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The EXAFS Equation

The XAFS Equation used with feff:

χ(k) =
∑
j

S2
0Nj fj(k)e−2Rj/λ(k)e−2k2σ2

j

kRj
2 sin[2kRj + δj(k)]

f (k) and δ(k) are photo-electron scattering amplitude and phase:
I Energy dependent k ∼

√
(E − E0).

I Depend on Z of the scattering atom(s).
I Non-trivial: must be calculated or carefully extracted from measured spectra.

λ(k) tells how far the photo-electron can travel.

The sum is over Scattering Paths of the photo-electron, from absorbing atom to neighboring
atom(s) and back. May include multiple scattering!

If we know f (k), δ(k), and λ(k), we can get:

R – near neighbor distance.

N – coordination number.

σ2 – mean-square disorder in R.
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XAFS Analysis with feff and larch (and artemis)

To model XAFS as a Sum of Paths:

χ(k) =
∑
j

S2
0Nj fj(k)e−2Rj/λ(k)e−2k2σ2

j

kRj
2 sin[2kRj + δj(k)]

we may refine these Parameters For Each Path:

XAFS Equation larch Paramaeter Physical Meaning

S2
0Nj s02 Amplitude Factor: Both Nj and S2

0

E0 e0 Energy Shift (where k = 0)
∆R deltar Change in path length Rj = ∆Rj + Reff j

σ2
j sigma2 Mean-square-displacement in Rj

Reff is the starting R value for the feff Path.

Other Parameters: higher order cumulants, energy broadening, . . .

In principle, any parameter for any path could be refined.
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EXAFS Analysis: Modeling the 1st Shell of FeO

FeO has a rock-salt structure.

To model the Fe K edge EXAFS of FeO, we’ll calculate
the feffNNNN.dat files (with f (k) and δ(k)), for Fe-O
based on the FeO crystal structure.

We’ll then refine the values R, N, σ2, and E0 so our model
EXAFS function matches our data. Fe-O octahedra,

R = 2.14 Å.

|χ(R)| for FeO data and 1st shell fit.

Results:

S2
0 = 0.7 (fixed)

N = 5.1 ± 0.4
R = 2.09 ± 0.01Å
∆E0 = -1.3 ± 0.9 eV
σ2 = 0.012 ± 0.002 Å2.
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Analysis Example: 1st Shell of FeO

1st shell fit in k space.

Yes, that is the best fit! But only to the
first shell, completely ignoring R > 2Å.

There is clearly another component in the
XAFS besides just Fe-O.

1st shell fit in R space.

|χ(R)| and Re[χ(R)] for FeO (blue), and
a 1st shell fit (red).

Although the fit to the magnitude is not
perfect, the fit to Re[χ(R)] is very good.
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Fitting Strategies

Data analysis seeks a Model that best matches a Measurement.

We’ll use χ2 (don’t confuse with EXAFS χ!!) to describe how good the match is:

χ2 =

Nfit∑
i

[χmeasured
i − χmodel

i (x)]2

ε2

where

Nfit = number of points in the data to fit.

ε = the estimated noise level in the data.

x is the set of parameters to be varied in the analysis

The Best Fit is the one with lowest χ2.

Questions:

1 How do I know how many independent measurements I have?

2 What is ε for my data?

3 What parameters can/should I vary?
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The Information Content of EXAFS

The number of parameters we can reliably extract from our data is limited:

Nidp ≈
2∆k∆R

π

where ∆k and ∆R are the k- and R-ranges of the usable data.

For a typical range of k = [3.0, 12.5] Å−1 and R = [1.0, 3.0] Å, there are ∼ 12 parameters that can
be determined from EXAFS. That’s not much!

The Fit statistics and confidence in the measured parameters need to reflect this. But we usually
oversample our data (Nfit > Nidp) so we have

χ2 =
Nidp

ε2Nfit

Nfit∑
i

[χmeasured
i − χmodel

i (x)]2

Note: I also assumed ε is a constant.
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Other Fitting Statistics

Other “goodness-of-fit statistics”:

chi-square: As before:

χ2 =
Nidp

ε2Nfit

Nfit∑
i

[χmeasured
i − χmodel

i (x)]2

reduced chi-square: scale by the “degrees of
freedom” :

χ2
ν = χ2/(Nidp − Nvarys)

R-factor: R gives a “fractional misfit” (and not
scaled by the data uncertainty ε):

R =

∑Nfit
i [χmeasured

i − χmodel
i (x)]2∑Nfit

i [χmeasured
i ]2

Akaike Information Criterion: Also weights to
account for degrees of freedom in fit:

AIC = Ndata log(χ2/Ndata) + 2Nvarys

For a “Good Fit”, χ2
ν should be ∼ 1.

This assumes that we have an accurate estimate of ε which never really happens!
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Propagation of uncertainties in χ(k)

Estimating uncertainties in χ(k) has always been a challenge.

We have (by default) estimated the uncertainty in χ(k) as white noise (Newville, Boyanov, and Sayers, J Synch Rad,

1999), using χ(R) between [15, 25] Å.

The “high-R” portion of χ(R) can estimate the “white noise” in the data
pretty well.

This is easy to do, but we know it misses an important component:

uncertainties from background subtraction
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Uncertainties in χ(k) from background subtraction

We can propagate the uncertainties from the fit of the background spline to
estimate the uncertainty in χ(k) from the background subtraction.

This is not white noise. In fact, it tends to have a peak somewhat above 2Rbkg

Using this δχ(k) array as the estimate of the uncertainty of the EXAFS χ(k)
reduces the χ2 statistic by 2× or more.

This is now the default approach in larch.
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Error Bars: the uncertainties in the fit variables

A fit finds the “best-fit” set of values for the variables {x , y , . . .}: these give the lowest χ2 = χ2
0.

Uncertainties in Parameters x are estimated by increasing the χ2 by 1:

Some Parameters are Correlated:

Changing the value for parameter x away
from its best value will change the best
value for another parameter, y .

For EXAFS, (R, E0) and (N, σ2) are
usually very highly correlated (> 0.85).

Increasing χ2 by 1 assumes we have a “Good Fit”, with χ2
ν ≈ 1.

We typically have χ2
ν ∼ 10, so we increase the best χ2 by χ2

ν to estimate error bars.

The reported uncertainties do take the correlation into account!

More rigorous methods for uncertainty analysis is available from the larch Python code.
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Fitting in R- or k-space: What do we model?

The χ2 definition didn’t say anything about what our data χmeasured
i actually is . . .

We usually fit in R-space, so that we can select which “shells” to ignore:

Fitting χ(R) (both real and imaginary parts!) gives more meaningful fit statistics – we know that
we’re not fitting all the spectral features.

Plus: We can have χmeasured
i extend over multiple data sets, multiple k-weightings, etc.

as long as we generate the corresponding χmodel
i (x) to match these data.
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EXAFS Analysis: Second Shell of FeO

Adding the 2nd shell Fe – feffNNNN.dat for Fe-Fe – and refining R, N, σ2:

|χ(R)| data for FeO (blue), and fit
of 1st and 2nd shells (red).

These results are consistent with the
known values for FeO:
6 O at 2.14Å, 12 Fe at 3.03Å.

Fit results: Statistics: R ≈ 0.01 χ2
ν ≈ 3.

Shell N R (Å) σ2 (Å2) ∆E0 (eV)
Fe-O 4.6(0.6) 2.11(.01) 0.011(.002) 1.8(0.7)
Fe-Fe 14.1(1.7) 3.08(.01) 0.015(.002) 1.8(0.7)

These are typical even for a “very good fit” on known structures.
The calculation for f (k) and δ(k) are good, but not perfect!

Uncertainties in χ(k) M Newville Univ of Chicago July-2021



EXAFS Analysis: Second Shell of FeO

Adding the 2nd shell Fe – feffNNNN.dat for Fe-Fe – and refining R, N, σ2:

|χ(R)| data for FeO (blue), and fit
of 1st and 2nd shells (red).

These results are consistent with the
known values for FeO:
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EXAFS Analysis: Second Shell of FeO

Other views of the data and fit:

The Fe-Fe EXAFS extends to higher-k than the
Fe-O EXAFS.

Even in this simple system, there is some overlap
of shells in R-space.

The fit in Re[χ(R)] look especially good – this
is how the fits are done.
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Path Parameters: what can we vary in a fit?

The EXAFS Equation has at least 4 adjustable parameters Per Path:

E0, NS2
0 , R, and σ2.

But Nidp is low:

Nidp = 8 for ∆R = 1 Å and ∆k = 12.5 Å−1

For simple crystalline structures with well-isolated, single-scattering:
path (like FeO), it’s OK to fit N, R, σ2, and E0 for every path.

For more complicated problems, we need a way to limit the number of parameters varied.

We might want to impose relationships between parameters to get more meaningful results. . .
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Constraints and Generalized Variables

Instead of varying the Path Parameters directly, we write them in terms of Generalized Variables.
This allows simple Constraints and model building:

Parameter=Variable

# one variable e0 for 2 paths

params = group(e0 = guess(1.0), ...)

path1 = feffpath(’feo.dat’, e0=’e0’)

path2 = feffpath(’fefe.dat’, e0=’e0’)

Mixed Coordination Shell

# mix O and S in 1st coordination shell

params = group(s02 = param(0.80, vary=False),

sfrac = guess(0.5))

path1 = feffpath(’feo.dat’, s02=’s02*sfrac’)

path2 = feffpath(’fes.dat’, s02=’s02*(1-sfrac)’)

Einstein Temperature

# Use 1 ‘‘theta’’ to set sigma2 for multiple paths

params = group(amp=param(1, vary=True),

theta=param(250, min=0, vary=True), ...)

path1_100K = feffpath(’fefe.dat’, s02=’amp’, ...,

sigma2=’sigma2_eins(100, theta)’)

path1_200K = feffpath(’fefe.dat’, s02=’amp’, ...,

sigma2=’sigma2_eins(200, theta)’)

path1_300K = feffpath(’fefe.dat’, s02=’amp’, ...,

sigma2=’sigma2_eins(300, theta)’)

This allows us to use Prior Knowledge into the data analysis, and consider more complicated problems:

force one R for the same bond for data taken from different edges.

model complex distortions (height of a sorbed atom above a surface).

Also: Each Parameter can have upper and lower bounds, say to ensure that σ2 ≥ 0.
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Example: Cu metal at 3 temperature

A very simple example of a Multi-Data-Set Fit:
Cu metal, at 3 different temperatures: 10K, 50K 150K.

Path Parameters:

E0: Same for all T

S2
0 Same for all T

R: expands linearly with T (slope
+ offset).

σ2: goes as Einstein temperature
(as before).

12 parameters become 5.

Fit range:

R = [1.60, 2.75] Å

k = [1.50, 18.50] Å−1

Cu at three temperatures

# define fitting parameter group

pars = group(amp = param(1, vary=True),

del_e0 = guess(2.0),

theta = param(250, min=10, vary=True),

dr_off = guess(0),

dr_slope = guess(0) )

# define 3 Feff Path, give expressions for Path Parameters

path1_10 = feffpath(’feff0001.dat’,

s02=’amp’, e0=’del_e0’,

deltar=’dr_off + 10*dr_slope’,

sigma2=’sigma2_eins(10, theta)’)

path1_50 = feffpath(’feff0001.dat’,

s02=’amp’, e0=’del_e0’,

deltar=’dr_off + 50*dr_slope’,

sigma2=’sigma2_eins(50, theta)’)

path1_150 = feffpath(’feff0001.dat’,

s02=’amp’, e0=’del_e0’,

deltar=’dr_off + 150*dr_slope’,

sigma2=’sigma2_eins(150, theta)’)
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Example: Cu metal Results

amp 0.91(0.08)
theta 233.5(19.6)K
del e0 0.4(1.3) eV
dr off 0.002(0.003) Å/K
dr slope 0.5(1.8)× 10−5 Å
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Structural Disorder and the Pair Distribution Function

An EXAFS measurement averages billions of snapshots of the local structure:

Each absorbed x-ray generates 1 photo-electron.

the photo-electron / core-hole pair lives for about 10−15 s –
much faster than the thermal vibrations (10−12 s).

An EXAFS measurement samples 104 (dilute fluorescence)
to 1010 absorbed x-rays for each energy point.

So far, we’ve put this in the EXAFS Equation as χ ∼ N exp(−2k2σ2)

More generally, EXAFS samples the

Partial Pair Distribution Function

g(R) = probability that an atom is a distance R
away from the absorber.

Disorder Terms M Newville Univ of Chicago July-2021
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So far, we’ve put this in the EXAFS Equation as χ ∼ N exp(−2k2σ2)

More generally, EXAFS samples the

Partial Pair Distribution Function

g(R) = probability that an atom is a distance R
away from the absorber.
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EXAFS and The Pair Distribution Function

To fully account for a highly disordered local structure, we should use

χ(k) =

〈∑
j

fj(k)e i2kRj+δj (k)

kR2
j

〉
where 〈x〉 =

∫
dR x g(R)/

∫
dR g(R) – averaging over the billions+ of snapshots.

R won’t change too much, so we’ll neglect the changes to 1/R2:

χ ≈
∑
j

fj(k)
e iδj (k)

kR2
j

〈
e i2kRj

〉
each path in the sum now has a g(R) with respect to the absorbing atom.

The the cumulant expansion relates 〈ex〉 to 〈x〉, the moments of g(x):〈
e i2kR

〉
= exp

[ ∞∑
n=1

(2ik)n

n!
Cn

]
.
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The Cumulants and Moments of a Distribution Function

The cumulants Cn of g(R) are related to the moments of g(R): 〈rn〉,
with r = R − R0 and R0 is the centroid of the distribution:

C1 = ∆R deltar = 〈r〉
C2 = σ2 sigma2 = 〈r 2〉 − 〈r〉2
C3 third = 〈r 3〉 − 3〈r 2〉〈r〉+ 2〈r〉3
C4 fourth = 〈r 4〉 − 3〈r 2〉2 − 4〈r 3〉〈r〉+ 12〈r 2〉〈r〉2 − 6〈r〉4

C3 (the third cumulant) can be important in many cases.

But: Sometimes, the cumulant expansion isn’t
good enough. One can also build models by using
paths spaced in R (say, at 0.2 Å steps), and model
the amplitude of each Path with a distribution like
(following GNXAS):

g(R,N,R0, σ, β) =
2N[e−ααq−1]

σβΓ(q)

where α = q + 2(R − R0)/(βσ), and q = 4/β2
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EXAFS Data Analysis with FEFF

Using feff to model EXAFS mostly means paying attention to:

Nidp – not very many Parameters can be varied for a limited k and R range.

Always look at the uncertainties in the Parameters, not just best-fit values.

Check (or require in the fit) that σ2 > 0, N > 0.

Think about how you might combine Parameters for different Paths, ideally making a
physical model.

Try a third cumulant now and then – it might be needed.

For very disordered systems, cumulants might not be enough.

More information on X-rays and X-ray Absorption Spectroscopy:

https://xafs.xrayabsorption.org/

Fundamentals of XAFS M. Newville, Reviews in Mineralogy & Geochemistry 78, 2014.

Introduction to XAFS G. Bunker, Cambridge Univ Press, 2010.

XAFS for Everyone S. Calvin, CRC Press, 2013.

Elements of Modern X-ray Physics J. Als-Nielsen & D. McMorrow, John Wiley & Sons.
2001
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