feff module feff8l_pathfinder ========\n", " : Preparing plane wave scattering amplitudes...\n", " : Searching for paths...\n", " : WARNING: rmax > distance to most distant atom.\n", " : Some paths may be missing.\n", " : rmax, ratx 5.00000E+00 0.00000E+00\n", " : Rmax 5.0000 keep and heap limits 0.0000000 0.0000000\n", " : Preparing neighbor table\n", " : nfound heapsize maxheap maxscatt reff\n", " : 1000 469 518 5 4.5970\n", " : 2000 315 518 5 4.8447\n", " : Paths found 2532 (maxheap, maxscatt 518 5)\n", " : Eliminating path degeneracies...\n", " : Plane wave chi amplitude filter 2.50%\n", " : Unique paths 39, total paths 888\n", " : Done with module 4: pathfinder.\n", " : ======== running Feff module feff8l_genfmt ========\n", " : Calculating EXAFS parameters...\n", " : Curved wave chi amplitude ratio 4.00%\n", " : Discard feff.dat for paths with cw ratio < 2.67%\n", " : path cw ratio deg nleg reff\n", " : 1 100.000 6.000 2 1.9890\n", " : 2 17.731 12.000 2 2.6890\n", " : 3 34.824 24.000 3 2.8338\n", " : 4 21.611 12.000 4 2.9786\n", " : 5 17.499 24.000 3 3.3954\n", " : 6 2.654 12.000 3 3.4930 neglected\n", " : 7 4.514 24.000 4 3.6378\n", " : 8 4.413 12.000 4 3.6786\n", " : 9 1.325 12.000 4 3.6786 neglected\n", " : 10 2.331 12.000 5 3.7826 neglected\n", " : 11 1.996 24.000 5 3.8234 neglected\n", " : 12 8.441 24.000 5 3.8234\n", " : 13 3.090 12.000 6 3.9682\n", " : 14 7.049 12.000 6 3.9682\n", " : 15 15.149 6.000 3 3.9780\n", " : 16 29.702 6.000 4 3.9780\n", " : 17 6.794 6.000 4 3.9780\n", " : 18 7.787 24.000 4 3.9780\n", " : 19 3.883 48.000 3 4.0113\n", " : 20 4.869 48.000 4 4.1561\n", " : 21 3.400 24.000 4 4.2402\n", " : 22 2.604 48.000 4 4.2402 neglected\n", " : 23 5.833 24.000 5 4.3851\n", " : 24 2.810 48.000 5 4.3851\n", " : 25 2.222 48.000 5 4.5861 neglected\n", " : 26 6.599 24.000 3 4.6517\n", " : 27 11.065 24.000 4 4.6780\n", " : 28 3.419 24.000 4 4.6780\n", " : 29 7.918 24.000 4 4.7965\n", " : 30 5.911 24.000 4 4.8019\n", " : 31 12.089 24.000 4 4.8019\n", " : 32 6.487 24.000 4 4.8228\n", " : 33 12.832 24.000 5 4.8228\n", " : 34 13.401 24.000 5 4.8228\n", " : 35 4.305 24.000 5 4.8228\n", " : 36 3.867 24.000 5 4.8228\n", " : 37 13.591 24.000 6 4.9676\n", " : 38 6.402 24.000 5 4.9676\n", " : 39 4.635 24.000 6 4.9676\n", " : 33 paths kept, 39 examined.\n", " : Done with module 5: F_eff.\n", " : Note: The following floating-point exceptions are signalling: IEEE_UNDERFLOW_FLAG IEEE_DENORMAL\n", " : ======== running Feff module feff8l_ff2x ========\n", " : Calculating chi...\n", " : Use all paths with cw amplitude ratio 4.00%\n", " : S02 0.951 Global sig2 0.00500\n", " : Done with module 6: DW + final sum over paths.\n" ] } ], "source": [ "from glob import glob\n", "from larch.xafs import FeffRunner\n", "\n", "feffinps = glob(f\"{outdir}/**/feff.inp\", recursive=True)\n", "for feffinp in feffinps:\n", " sim = FeffRunner(feffinp)\n", " sim.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "sometimes is useful to export all the `xmu.dat` files in a single HDF5 file container" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "xmu data exported to HDF5: /var/folders/43/gb2rgtsj10zbmmtgl0kkyrgr0000gn/T/gabr-4jpgg8dd/hdf5/gabr_exafs.h5\n" ] } ], "source": [ "import os\n", "import h5py\n", "from larch.io import read_ascii\n", "\n", "h5dir = os.path.join(outdir, \"hdf5\")\n", "try:\n", " os.makedirs(h5dir)\n", "except FileExistsError:\n", " pass\n", "h5out = os.path.join(h5dir, \"gabr_exafs.h5\")\n", "\n", "xmus = glob(f\"{outdir}/**/xmu.dat\", recursive=True)\n", "labels = [\"energy\", \"erel\", \"k\", \"mu\", \"mu0\", \"chi\"]\n", "\n", "with h5py.File(h5out, \"w\") as f:\n", " for xmu in xmus:\n", " sample, abs_at, framestr, sitestr = xmu.split(outdir)[-1].split(os.sep)[2:-1]\n", " gxmu = read_ascii(xmu, labels=labels)\n", " grouppath = f\"/{sample}/{abs_at}/{framestr}/{sitestr}\"\n", " try:\n", " f.create_group(grouppath)\n", " except Exception:\n", " pass\n", " for lab in labels:\n", " f.create_dataset(f\"{grouppath}/{lab}\", data=getattr(gxmu, lab))\n", "print(f\"xmu data exported to HDF5: {h5out}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "line": { "color": "#1f77b4", "width": 3 }, "name": "GaBr_multi-frame/frame1", "type": "scatter", "uid": "7d0d7de6-f465-4504-b342-8ef823e260dd", "x": [ 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3, 10.35, 10.4, 10.45, 10.5, 10.55, 10.6, 10.65, 10.7, 10.75, 10.8, 10.85, 10.9, 10.95, 11, 11.05, 11.1, 11.15, 11.2, 11.25, 11.3, 11.35, 11.4, 11.45, 11.5, 11.55, 11.6, 11.65, 11.7, 11.75, 11.8, 11.85, 11.9, 11.95, 12, 12.05, 12.1, 12.15, 12.2, 12.25, 12.3, 12.35, 12.4, 12.45, 12.5, 12.55, 12.6, 12.65, 12.7, 12.75, 12.8, 12.85, 12.9, 12.95, 13, 13.05, 13.1, 13.15, 13.2, 13.25, 13.3, 13.35, 13.4, 13.45, 13.5, 13.55, 13.6, 13.65, 13.7, 13.75, 13.8, 13.85, 13.9, 13.95, 14, 14.05, 14.1, 14.15, 14.2, 14.25, 14.3, 14.35, 14.4, 14.45, 14.5, 14.55, 14.6, 14.65, 14.7, 14.75, 14.8, 14.85, 14.9, 14.95, 15, 15.05, 15.1, 15.15, 15.2, 15.25, 15.3, 15.35, 15.4, 15.45, 15.5, 15.55, 15.6, 15.65, 15.7, 15.75, 15.8, 15.85, 15.9, 15.95, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.4, 16.45, 16.5, 16.55, 16.6, 16.65, 16.7, 16.75, 16.8, 16.85, 16.9, 16.95, 17, 17.05, 17.1, 17.15, 17.2, 17.25, 17.3, 17.35, 17.4, 17.45, 17.5, 17.55, 17.6, 17.65, 17.7, 17.75, 17.8, 17.85, 17.9, 17.95, 18, 18.05, 18.1, 18.15, 18.2, 18.25, 18.3, 18.35, 18.4, 18.45, 18.5, 18.55, 18.6, 18.65, 18.7, 18.75, 18.8, 18.85, 18.9, 18.95, 19, 19.05, 19.1, 19.15, 19.2, 19.25, 19.3, 19.35, 19.4, 19.45, 19.5, 19.55, 19.6, 19.65, 19.7, 19.75, 19.8, 19.85, 19.9, 19.95, 20 ], "y": [ 0, 0.0023649450000000002, 0.00947996, 0.021462795, 0.03838496000000001, 0.06050925, 0.08785098, 0.12092023999999998, 0.15952768000000003, 0.20415442500000003, 0.2543875, 0.3105223000000001, 0.3718404, 0.43812405000000004, 0.5083798999999999, 0.5814843749999999, 0.6562624000000001, 0.7303318999999999, 0.80244918, 0.868723035, 0.928124, 0.975895515, 1.0114825600000001, 1.0254612099999998, 1.02210048, 0.9882156249999999, 0.93241187, 0.8408267775000001, 0.7258428799999999, 0.5759168, 0.4071555, 0.20719616475000002, -0.0010143718400000001, -0.22500645749999998, -0.43978285999999994, -0.6453024375, -0.8206466400000001, -0.96670566, -1.06457095, -1.1074210875000001, -1.096568, -0.99096631, -0.85964571, -0.722450525, -0.5976286800000001, -0.52931475, -0.4955793669999999, -0.5040523812500001, -0.560495808, -0.6812837500000002, -0.8679875, -1.1144569725, -1.4078105600000002, -1.729515345, -2.04916797, -2.3377880625, -2.56704336, -2.6605573650000003, -2.6429518300000003, -2.5106451425, -2.268828, -1.9266221699999995, -1.5127293200000003, -1.051407945, -0.5682800640000001, -0.086399243125, 0.37041354899999995, 0.783070138, 1.137343316, 1.4303710350000003, 1.6551710000000002, 1.8128318175, 1.9086321600000002, 1.96256412, 1.9774520500000001, 1.9637578125, 1.9305991200000001, 1.8912175975000003, 1.84428855, 1.79172869, 1.73272, 1.666658025, 1.587891091, 1.4936798690000004, 1.3775305320000002, 1.2401315125, 1.0766634549999998, 0.8870243557499998, 0.6732188320000001, 0.44083335375000005, 0.19283589, -0.06393139024999998, -0.32167220399999996, -0.5769791145000001, -0.8188254930000002, -1.03942955625, -1.2318543359999998, -1.390857198, -1.5110309340000003, -1.5896731950000003, -1.6256924999999998, -1.631660151, -1.598174046, -1.5285712425000002, -1.4273280320000001, -1.3126199625000001, -1.179147975, -1.0323305697499998, -0.8773165080000002, -0.717232208, -0.557443975, -0.40155679125, -0.2523012352, -0.10990342145000001, 0.02571765444, 0.1542392075, 0.275627658, 0.38452743224999997, 0.48516089400000006, 0.5770430487500001, 0.6592032, 0.741610573, 0.8145231789999999, 0.8757951165000001, 0.9230712520000002, 0.95401953125, 0.966534849, 0.9590101787499999, 0.9305292800000001, 0.8810619052499999, 0.81156335, 0.7716829772499999, 0.7199161199999999, 0.6347609205000001, 0.502058738, 0.323507874375, 0.11865322719999999, -0.08113322552499999, -0.24433690050000004, -0.35176682045, -0.40422354, -0.49533014475, -0.571210833, -0.630790303, -0.6738215040000001, -0.70073696875, -0.712481971, -0.7102932322499999, -0.6954684280000001, -0.6691714415000001, -0.632311875, -0.53296767475, -0.4922070384, -0.510573699, -0.5575418156, -0.58427478625, -0.5451641208, -0.41888017619999995, -0.21950096280000003, 0.0076452904125, 0.20416704, 0.3218299518, 0.43596926459999996, 0.54310357125, 0.6399022355999999, 0.7234022812500001, 0.7912154280000001, 0.841662131, 0.8738573760000001, 0.8877258617499998, 0.883928175, 0.7227278662500001, 0.49059886799999997, 0.276401049025, 0.15809597369999998, 0.1684895625, 0.28052485120000004, 0.4191608729249999, 0.4950514106000001, 0.44531382824999993, 0.26315361, 0.19514662967500004, 0.12651297749999998, 0.05710326601500001, -0.013281539519999998, -0.0848075820625, -0.157541535, -0.23140648327500002, -0.30616563280000003, -0.3814208007749999, -0.45662529, -0.7150467525250002, -0.8025882624, -0.6859738591, -0.4205277278, -0.12623729625, 0.06532804068000002, 0.0697018372025, -0.11242335060000001, -0.39496354357499996, -0.644427, -0.7587459303750002, -0.7933633930999999, -0.728087823575, -0.559053738, -0.30091791125, 0.014419858890000003, 0.34259596582499996, 0.6343713792000001, 0.8447097301499998, 0.9416187899999999, 0.9129576432250001, 0.7696738651999999, 0.5446242209250001, 0.28691766449999995, 0.052686099375, -0.10604068992000001, -0.1521822302, -0.07194337573000001, 0.12120823822499999, 0.38796592999999996, 0.6728519313750001, 0.9055084851, 1.023066014425, 0.9814952447999999, 0.765856265625, 0.3950256147, -0.08031528938249999, -0.5863028436000001, -1.0396074273249998, -1.3636033, -1.5037530007500002, -1.439025008, -1.186813186225, -0.8003000069999998, -0.3583826375, 0.04976548992, 0.3425859648, 0.4628225469000001, 0.38957521617499996, 0.143153712, -0.23633884912500003, -0.6353300899000001, -0.9458527869, -1.0778605815999998, -0.9797820725, -0.6503987358000001, -0.13945315202, 0.46302978880000006, 1.0461971238749999, 1.5021390625, 1.7486872565000005, 1.7462171159999997, 1.5050468174500002, 1.0819059006999998, 0.566718885, 0.06278971392000002, -0.33511446252500005, -0.5600445344999999, -0.5855198625499999, -0.42918564000000003, -0.13696544502000002, 0.21008496199999996, 0.512198174225, 0.6799106159999999, 0.654302125625, 0.4201013677, 0.0089182539, -0.5078315919999999, -1.0344439116, -1.4712331724999999, -1.735111557925, -1.7760710015999999, -1.5863423121, -1.2007204984, -0.688488109375, -0.13898634948000002, 0.355924730525, 0.7190484039, 0.90148051305, 0.89046132, 0.6886465173500002, 0.376367211, 0.046449017107500004, -0.20750974039999998, -0.311195311875, -0.2254481801, 0.0451688944525, 0.4527622656, 0.91544444865, 1.3338827675, 1.6118393242500002, 1.6766462172, 1.495367245175, 1.0831705730999999, 0.50189058, -0.15127033824, -0.762838047675, -1.2261523496000002, -1.4636441166749998, -1.4435054999999999, -1.1522453978, -0.7012447549999999, -0.21831560489250001, 0.16707126207999998, 0.35522526499999996, 0.2999020626000001, 0.018640802842500002, -0.41241175360000004, -0.8776159985249999, -1.2500519825, -1.4220114862, -1.3305537647999999, -0.972388860275, -0.40485736009999995, 0.26696982375, 0.9138471624000001, 1.41121224705, 1.6667864423999998, 1.6407943639999998, 1.35435264, 0.8328108503250001, 0.3946861065, 0.15113255433499995, 0.14296340268000002, 0.33380140625, 0.6251048044, 0.8879437624500002, 1.0019997215999998, 0.890588005825, 0.5421559275, 0.0127536125465, -0.5903845444000001, -1.1388771578249999, -1.5179257586, -1.655924765, -1.5410812032, -1.2210740134250002, -0.7868127085, -0.3456737489249999, 0.0076832095000000005, 0.19892684864250004, 0.3605239854000001, 0.4858786050999999, 0.5715421712, 0.61707916125, 0.6247379460000001, 0.5988963046500001, 0.5454584711999999, 0.47118107844999996, 0.3830789375, 0.2878803886725, 0.19163147520000004, 0.09941991369499999, 0.015240649958999998, -0.058028211249999996, -0.11856501324000002, -0.16548647267250002, -0.19870963093, -0.21880997316749998, -0.22689557999999999, -0.23507921004750001, -0.22893059190000006, -0.20935557546749997, -0.17803851883999997, -0.13740959725, -0.09053918595000002, -0.0409518537275, 0.0076307361279999986, 0.051596849339999994, 0.08777172375, 0.11372174702, 0.12799862676, 0.13028491729249997, 0.12142145994, 0.10330101562499999, 0.07863898624000001, 0.05064660318250001, 0.022646292416999995, -0.002326334224475, -0.0218784411, -0.040585563990000004, -0.05321264584000001, -0.05881495455, -0.05732683775999999, -0.049522343062499995, -0.036870252168, -0.021309732396, -0.0049802213359999995, 0.0100608036665, 0.0220919166, 0.029922671945250005, 0.03300733452800001, 0.03146616505575, 0.026018135735, 0.01783876731875, 0.008367780168000001, -0.000904931774625, -0.008643670668999999, -0.013835999709, -0.01590536 ] }, { "line": { "color": "#d62728", "width": 3 }, "name": "GaBr_multi-frame/frame0", "type": "scatter", "uid": "36f75f84-fd85-4063-9564-ce1c4761ac8f", "x": [ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3, 10.35, 10.4, 10.45, 10.5, 10.55, 10.6, 10.65, 10.7, 10.75, 10.8, 10.85, 10.9, 10.95, 11, 11.05, 11.1, 11.15, 11.2, 11.25, 11.3, 11.35, 11.4, 11.45, 11.5, 11.55, 11.6, 11.65, 11.7, 11.75, 11.8, 11.85, 11.9, 11.95, 12, 12.05, 12.1, 12.15, 12.2, 12.25, 12.3, 12.35, 12.4, 12.45, 12.5, 12.55, 12.6, 12.65, 12.7, 12.75, 12.8, 12.85, 12.9, 12.95, 13, 13.05, 13.1, 13.15, 13.2, 13.25, 13.3, 13.35, 13.4, 13.45, 13.5, 13.55, 13.6, 13.65, 13.7, 13.75, 13.8, 13.85, 13.9, 13.95, 14, 14.05, 14.1, 14.15, 14.2, 14.25, 14.3, 14.35, 14.4, 14.45, 14.5, 14.55, 14.6, 14.65, 14.7, 14.75, 14.8, 14.85, 14.9, 14.95, 15, 15.05, 15.1, 15.15, 15.2, 15.25, 15.3, 15.35, 15.4, 15.45, 15.5, 15.55, 15.6, 15.65, 15.7, 15.75, 15.8, 15.85, 15.9, 15.95, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.4, 16.45, 16.5, 16.55, 16.6, 16.65, 16.7, 16.75, 16.8, 16.85, 16.9, 16.95, 17, 17.05, 17.1, 17.15, 17.2, 17.25, 17.3, 17.35, 17.4, 17.45, 17.5, 17.55, 17.6, 17.65, 17.7, 17.75, 17.8, 17.85, 17.9, 17.95, 18, 18.05, 18.1, 18.15, 18.2, 18.25, 18.3, 18.35, 18.4, 18.45, 18.5, 18.55, 18.6, 18.65, 18.7, 18.75, 18.8, 18.85, 18.9, 18.95, 19, 19.05, 19.1, 19.15, 19.2, 19.25, 19.3, 19.35, 19.4, 19.45, 19.5, 19.55, 19.6, 19.65, 19.7, 19.75, 19.8, 19.85, 19.9, 19.95, 20 ], "y": [ 0.0023786050000000006, 0.009532620000000002, 0.021567397500000002, 0.03854536000000001, 0.0607239375, 0.08810577, 0.12099141249999999, 0.15924080000000004, 0.20326950000000002, 0.252615, 0.3073037, 0.3666636, 0.43008810000000003, 0.4966836, 0.564823125, 0.6335180800000001, 0.6997687049999999, 0.76270815, 0.817706515, 0.864437, 0.8968076775, 0.9154182400000002, 0.9114114549999999, 0.8892936, 0.8365124999999999, 0.7623421, 0.65386197, 0.52432156, 0.36405208, 0.18931050000000002, -0.00926975795, -0.20981299200000003, -0.41655066749999997, -0.6071514299999999, -0.7790724374999999, -0.9156531600000001, -1.0151135, -1.06584167, -1.062654255, -1.01164, -0.88632406, -0.75113766, -0.6246800275, -0.52511096, -0.49158748125, -0.5011597879999999, -0.559639105, -0.6696576, -0.8420907250000002, -1.0720874999999999, -1.3469473575, -1.6480474400000003, -1.944403845, -2.2057353, -2.40478425, -2.5182472, -2.48909139, -2.34765991, -2.0996086625, -1.758645, -1.3426577324999998, -0.8812216240000001, -0.40043042549999996, 0.0744731648, 0.52339405625, 0.925223112, 1.2658867775, 1.5366129999999998, 1.7409429675000003, 1.87779025, 1.9545847375, 1.9811563200000002, 1.9773520949999999, 1.9467180000000002, 1.8985921874999998, 1.8398148399999998, 1.7788482250000002, 1.71244827, 1.6390582275, 1.555, 1.459993086, 1.346196911, 1.210073517, 1.049398308, 0.8672492625, 0.661082215, 0.4340651197499999, 0.19130100000000003, -0.06100219532500001, -0.316386, -0.5667537102499999, -0.8038789799999999, -1.0262579062500001, -1.2220364720000003, -1.38500583125, -1.5103296, -1.59735887325, -1.6415372890000002, -1.6428289185, -1.6028250000000002, -1.5356687409999998, -1.434943089, -1.3059387252500003, -1.154708048, -0.9971919562499999, -0.830028601, -0.6586609699999999, -0.48789345600000006, -0.32106323325, -0.161530765, -0.011561163929999998, 0.12749721599999997, 0.25939776585, 0.3820824, 0.49575235, 0.600568192, 0.68966208675, 0.7684481550000001, 0.8356370697500001, 0.8893907999999999, 0.94676392525, 0.9893283169999998, 1.01447131275, 1.0197670720000003, 1.00327734375, 0.963812115, 0.9011836815, 0.8163532800000002, 0.7115067562499999, 0.590008575, 0.47838432625, 0.3455161776, 0.18856739335000003, 0.01271994062, -0.168484201875, -0.33652870879999996, -0.47386563524999986, -0.570005964, -0.625188918, -0.6498674, -0.6995428065, -0.730834098, -0.7447423555, -0.7427946240000001, -0.72675540625, -0.698370779, -0.6591555337499999, -0.610256392, -0.5523952915500001, -0.48597075, -0.41471028825, -0.3703241968, -0.337011765075, -0.2901854186, -0.20780183500000002, -0.0810565236, 0.08036744827499999, 0.25100553080000004, 0.3993310917, 0.5003872, 0.5890041790500001, 0.663192441, 0.7201660295, 0.7578822119999999, 0.7752114562500001, 0.7720020070000002, 0.74903578975, 0.707949648, 0.6510694157499999, 0.5811573250000001, 0.40657198117500004, 0.24253333, 0.1287665296, 0.08139172769999999, 0.08662128125, 0.10770974720000001, 0.10216856834999997, 0.0415868342, -0.07486523834499999, -0.21942008999999998, -0.27472637477500006, -0.32547145539999994, -0.37190204280000005, -0.4142019215999999, -0.45244252125, -0.48657371220000006, -0.516422192, -0.5417166044, -0.5621128001999999, -0.5772281699999999, -0.586644576825, -0.49791743999999993, -0.34178471807500005, -0.17700587159999998, -0.0641564454375, -0.038631993960000006, -0.0950278144225, -0.1899061362, -0.261690338175, -0.2587, -0.20699755357500002, -0.1101208151, 0.0275977703225, 0.1933250472, 0.36729534812500003, 0.5259422359000001, 0.6460857917999999, 0.7093954816000001, 0.7062278558499999, 0.6379825725, 0.5173963494000001, 0.36654865719999996, 0.21286794532500003, 0.08382099124999999, 0.0013359833937499998, -0.022908795840000003, 0.00972203025675, 0.08462658085000001, 0.17655283417499998, 0.25457069000000004, 0.2888945150000001, 0.25453091429999997, 0.14050183015, -0.04760811775999999, -0.287609484375, -0.5442173338, -0.77551145, -0.9411313320000001, -1.0105275818, -0.969532685, -0.8237977902, -0.5982429952, -0.332529625575, -0.07335100070999999, 0.134903353875, 0.2592077916, 0.28476700042499997, 0.21820260070000003, 0.08630112004749999, -0.069479856, -0.20152074165000003, -0.2558719724, -0.202197062025, -0.03600901003999999, 0.21986857375, 0.5201017362000001, 0.80680436915, 1.0223164128000002, 1.1218770944999998, 1.08331875, 0.9116732957750001, 0.6377341571999999, 0.311069337975, -0.010835123491, -0.27477939375, -0.44269076480000014, -0.49878058207500003, -0.4516400682, -0.33103970392499993, -0.18039567, -0.0386898328575, 0.041939253069999995, 0.029414636017500002, -0.08491516703999999, -0.2843199575, -0.5305391014, -0.77237710605, -0.9569793848000001, -1.0411698665499998, -1.0003720725, -0.8333588953250001, -0.5619991104, -0.22641910200000004, 0.12318319927999999, 0.43618987500000006, 0.6707049228, 0.800550103275, 0.8189940048000001, 0.73890180045, 0.58950528, 0.3996137249, 0.2338482744, 0.1347967947875, 0.12710216087999998, 0.21212924062500002, 0.3674726198, 0.5514522181, 0.711835776, 0.7970910156, 0.7679444325, 0.6068071098, 0.3229608476, -0.04780415716, -0.4492640754, -0.815513450625, -1.0842830464000002, -1.210026804525, -1.1739711192, -0.9888242305499999, -0.69692625, -0.34716038175, -0.04747487414, 0.1366781240025, 0.17266820608, 0.0680331360625, -0.13207217346, -0.356593447725, -0.5265473752000001, -0.57489587505, -0.4636080225, -0.193838072495, 0.19313146944, 0.624530331975, 1.0123714035, 1.27370667375, 1.350190422, 1.2223883916, 0.9152910207, 0.4934467210749999, 0.046556416, -0.21424284720000003, -0.2949317301, -0.22634333043499996, -0.08040557988, 0.053924995312499995, 0.09830583138, 0.008218295617500001, -0.21465482432, -0.5239622087, -0.84311469, -1.0880064666000002, -1.1911797456000004, -1.120541661675, -0.8875144358999999, -0.54277060125, -0.16129338624, 0.17848844747000006, 0.4153540546999999, 0.5198939849249999, 0.49934865, 0.5032845171750001, 0.47998809090000005, 0.43420128184999995, 0.371323576, 0.29694476025000005, 0.21642647557000003, 0.13462418551750002, 0.05569815167999999, -0.016969680723, -0.0807795625, -0.1338692825925, -0.17504196864000002, -0.20369677468749997, -0.21977199512999998, -0.2237047720625, -0.21641059152000003, -0.19925982042750004, -0.17404575077, -0.142921940545, -0.10829894400000001, -0.06665072063500001, -0.022993242328000006, 0.019149824058749997, 0.05640288471999999, 0.0858645116875, 0.10540160415000002, 0.1138691111025, 0.11123016383999998, 0.09854788535999999, 0.07785263425, 0.0518958185375, 0.023817927564000006, -0.0032249267425999996, -0.026429780014000002, -0.043663007812499995, -0.05368258784000001, -0.056241155945, -0.05205407003999998, -0.042644858285, -0.0300890251, -0.01786942797075, -0.004519266280000001, 0.008150224201249999, 0.018558369792, 0.02554780160625, 0.028507777169999998, 0.027415777083750006, 0.022796426287999997, 0.01560879898025, 0.007082764649999999, -0.0014694654178250002, -0.008838599616000002, -0.01407482153325, -0.01659628076, -0.016237989825, -0.013240210104000002, -0.008182901671000001, -0.0018805049662999997, 0.00474407039925, 0.01078744 ] }, { "line": { "color": "#2ca02c", "width": 3 }, "name": "GaBr_multi-frame/frame2", "type": "scatter", "uid": "283759b6-e362-4a4d-bf93-372812eecd65", "x": [ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3, 10.35, 10.4, 10.45, 10.5, 10.55, 10.6, 10.65, 10.7, 10.75, 10.8, 10.85, 10.9, 10.95, 11, 11.05, 11.1, 11.15, 11.2, 11.25, 11.3, 11.35, 11.4, 11.45, 11.5, 11.55, 11.6, 11.65, 11.7, 11.75, 11.8, 11.85, 11.9, 11.95, 12, 12.05, 12.1, 12.15, 12.2, 12.25, 12.3, 12.35, 12.4, 12.45, 12.5, 12.55, 12.6, 12.65, 12.7, 12.75, 12.8, 12.85, 12.9, 12.95, 13, 13.05, 13.1, 13.15, 13.2, 13.25, 13.3, 13.35, 13.4, 13.45, 13.5, 13.55, 13.6, 13.65, 13.7, 13.75, 13.8, 13.85, 13.9, 13.95, 14, 14.05, 14.1, 14.15, 14.2, 14.25, 14.3, 14.35, 14.4, 14.45, 14.5, 14.55, 14.6, 14.65, 14.7, 14.75, 14.8, 14.85, 14.9, 14.95, 15, 15.05, 15.1, 15.15, 15.2, 15.25, 15.3, 15.35, 15.4, 15.45, 15.5, 15.55, 15.6, 15.65, 15.7, 15.75, 15.8, 15.85, 15.9, 15.95, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.4, 16.45, 16.5, 16.55, 16.6, 16.65, 16.7, 16.75, 16.8, 16.85, 16.9, 16.95, 17, 17.05, 17.1, 17.15, 17.2, 17.25, 17.3, 17.35, 17.4, 17.45, 17.5, 17.55, 17.6, 17.65, 17.7, 17.75, 17.8, 17.85, 17.9, 17.95, 18, 18.05, 18.1, 18.15, 18.2, 18.25, 18.3, 18.35, 18.4, 18.45, 18.5, 18.55, 18.6, 18.65, 18.7, 18.75, 18.8, 18.85, 18.9, 18.95, 19, 19.05, 19.1, 19.15, 19.2, 19.25, 19.3, 19.35, 19.4, 19.45, 19.5, 19.55, 19.6, 19.65, 19.7, 19.75, 19.8, 19.85, 19.9, 19.95, 20 ], "y": [ 0.0025273750000000005, 0.010129500000000001, 0.022920975, 0.04096680000000001, 0.064533125, 0.09360539999999999, 0.128459625, 0.16889760000000004, 0.21518055, 0.2667525, 0.323308975, 0.3840516, 0.44778662500000005, 0.5135346999999999, 0.578784375, 0.6426240000000001, 0.7009247049999999, 0.75325059, 0.7937045275, 0.822941, 0.83334888, 0.8272419100000001, 0.7951279974999999, 0.74359584, 0.6628937500000001, 0.5624505900000001, 0.42996237750000005, 0.281456, 0.10948600550000001, -0.068649075, -0.25911443000000006, -0.4412185600000001, -0.6163876125, -0.7659916099999998, -0.887494125, -0.9688636800000001, -1.0058795950000001, -0.9985476600000001, -0.9447045074999999, -0.85726, -0.7248766175, -0.59939397, -0.500496565, -0.4434703240000001, -0.45163726875, -0.5155750379999999, -0.6377162100000001, -0.8145388800000001, -1.0448371675000003, -1.31513125, -1.6071578999999998, -1.8981471600000002, -2.1438077325, -2.3212599300000005, -2.4104031875, -2.3997142399999998, -2.24463663, -1.98256499, -1.6282029400000002, -1.2028409999999998, -0.728084349, -0.23777542500000004, 0.2414084715, 0.6850478080000002, 1.078198875, 1.40217462, 1.6504594075, 1.82297732, 1.9322875575, 1.980825, 1.9810499874999998, 1.94615136, 1.8961514575, 1.83168093, 1.759725, 1.6839928, 1.6085228775000002, 1.5260193, 1.432758852, 1.3242624, 1.19824363125, 1.0487758999999999, 0.8742347670000001, 0.675137484, 0.4556193375, 0.21789170699999996, -0.03163671697499999, -0.28513601600000005, -0.5359348600000001, -0.77600835, -0.9973367267499998, -1.1923977399999999, -1.35991037925, -1.490717142, -1.58191779375, -1.631667456, -1.6428890242499998, -1.6120938260000002, -1.5420182827500002, -1.4368125, -1.3091096315, -1.15702884, -0.9870507510000002, -0.805875824, -0.6225624562500001, -0.43860006900000004, -0.25885502059999993, -0.08726246640000002, 0.07355230075, 0.2223976975, 0.35838400724999997, 0.48137913599999993, 0.5966379095000001, 0.7008547860000001, 0.79417778125, 0.876362368, 0.9445615334999999, 0.9996666180000001, 1.03948466475, 1.0614708, 1.079832314, 1.0761504099999997, 1.04796691875, 0.993624028, 0.91260546875, 0.8057784419999999, 0.67552687475, 0.5257584640000001, 0.36173623364999996, 0.18977390249999998, 0.0140964315225, -0.16124779439999998, -0.32940588467500004, -0.483999491, -0.61960899375, -0.7321456639999999, -0.8190510064999998, -0.8793090900000001, -0.9133519725, -0.9227974000000001, -0.9260669205000001, -0.905897946, -0.8613118799999999, -0.794323584, -0.71009835, -0.6157393050000001, -0.518182199325, -0.42206434280000005, -0.32841717290000005, -0.23479987500000002, -0.12529434512499998, -0.01035255584, 0.10834563037500002, 0.22845800670000002, 0.346960040625, 0.4602314808, 0.564243340125, 0.654824443, 0.7279790355, 0.7802368, 0.8093119422500001, 0.8229396689999999, 0.8164653700000001, 0.784159604, 0.72191851875, 0.6297179788000001, 0.5127462372499999, 0.38070648, 0.24546251632499996, 0.11792211500000001, -0.0018336007665, -0.11518382479999999, -0.21889621665, -0.3105878597999999, -0.3886955625, -0.45238666880000006, -0.50142534435, -0.5360307041000001, -0.5567540283, -0.56437155, -0.5384761765000001, -0.5048909138, -0.47261518695000004, -0.4459012943999999, -0.423008165625, -0.39751236450000005, -0.36155760437499995, -0.30963287920000004, -0.24125338282499997, -0.1614599575, -0.09457516845000002, -0.024998860799999998, 0.045993388994999995, 0.11694069739999997, 0.18622648687499999, 0.25212612880000007, 0.312873306875, 0.3667259772, 0.41205434514999995, 0.447421, 0.479972970225, 0.49458324379999996, 0.48949183447500005, 0.464595822, 0.421552775, 0.36361074420000006, 0.29518461855, 0.22125425920000005, 0.14667861394999998, 0.07554385125, 0.010665907100250002, -0.046659624840000004, -0.09662440090500002, -0.14059371999999998, -0.18057911812500002, -0.21859619040000003, -0.25604408305, -0.29322308, -0.3290939937, -0.36132173, -0.3926364620750001, -0.4138365159, -0.42034183185, -0.40847027199999997, -0.376275375, -0.32410658870000003, -0.254760664225, -0.1731794976, -0.08574405035749999, 0.0007119348124999999, 0.0799693292475, 0.1473647296, 0.20042005852499997, 0.2390277357, 0.26516836, 0.2822199864, 0.29401663049999993, 0.3038426643, 0.31360285815, 0.3233376, 0.33483115690000004, 0.3431586862, 0.34327693282500005, 0.3296002264, 0.297455388125, 0.24447707550000003, 0.17156340889999996, 0.08317093664000001, -0.013200229903499996, -0.10822781249999999, -0.19245387977500006, -0.2580739056, -0.300415039925, -0.31878323340000003, -0.31647992625, -0.29996482560000004, -0.277364519375, -0.2566691199, -0.24397695104999997, -0.24220911, -0.250959467025, -0.26544463189999995, -0.2770633464, -0.27625403519999997, -0.254865836875, -0.20816415200000002, -0.136025471565, -0.0431114582, 0.061996372164999994, 0.16842251025, 0.26499716030000003, 0.3421778496, 0.39353175225000003, 0.41649349449999995, 0.41239824999999997, 0.38582953560000005, 0.343517651225, 0.29303194650000003, 0.2415172707, 0.19462996, 0.15697703423250003, 0.12996826010999998, 0.1102931647925, 0.09180044116, 0.066926557125, 0.0284752325, -0.028554449384999996, -0.10542369024, -0.19871107517499997, -0.3002264875, -0.39791813602500004, -0.4777086128, -0.5260676484250001, -0.5327936648999999, -0.49352747750000003, -0.41131112160000005, -0.29673066555, -0.16643445871, -0.040086737892499995, 0.063648675, 0.1261009633275, 0.14541679764999998, 0.13180352514750002, 0.10425333440000001, 0.0853206695, 0.09472522077000001, 0.143474781455, 0.23014243560000003, 0.340411248225, 0.45014681500000003, 0.531281198925, 0.5590514592, 0.518679725925, 0.40974772169999996, 0.247062312, 0.05773599028, -0.12486285817250001, -0.2687926482, -0.3510016732749999, -0.36272384, -0.287404533225, -0.20960498230000002, -0.16337112850249996, -0.16918430796, -0.228432546875, -0.3234696043, -0.4231046868750001, -0.4918363936, -0.5001951911249999, -0.43322598, -0.29486151930000004, -0.10700545920000003, 0.0962447214375, 0.2775318057, 0.40578034937499996, 0.46371467520000004, 0.4513771512750001, 0.3848394822999999, 0.29069266949999994, 0.198029447, 0.14730535220500002, 0.09018567702000001, 0.030577563344999996, -0.027440254608, -0.079938975375, -0.12346221293000001, -0.15531888034750002, -0.17380936907999994, -0.178364775395, -0.16957889375, -0.14912741844, -0.11958315776000002, -0.08414503095249998, -0.04630958793, -0.00952270105, 0.023151435432000003, 0.049309380855000015, 0.06740272923999999, 0.07683305255499999, 0.077935932, 0.072644183425, 0.06046468443000001, 0.04365012836249999, 0.024687416571999996, 0.00598629884375, -0.010393411617, -0.022944978267250005, -0.030827716223999997, -0.03388489029899999, -0.0325730277, -0.0278210312275, -0.020845439244000005, -0.012950788182749999, -0.005344592022, 0.001010133984375, 0.0054884990720000006, 0.007837597108250001, 0.008153639738999999, 0.00681357492475, 0.0043781719, 0.002592332315325, 0.0008405003514000001, -0.000540464618825, -0.0013471985664, -0.001524245848125, -0.0011469935574, -0.0003802148160750001, 0.0005764630848, 0.001543031586075, 0.0024014574675, 0.0031171365733000003, 0.0037355872064000007, 0.004356234044999999, 0.005090072013, 0.00601176026875, 0.007118113464000001, 0.008303511958250001, 0.009360092359999997, 0.010004907244499999, 0.0099306 ] }, { "line": { "color": "#ff7f0e", "width": 3 }, "name": "GaBr_multi-frame/frame4", "type": "scatter", "uid": "3a1155da-f1c1-48b1-9a33-79f934e113e9", "x": [ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3, 10.35, 10.4, 10.45, 10.5, 10.55, 10.6, 10.65, 10.7, 10.75, 10.8, 10.85, 10.9, 10.95, 11, 11.05, 11.1, 11.15, 11.2, 11.25, 11.3, 11.35, 11.4, 11.45, 11.5, 11.55, 11.6, 11.65, 11.7, 11.75, 11.8, 11.85, 11.9, 11.95, 12, 12.05, 12.1, 12.15, 12.2, 12.25, 12.3, 12.35, 12.4, 12.45, 12.5, 12.55, 12.6, 12.65, 12.7, 12.75, 12.8, 12.85, 12.9, 12.95, 13, 13.05, 13.1, 13.15, 13.2, 13.25, 13.3, 13.35, 13.4, 13.45, 13.5, 13.55, 13.6, 13.65, 13.7, 13.75, 13.8, 13.85, 13.9, 13.95, 14, 14.05, 14.1, 14.15, 14.2, 14.25, 14.3, 14.35, 14.4, 14.45, 14.5, 14.55, 14.6, 14.65, 14.7, 14.75, 14.8, 14.85, 14.9, 14.95, 15, 15.05, 15.1, 15.15, 15.2, 15.25, 15.3, 15.35, 15.4, 15.45, 15.5, 15.55, 15.6, 15.65, 15.7, 15.75, 15.8, 15.85, 15.9, 15.95, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.4, 16.45, 16.5, 16.55, 16.6, 16.65, 16.7, 16.75, 16.8, 16.85, 16.9, 16.95, 17, 17.05, 17.1, 17.15, 17.2, 17.25, 17.3, 17.35, 17.4, 17.45, 17.5, 17.55, 17.6, 17.65, 17.7, 17.75, 17.8, 17.85, 17.9, 17.95, 18, 18.05, 18.1, 18.15, 18.2, 18.25, 18.3, 18.35, 18.4, 18.45, 18.5, 18.55, 18.6, 18.65, 18.7, 18.75, 18.8, 18.85, 18.9, 18.95, 19, 19.05, 19.1, 19.15, 19.2, 19.25, 19.3, 19.35, 19.4, 19.45, 19.5, 19.55, 19.6, 19.65, 19.7, 19.75, 19.8, 19.85, 19.9, 19.95, 20 ], "y": [ 0.0033567250000000005, 0.013442300000000003, 0.030340575, 0.05408240000000001, 0.084800625, 0.1223847, 0.16679722499999997, 0.21762720000000005, 0.274280175, 0.3359625, 0.40097887500000007, 0.46827359999999996, 0.5347160000000001, 0.5991915999999999, 0.656566875, 0.7064448000000002, 0.741610125, 0.76331727, 0.7624455375, 0.743092, 0.69417369, 0.6242075400000001, 0.5231929025, 0.40350095999999996, 0.25503593750000003, 0.095396275, -0.08457876225000001, -0.26271839999999996, -0.44473762, -0.6086047499999999, -0.7580632275000001, -0.8737894400000003, -0.9571112099999999, -0.9973476699999999, -0.994945, -0.9519508800000002, -0.87017747, -0.76537415, -0.642706155, -0.527708, -0.41687917474999997, -0.355001913, -0.35350707424999994, -0.4160047760000001, -0.5509063125, -0.7411342899999999, -0.9719820900000001, -1.2233952, -1.4974316700000003, -1.7584937500000002, -1.9779369524999997, -2.1306844000000003, -2.1800297875, -2.1219075900000006, -1.9519115, -1.6772739199999998, -1.3112557875, -0.8824192500000001, -0.418162087, 0.05244156, 0.5158282762499999, 0.9308755330000001, 1.2766586174999999, 1.5505100800000002, 1.7566071250000002, 1.8868013999999997, 1.9487085675, 1.9537209199999996, 1.9207302300000002, 1.85632825, 1.7722769724999998, 1.6775683200000002, 1.581993585, 1.4818466700000001, 1.37629828125, 1.262399672, 1.1374697565, 0.996204807, 0.83543430225, 0.6535488, 0.45393098625, 0.23582748999999997, 0.003793841190000001, -0.23576742, -0.47732143125000004, -0.7127654629999999, -0.9336418267499997, -1.1317042880000001, -1.3046560285, -1.4431263749999999, -1.5420733282499999, -1.5980476359999995, -1.6163164710000002, -1.5911073560000004, -1.52402241875, -1.418349312, -1.28355931425, -1.1218984630000002, -0.9405578655000001, -0.7471475, -0.5502980454999999, -0.354292614, -0.16526859335000002, 0.011808151680000002, 0.17530549312500002, 0.323327136, 0.45518075524999996, 0.5711773320000001, 0.6755596005, 0.7669948000000001, 0.8464126567499999, 0.9142035839999999, 0.9749163422500001, 1.022505786, 1.05466399375, 1.0685275040000002, 1.06317329625, 1.0336481400000002, 0.9778595330000001, 0.8949528, 0.7921513050000001, 0.6612737939999999, 0.5070938220000001, 0.33608591720000003, 0.155445703125, -0.02770981164, -0.2066721673, -0.3750694912000001, -0.52668765, -0.6555341, -0.76658616025, -0.8492675399999999, -0.9021964892500001, -0.925815849, -0.922130325, -0.8943278399999999, -0.8463082867499999, -0.7821370800000002, -0.70559808975, -0.6198353, -0.53035052625, -0.4316653669, -0.3256789536, -0.21464352000000003, -0.100789119375, 0.01404521898, 0.12853789515, 0.24164766600000004, 0.35207344845000005, 0.457644375, 0.5613172981, 0.652243248, 0.7259189422500001, 0.7782405400000001, 0.8059006062499999, 0.806774904, 0.7801285255, 0.7267894140000001, 0.64912127625, 0.55085952, 0.43958775875000006, 0.31682478509999995, 0.18670169144999998, 0.054237868439999996, -0.07472037375, -0.19405968550000002, -0.29832026629999997, -0.3836438928, -0.44838556522499995, -0.4931373175, -0.5279330965500001, -0.5469549088, -0.5515854842, -0.5433815375999999, -0.523889625, -0.4945186752000001, -0.45647841127499994, -0.41078306000000003, -0.35830008455, -0.29984013, -0.23395203417500005, -0.16775484179999997, -0.10146580942500001, -0.03448631408, 0.0336957959375, 0.10262989890000002, 0.170436283325, 0.23396932760000003, 0.28956067717499995, 0.3340017125, 0.3722648923500001, 0.40010250239999995, 0.416588159875, 0.42119200319999994, 0.413808013125, 0.39477049920000007, 0.364828855625, 0.3251109312, 0.277059486275, 0.222353, 0.16013441362500003, 0.09406423708, 0.0266862272425, -0.03957556752, -0.10256957700000001, -0.1605194745, -0.21207148447499996, -0.2562764672, -0.29253165699999994, -0.3204780075, -0.33990336567500007, -0.35064185200000003, -0.352522801125, -0.34535679519999996, -0.32898101375, -0.3033421488, -0.268610959925, -0.2253053435, -0.17439219112499998, -0.117342533, -0.05726631670500001, 0.006346386926999999, 0.0710297955375, 0.13400880639999999, 0.19239778125, 0.24343076980000003, 0.284701589675, 0.31438233720000003, 0.33137074592499993, 0.33538335500000005, 0.32692950675000004, 0.30722873759999997, 0.27803297015, 0.24141372839999997, 0.199532066875, 0.154438046, 0.107899806465, 0.06133044134000001, 0.015767680839999996, -0.028062144, -0.07006485273, -0.11027981865999999, -0.14848461540000002, -0.1841567552, -0.216337603125, -0.24361320960000002, -0.26424675647499996, -0.27643434080000007, -0.2786479942499999, -0.269975, -0.2503990495250001, -0.2209351788, -0.183566610425, -0.14101713731999999, -0.0963423405, -0.05245845504000001, -0.01167866859425, 0.024634670759999998, 0.05622226312499999, 0.083843604, 0.11077223931, 0.13711724804999997, 0.1643975936725, 0.1929551184, 0.22156865312500001, 0.2474726478, 0.266779478025, 0.27525829760000003, 0.26929688857499995, 0.24682482, 0.20798491200000002, 0.15534993855999998, 0.09363935353500001, 0.028933351949999995, -0.0324355625, -0.08508345012000001, -0.125591178135, -0.15309342128, -0.1692856877625, -0.177831976, -0.18326986281750005, -0.19092599064000002, -0.203820498325, -0.22188263959999996, -0.24164437500000002, -0.2568680686, -0.260003926175, -0.2441518848, -0.2050601327925, -0.142601642, -0.061363028137500004, 0.02990570852, 0.11989285019500001, 0.19704296303999996, 0.25204615625, 0.27989588320000003, 0.2809633068, 0.26081290780000005, 0.228730223475, 0.1953126, 0.16949340626750004, 0.15852737265, 0.16081723485, 0.16895677952, 0.171957177625, 0.15855383880000004, 0.12069998184999998, 0.05628684292000001, -0.029684326792499997, -0.12583934625, -0.21693359648000002, -0.28749090239999997, -0.32563670987500004, -0.3260865508, -0.29150568562499996, -0.23183517592, -0.16172347948500002, -0.09675089262, -0.049417940027499996, -0.025980416, -0.02688648813, -0.040706597610000006, -0.05249835279999999, -0.0481852962, -0.019095626875, 0.03519728275, 0.10654672882500002, 0.18047081519999997, 0.24026795974999995, 0.27177383475, 0.2673630778125, 0.22804877148000005, 0.16310801621249998, 0.08738962372, 0.01714116233125, -0.03440957184, -0.060441137877500016, -0.06194966582999999, -0.04685041867499999, -0.0271152805, -0.032265942582500005, -0.03572548416, -0.03757797296749999, -0.03795804703999999, -0.037038794624999996, -0.03501842645, -0.032105253715000004, -0.028505429243999993, -0.024410351561749997, -0.019989794999999998, -0.015387681699, -0.010723085824, -0.006094875407999998, -0.0015899906106, 0.0027073698700000003, 0.006706647332000001, 0.010304410961250001, 0.013382276100999999, 0.015809703389, 0.0174532644, 0.018334307625749998, 0.018311924755000004, 0.017300577912749998, 0.015276490683999997, 0.012294669125, 0.008497297926000002, 0.0041116847752500005, -0.0005625580671999999, -0.0051758200124999995, -0.00935841555, -0.012754744136750002, -0.015057839808000002, -0.01604119109525, -0.015583620129000001, -0.01368502734375, -0.010471331536000002, -0.0061875860150000005, -0.0011802182678999997, 0.004130827878, 0.009287086, 0.014105766143250001, 0.018341515889, 0.02162837624375, 0.02364696576, 0.024151336824999998, 0.022992056997, 0.020134232957250003, 0.015668657155999997, 0.009813734303749998, 0.0029077603425, -0.0046095914715, -0.012226045664000004, -0.019394315378999997, -0.025575907179999996, -0.030287690018750004, -0.033146511552000005, -0.03390788205325, -0.03249317491399999, -0.0290026809765, -0.02371164 ] }, { "line": { "color": "#9467bd", "width": 3 }, "name": "GaBr_multi-frame/frame3", "type": "scatter", "uid": "33f26849-f84f-4b71-8931-3d6eda7c6931", "x": [ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3, 10.35, 10.4, 10.45, 10.5, 10.55, 10.6, 10.65, 10.7, 10.75, 10.8, 10.85, 10.9, 10.95, 11, 11.05, 11.1, 11.15, 11.2, 11.25, 11.3, 11.35, 11.4, 11.45, 11.5, 11.55, 11.6, 11.65, 11.7, 11.75, 11.8, 11.85, 11.9, 11.95, 12, 12.05, 12.1, 12.15, 12.2, 12.25, 12.3, 12.35, 12.4, 12.45, 12.5, 12.55, 12.6, 12.65, 12.7, 12.75, 12.8, 12.85, 12.9, 12.95, 13, 13.05, 13.1, 13.15, 13.2, 13.25, 13.3, 13.35, 13.4, 13.45, 13.5, 13.55, 13.6, 13.65, 13.7, 13.75, 13.8, 13.85, 13.9, 13.95, 14, 14.05, 14.1, 14.15, 14.2, 14.25, 14.3, 14.35, 14.4, 14.45, 14.5, 14.55, 14.6, 14.65, 14.7, 14.75, 14.8, 14.85, 14.9, 14.95, 15, 15.05, 15.1, 15.15, 15.2, 15.25, 15.3, 15.35, 15.4, 15.45, 15.5, 15.55, 15.6, 15.65, 15.7, 15.75, 15.8, 15.85, 15.9, 15.95, 16, 16.05, 16.1, 16.15, 16.2, 16.25, 16.3, 16.35, 16.4, 16.45, 16.5, 16.55, 16.6, 16.65, 16.7, 16.75, 16.8, 16.85, 16.9, 16.95, 17, 17.05, 17.1, 17.15, 17.2, 17.25, 17.3, 17.35, 17.4, 17.45, 17.5, 17.55, 17.6, 17.65, 17.7, 17.75, 17.8, 17.85, 17.9, 17.95, 18, 18.05, 18.1, 18.15, 18.2, 18.25, 18.3, 18.35, 18.4, 18.45, 18.5, 18.55, 18.6, 18.65, 18.7, 18.75, 18.8, 18.85, 18.9, 18.95, 19, 19.05, 19.1, 19.15, 19.2, 19.25, 19.3, 19.35, 19.4, 19.45, 19.5, 19.55, 19.6, 19.65, 19.7, 19.75, 19.8, 19.85, 19.9, 19.95, 20 ], "y": [ 0.0023375650000000006, 0.009362620000000002, 0.0211456125, 0.03772584000000001, 0.0592626875, 0.08574119999999999, 0.11733797249999998, 0.15389968000000004, 0.19539306, 0.241497, 0.291830825, 0.34578215999999995, 0.4020666325, 0.4599796599999999, 0.516920625, 0.5722905600000001, 0.6217697725, 0.66529269, 0.6965919174999999, 0.716795, 0.7164166275, 0.6990775000000001, 0.6576699924999999, 0.59702688, 0.5077640625000001, 0.39946192, 0.2623324725000001, 0.11153556399999999, -0.0571816925, -0.22794525, -0.4032235875000001, -0.5647052800000001, -0.7108148025, -0.82660069, -0.9082548125, -0.9487076400000001, -0.9448974900000001, -0.90234116, -0.8219978324999999, -0.720796, -0.5982678999999999, -0.50032332, -0.443478952, -0.43857950400000006, -0.501309, -0.6211465099999999, -0.7955382150000001, -1.01506752, -1.2850872300000002, -1.5747125, -1.8548316224999997, -2.0967154000000003, -2.2570806575, -2.3186355300000003, -2.2659745625, -2.09545952, -1.810813905, -1.4377736, -0.9997170925000001, -0.5244048, -0.031631383774999994, 0.4416602240000001, 0.86349564, 1.22211328, 1.5183805, 1.73585511, 1.8766713400000001, 1.9484726799999998, 1.9702208250000004, 1.94726, 1.8931475499999997, 1.81989504, 1.74274287, 1.65958394, 1.57258125, 1.48080756, 1.382986682, 1.2725552969999998, 1.1448022325, 0.9957152, 0.82633006575, 0.632967102, 0.4176025687500001, 0.184569084, -0.060191655625, -0.31069486599999996, -0.5584654192499998, -0.7945866720000001, -1.0136444292500002, -1.20708225, -1.3682468572499997, -1.4918138559999996, -1.5798890452500003, -1.6260912890000003, -1.62993981875, -1.5923197439999999, -1.520174494, -1.4129812970000002, -1.27601424225, -1.1154674999999998, -0.9421159052499999, -0.757575063, -0.5683983930000001, -0.380661008, -0.200022440625, -0.027952471359999998, 0.13268904417499996, 0.28008354960000004, 0.4154251055, 0.537327725, 0.64611324, 0.7422911999999999, 0.831287438, 0.9085276170000001, 0.9732079125, 1.023904044, 1.0597886909999998, 1.0773695, 1.07394545825, 1.0471428, 1.0066931985, 0.9370110569999999, 0.8393947425000001, 0.7171673920000001, 0.57478515625, 0.41694345, 0.2481414392, 0.07286865920000002, -0.103757051025, -0.275384655, -0.43886683349999994, -0.5854159079999999, -0.7097224802500001, -0.807921242, -0.87783901875, -0.91902, -0.9326081487499999, -0.9210392550000002, -0.88763089125, -0.8361311, -0.77913141975, -0.7056442209999999, -0.6178358615, -0.519167232, -0.41381667812500006, -0.3056357357, -0.19717996409999997, -0.08923361040000001, 0.018898545747500002, 0.128395125, 0.24639045612500002, 0.3627830512, 0.47407789755000007, 0.5762756769, 0.6651321250000001, 0.73649862, 0.7866605105, 0.812727984, 0.8128979144999999, 0.786688, 0.7394613275, 0.6710787629999999, 0.581590760425, 0.4724067232, 0.347269168125, 0.21246502680000004, 0.0760867698, -0.05344863552, -0.16911039502499997, -0.26657071, -0.35427664575, -0.42654507039999995, -0.4827607558, -0.5230496897999999, -0.54808490625, -0.5588945472000001, -0.5566889171249999, -0.5427350385, -0.5182727872999999, -0.48448449000000005, -0.43317822737500006, -0.38064113359999996, -0.32912738032500005, -0.27789851199999993, -0.224119845625, -0.1646363097, -0.09783451975, -0.024792755680000004, 0.050731232107499996, 0.123442145, 0.18867699592500004, 0.2499572736, 0.30556285925, 0.35380944969999994, 0.39313857375, 0.4222033648000001, 0.43995434759999996, 0.445710276, 0.4392047907499999, 0.420619, 0.3887909433, 0.34374105679999994, 0.28778099105, 0.22379420159999996, 0.1549419725, 0.08435863049, 0.014874066247499998, -0.05119483200000001, -0.1121597037, -0.16697141999999998, -0.21512769805, -0.2565167564, -0.291208866075, -0.3192565099, -0.340533796875, -0.3546427536, -0.3609136405, -0.35849491780000003, -0.34651942402499997, -0.32431388, -0.29563457300000007, -0.25583324399999996, -0.205364608075, -0.14554928639999998, -0.0785840484375, -0.007417103492000001, 0.06448596705, 0.13347021960000002, 0.1960559226, 0.24928728249999998, 0.29101088362500005, 0.320044232, 0.336207705325, 0.34021682369999995, 0.33346787875, 0.31773871800000003, 0.294880228875, 0.2665397581, 0.23397190007499996, 0.19795968, 0.16088727405, 0.12052251585, 0.07627344567750001, 0.027660723279999997, -0.025234960187500002, -0.08140793868000001, -0.13875459896999998, -0.19415121440000002, -0.24380343224999992, -0.2838015625, -0.31080125827500005, -0.322663824, -0.318932843625, -0.3010090754, -0.2719800675, -0.23609999360000003, -0.19800829709999998, -0.16183888371, -0.13039942671, -0.104603902, -0.0816408045675, -0.059375858729999995, -0.033119154735, 0.0014954409359999997, 0.047210687437499996, 0.10414487195000002, 0.1693254545775, 0.2368953036, 0.29898841589999997, 0.347138865, 0.37394321175, 0.37463832959999993, 0.348246068625, 0.29798039779999996, 0.230794265625, 0.15608614752000002, 0.083840627365, 0.02254683416, -0.02258867979, -0.050725387999999996, -0.06452159933250001, -0.07160738579999999, -0.0818495564425, -0.10430696052, -0.1444998841875, -0.20243160366000001, -0.27191860202499996, -0.3414949632, -0.39676233445, -0.4237021075, -0.41216571427500004, -0.35865662119999997, -0.267709375375, -0.15137666334, -0.026879846875, 0.08708438992000002, 0.17454311770499997, 0.22591071570000001, 0.24017578649999996, 0.225018, 0.19132145219250002, 0.16367447039, 0.1580613581925, 0.18186059455999998, 0.23145108381249999, 0.293010453, 0.34633915652499997, 0.3706431344, 0.35063248927499996, 0.2811717825, 0.16912706600750002, 0.03191398704, -0.10683715388000001, -0.22323514743999998, -0.29902942125, -0.32586757400000005, -0.306835624825, -0.25502967179999997, -0.18969446091749997, -0.131064064, -0.0933842550825, -0.09375547937000002, -0.12886926737999996, -0.18325870272, -0.23410566562500001, -0.25812713415, -0.23853854981250006, -0.17010402096, -0.06086634972249999, 0.0698762295, 0.19671102354750003, 0.29486297800000005, 0.34663624177499996, 0.3457482997, 0.29844555375000004, 0.22116721536, 0.13555936547000003, 0.062348377389999994, 0.015827178692249998, 0.00048987523, -0.021305964138250002, -0.038635256070000006, -0.05044612646499999, -0.05629066015999999, -0.0563592301875, -0.05143478224, -0.042780414632500006, -0.03196812563999999, -0.0206733446305, -0.010463735625, -0.0026054886282749997, 0.0020844524800000003, 0.0033224186147499993, 0.0013681844235, -0.003039121230625, -0.008809324308, -0.014674892069250002, -0.019385445819999996, -0.021895013125499997, -0.0215166132, -0.018907101000999998, -0.013106693270000002, -0.004700694363749999, 0.0052946726559999985, 0.0155923209375, 0.024830619984000005, 0.03177582888, 0.035499708799999995, 0.0355070443725, 0.03179701005, 0.024849396447750003, 0.015545401236000001, 0.005033513308749999, -0.005434462352, -0.01467277734375, -0.021711430416000006, -0.025905675168750007, -0.02699303802299999, -0.025093795417999998, -0.0206598856, -0.015074969850000002, -0.008255030123000003, -0.0009718256266749999, 0.006049529856000001, 0.0122166303875, 0.017123551545, 0.020567627001000004, 0.022530640855999998, 0.02313270608175, 0.02257141185, 0.02106038969675, 0.018780045760000003, 0.015850367237249998, 0.012329502873, 0.00823675478125, 0.003592419336, -0.001536510439875, -0.006996665078999999, -0.012526531683750002, -0.0177598 ] }, { "line": { "color": "black", "width": 3 }, "name": "exp data", "type": "scatter", "uid": "99ce0edb-1b67-44f7-b224-017e2a8c3746", "x": [ 0, 0.05, 0.1, 0.15000000000000002, 0.2, 0.25, 0.30000000000000004, 0.35000000000000003, 0.4, 0.45, 0.5, 0.55, 0.6000000000000001, 0.65, 0.7000000000000001, 0.75, 0.8, 0.8500000000000001, 0.9, 0.9500000000000001, 1, 1.05, 1.1, 1.1500000000000001, 1.2000000000000002, 1.25, 1.3, 1.35, 1.4000000000000001, 1.4500000000000002, 1.5, 1.55, 1.6, 1.6500000000000001, 1.7000000000000002, 1.75, 1.8, 1.85, 1.9000000000000001, 1.9500000000000002, 2, 2.0500000000000003, 2.1, 2.15, 2.2, 2.25, 2.3000000000000003, 2.35, 2.4000000000000004, 2.45, 2.5, 2.5500000000000003, 2.6, 2.6500000000000004, 2.7, 2.75, 2.8000000000000003, 2.85, 2.9000000000000004, 2.95, 3, 3.0500000000000003, 3.1, 3.1500000000000004, 3.2, 3.25, 3.3000000000000003, 3.35, 3.4000000000000004, 3.45, 3.5, 3.5500000000000003, 3.6, 3.6500000000000004, 3.7, 3.75, 3.8000000000000003, 3.85, 3.9000000000000004, 3.95, 4, 4.05, 4.1000000000000005, 4.15, 4.2, 4.25, 4.3, 4.3500000000000005, 4.4, 4.45, 4.5, 4.55, 4.6000000000000005, 4.65, 4.7, 4.75, 4.800000000000001, 4.8500000000000005, 4.9, 4.95, 5, 5.050000000000001, 5.1000000000000005, 5.15, 5.2, 5.25, 5.300000000000001, 5.3500000000000005, 5.4, 5.45, 5.5, 5.550000000000001, 5.6000000000000005, 5.65, 5.7, 5.75, 5.800000000000001, 5.8500000000000005, 5.9, 5.95, 6, 6.050000000000001, 6.1000000000000005, 6.15, 6.2, 6.25, 6.300000000000001, 6.3500000000000005, 6.4, 6.45, 6.5, 6.550000000000001, 6.6000000000000005, 6.65, 6.7, 6.75, 6.800000000000001, 6.8500000000000005, 6.9, 6.95, 7, 7.050000000000001, 7.1000000000000005, 7.15, 7.2, 7.25, 7.300000000000001, 7.3500000000000005, 7.4, 7.45, 7.5, 7.550000000000001, 7.6000000000000005, 7.65, 7.7, 7.75, 7.800000000000001, 7.8500000000000005, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 8.200000000000001, 8.25, 8.3, 8.35, 8.4, 8.450000000000001, 8.5, 8.55, 8.6, 8.65, 8.700000000000001, 8.75, 8.8, 8.85, 8.9, 8.950000000000001, 9, 9.05, 9.1, 9.15, 9.200000000000001, 9.25, 9.3, 9.35, 9.4, 9.450000000000001, 9.5, 9.55, 9.600000000000001, 9.65, 9.700000000000001, 9.75, 9.8, 9.850000000000001, 9.9, 9.950000000000001, 10, 10.05, 10.100000000000001, 10.15, 10.200000000000001, 10.25, 10.3, 10.350000000000001, 10.4, 10.450000000000001, 10.5, 10.55, 10.600000000000001, 10.65, 10.700000000000001, 10.75, 10.8, 10.850000000000001, 10.9, 10.950000000000001, 11, 11.05, 11.100000000000001, 11.15, 11.200000000000001, 11.25, 11.3, 11.350000000000001, 11.4, 11.450000000000001, 11.5, 11.55, 11.600000000000001, 11.65, 11.700000000000001, 11.75, 11.8, 11.850000000000001, 11.9, 11.950000000000001, 12, 12.05, 12.100000000000001, 12.15, 12.200000000000001, 12.25, 12.3, 12.350000000000001, 12.4, 12.450000000000001, 12.5, 12.55, 12.600000000000001, 12.65, 12.700000000000001, 12.75, 12.8, 12.850000000000001, 12.9, 12.950000000000001, 13, 13.05, 13.100000000000001, 13.15, 13.200000000000001, 13.25, 13.3, 13.350000000000001, 13.4, 13.450000000000001, 13.5, 13.55, 13.600000000000001, 13.65, 13.700000000000001, 13.75, 13.8, 13.850000000000001, 13.9, 13.950000000000001, 14, 14.05, 14.100000000000001, 14.15, 14.200000000000001, 14.25, 14.3, 14.350000000000001, 14.4, 14.450000000000001, 14.5, 14.55, 14.600000000000001, 14.65, 14.700000000000001, 14.75, 14.8, 14.850000000000001, 14.9, 14.950000000000001, 15, 15.05, 15.100000000000001, 15.15, 15.200000000000001, 15.25, 15.3, 15.350000000000001, 15.4, 15.450000000000001, 15.5, 15.55, 15.600000000000001, 15.65, 15.700000000000001, 15.75 ], "y": [ 0, -0.006947783991593109, -0.025763283982105645, -0.053292067664789874, -0.08623314550482986, -0.12114353142150244, -0.15444280347033792, -0.18241766452528077, -0.2012265029608509, -0.20690395333430364, -0.19538161379569585, -0.1642877254273284, -0.11635778989761243, -0.057862557165221346, 0.008213746139586227, 0.08109988442030071, 0.15857376930434358, 0.23504037974042383, 0.2960691825297694, 0.33735701773250065, 0.38090757723888846, 0.4305614691491153, 0.46502619980655335, 0.4775979859238685, 0.4894191039867809, 0.4757151110442066, 0.4395368275247087, 0.395190763563946, 0.3365803725472633, 0.24426087706671182, 0.15553994558950335, 0.022676598865667252, -0.09416513538070559, -0.18179519659237522, -0.23002110706336867, -0.2502869900616262, -0.22999771303290678, -0.1857375823153545, -0.12488684738335686, -0.04778898142442309, 0.03220290632809443, 0.11484099454787428, 0.19068632606113958, 0.2536923023990933, 0.28628687895608584, 0.29397406730636366, 0.27138993543999956, 0.2266525225157024, 0.14591245774580894, 0.05466449424084181, -0.06410420076202823, -0.19995681755243305, -0.36118972198726906, -0.5370609757239602, -0.7380856860758614, -0.9452953129360673, -1.1635157498813358, -1.3790664651977291, -1.58644461182568, -1.7612272894062877, -1.8586966589296003, -1.8479090672830258, -1.7095531507452462, -1.4526149881212185, -1.0993748648558799, -0.6665047360335346, -0.2007710062917252, 0.33113088964051407, 0.781284891707658, 1.1187270922584183, 1.3387463854253328, 1.4594565532503634, 1.5278245146123104, 1.5628942865701263, 1.5861793871794985, 1.6101845714167111, 1.631527358539467, 1.655559138831493, 1.6836808093240097, 1.6969683193032277, 1.692828000384282, 1.6646837972998676, 1.5750219214805596, 1.4641189830864094, 1.3143359255511364, 1.1168922702942168, 0.9223341429152543, 0.678551728491503, 0.40444569605776315, 0.1307301504812502, -0.1533463345090972, -0.4408754791384651, -0.7287628087460729, -1.0051937178304415, -1.2778212465820509, -1.5260677731636534, -1.7254942137131752, -1.8759833028118078, -1.9871949087423424, -2.069709799410556, -2.056135928051715, -2.012193243025943, -1.9219175890634264, -1.7811239352329102, -1.6296207365885174, -1.458305377774245, -1.2728400600664147, -1.069108757742494, -0.8591338532296452, -0.6592123204648722, -0.4609408460429888, -0.25998688923025626, -0.06757725254197676, 0.12426509536203563, 0.332464979975885, 0.536608207919891, 0.7553795511553894, 0.9892928245618388, 1.2314016402400056, 1.414068440833541, 1.4961192222024693, 1.5201931427147288, 1.5099834280977749, 1.477795868648565, 1.4456167751826055, 1.4054772429804652, 1.3358066719401496, 1.271875460759496, 1.110503997699599, 0.9897917383391674, 0.8001014191400732, 0.648406531273679, 0.4779853848697888, 0.3144411484519972, 0.16089846841064204, -0.0048450785159550435, -0.09243468041977818, -0.18502014148912027, -0.273790706779291, -0.3698131298681185, -0.5016522207513318, -0.5877414960019663, -0.6403012667171794, -0.6956685260862129, -0.7126015812601928, -0.7236103450421262, -0.730288720994046, -0.6798820414414182, -0.6451172069871671, -0.6025989969037268, -0.5602639697397321, -0.5054963063554783, -0.44099444456171605, -0.3910189562684526, -0.27980267112284246, -0.23952438706527246, -0.15615811727201726, -0.04512224267709155, -0.012951367667283541, 0.06193626502967111, 0.1262148802037521, 0.21883219034979046, 0.2386506099966761, 0.24696861186441715, 0.25816418498478333, 0.2293289042887412, 0.20259383420819949, 0.23518846215661288, 0.16005791954285564, 0.0762741285647715, -0.029521923833994743, -0.033538120298314614, -0.14523048177781292, -0.21115142257591132, -0.24762976560507885, -0.3188721473027624, -0.38505722390562575, -0.3485161722900144, -0.3763912803871632, -0.37676455591158164, -0.42280235608475514, -0.3641738396848649, -0.29247097608022676, -0.25578463777864574, -0.15344422478384204, -0.10290676973056277, -0.03542546539336353, 0.030991589678149502, 0.11184467394964406, 0.2062336076693858, 0.29350523246708243, 0.35339241509224795, 0.4283461972103645, 0.4561045429238724, 0.5266480188492902, 0.6133416213190408, 0.6424702448613859, 0.6850576798890642, 0.7114260828582379, 0.6967755557264577, 0.7257260135062855, 0.724860865556813, 0.6998787343896428, 0.7089657846514268, 0.6425453451009127, 0.5144474213639894, 0.4869014810446863, 0.37239020278635654, 0.2327605558207505, 0.15987108081049514, -0.007402915119536743, -0.09989007507138897, -0.118309058980646, -0.20170804928557298, -0.3204224942419432, -0.39484069462140714, -0.4708930697816888, -0.5984276285608493, -0.6361218397208083, -0.6701125631405784, -0.7387776741737841, -0.7525278598745953, -0.7735800505326278, -0.7688186339223564, -0.7979066150350447, -0.748297055899068, -0.6520199757137765, -0.6530282356977557, -0.5997727993606046, -0.531938714758785, -0.4453075600727584, -0.402438729450724, -0.3704516319450639, -0.21077930230976707, -0.13338178301971684, -0.13225052376274885, 0.03922267290674434, 0.12003300135807884, 0.21782090052590888, 0.29153778382461915, 0.29629921098627016, 0.2302708699321801, 0.271514065692442, 0.3636154793681887, 0.3644093424617126, 0.4084381142270817, 0.443294999072427, 0.3625608248015562, 0.38198523242156146, 0.36646979790575696, 0.45177550488454005, 0.46698521564616396, 0.40415924532208786, 0.42062917634051467, 0.36316228040652343, 0.37129271035191463, 0.4034486346741027, 0.32576359623069845, 0.27554171704707947, 0.2543361871866683, 0.27713492252308425, 0.2330953367345911, 0.21567602629343258, 0.2904340280797325, 0.19987878693665304, 0.20318896457125768, 0.14808431333482452, 0.1878370665503028, 0.23814153640200075, 0.044663019419165166, 0.1295505940657446, 0.1348112596745656, 0.008681102128131626, -0.1256974866509488, -0.08613046514646622, -0.10576728324290996, -0.16801451187459632, 0.00012281819350041173, 0.029500034751674474, -0.09861896154643675, -0.17876325154368466, -0.21300886464188926, -0.3634850064528631, -0.43048186708606334, -0.42741909807914, -0.5095537435651526, -0.5897741347906809, -0.6404557651780154, -0.614286892533725, -0.7361576601196805, -0.800358577920964, -0.7525946743571681, -0.8283728376554621, -0.8506773949516813, -0.7912781490392737, -0.6653609236915012, -0.7431561207791688, -0.7036924963251785, -0.6451356913254861, -0.48155182442515343, -0.41217891645641935, -0.2527548992534009, -0.011731457503696313, 0.14832355292672425, 0.16864410125207935, 0.5257158354261018, 0.6959448830885051, 0.8972081610512822, 1.2208375392803457, 1.464781149644171, 1.836509419653133, 2.129946005550542, 2.3991526860758707, 2.7628384248229403, 3.1399970779254747, 3.7153486285843096 ] } ], "layout": { "height": 500, "hovermode": "closest", "legend": { "bgcolor": "#F2F2F2", "borderwidth": 0.5 }, "plot_bgcolor": "#FDFDFF", "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "GaBr (Ga K-edge): FEFF sim. vs exp." }, "width": 900, "xaxis": { "color": "#004", "gridcolor": "#D8D8D8", "range": [ 2, 14 ], "showgrid": true, "title": { "text": "$\\require{mediawiki-texvc} k \\rm\\,(\\AA^{-1})$" }, "type": "linear", "zerolinecolor": "#DDD" }, "yaxis": { "color": "#004", "gridcolor": "#D8D8D8", "range": [ -3, 3 ], "showgrid": true, "title": { "text": "$\\require{mediawiki-texvc} k^2\\chi(k) \\rm\\,(\\AA^{-2})$" }, "type": "linear", "zerolinecolor": "#DDD" } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from larch.xafs import pre_edge, autobk\n", "from larch.plot.plotly_xafsplots import PlotlyFigure, plotlabels\n", "\n", "fig = PlotlyFigure()\n", "\n", "xmus = glob(f\"{outdir}/**/xmu.dat\", recursive=True)\n", "for xmu in xmus:\n", " sample, abs_at, framestr, sitestr = xmu.split(outdir)[-1].split(os.sep)[2:-1]\n", " gxmu = read_ascii(xmu, labels=[\"energy\", \"erel\", \"k\", \"mu\", \"mu0\", \"chi\"])\n", " fig.add_plot(x=gxmu.k, y=gxmu.chi*gxmu.k**2, label=f\"{sample}/{framestr}\")\n", "\n", "#EXP DATA\n", "gexp = read_ascii(\"../structuredata/struct2xas/GaBr_GaK_SSHADE.data.txt\", labels=[\"energy\", \"mu\"])\n", "pre_edge(gexp)\n", "autobk(gexp)\n", "fig.add_plot(x=gexp.k, y=gexp.chi*gexp.k**2, color=\"black\", label=\"exp data\")\n", "\n", "\n", "\n", "fig.set_style(title=\"GaBr (Ga K-edge): FEFF sim. vs exp.\", width=900, height=500, xaxis_title=plotlabels.k, yaxis_title=plotlabels.chi2)\n", "fig.set_xrange(2, 14)\n", "fig.set_yrange(-3, 3)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "with h5py.File(h5out, \"r\") as f:\n", " print(f.keys())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }