EXAFS Data Analysis with FEFF

Matthew Newville

Center for Advanced Radiation Sources The University of Chicago

July-2021

Fundamentals of X-ray Absorption Fine-Structure

Virtual XAFS School at Illinois Institute of Technology and Advanced Photon Source

The XAFS Equation used with FEFF:

$$\chi(k) = \sum_{j} \frac{S_0^2 N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2kR_j + \delta_j(k)]$$

- f(k) and $\delta(k)$ are photo-electron scattering amplitude and phase:
 - Energy dependent $k \sim \sqrt{(E E_0)}$.
 - Depend on Z of the scattering atom(s).
 - Non-trivial: must be calculated or carefully extracted from measured spectra.
- $\lambda(k)$ tells how far the photo-electron can travel.
- The sum is over *Scattering Paths* of the photo-electron, from absorbing atom to neighboring atom(s) and back. May include *multiple scattering*!

If we know f(k), $\delta(k)$, and $\lambda(k)$, we can get:

- *R* near neighbor distance.
- N coordination number.
- σ^2 mean-square disorder in *R*.

To model XAFS as a Sum of Paths:

$$\chi(k) = \sum_{j} \frac{S_0^2 N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin[2kR_j + \delta_j(k)]$$

we may refine these Parameters For Each Path:

XAFS Equation	${\rm LARCH} \ Paramaeter$	Physical Meaning
$S_0^2 N_j$	s02	Amplitude Factor: Both N_j and S_0^2
E ₀	e0	Energy Shift (where $k = 0$)
ΔR	deltar	Change in path length $R_j = \Delta R_j + R_{ ext{eff}j}$
σ_j^2	sigma2	Mean-square-displacement in R_j

- R_{eff} is the starting *R* value for the FEFF Path.
- Other Parameters: higher order cumulants, energy broadening, ...
- In principle, any parameter for any path could be refined.

EXAFS Analysis: Modeling the 1st Shell of FeO

FeO has a rock-salt structure.

To model the Fe K edge EXAFS of FeO, we'll calculate the *feffNNNN.dat* files (with f(k) and $\delta(k)$), for Fe-O based on the FeO crystal structure.

We'll then *refine* the values *R*, *N*, σ^2 , and *E*₀ so our model EXAFS function matches our data.

Fe-O octahedra, R = 2.14 Å.

EXAFS Analysis: Modeling the 1st Shell of FeO

FeO has a rock-salt structure.

To model the Fe K edge EXAFS of FeO, we'll calculate the *feffNNN.dat* files (with f(k) and $\delta(k)$), for Fe-O based on the FeO crystal structure.

We'll then *refine* the values *R*, *N*, σ^2 , and *E*₀ so our model EXAFS function matches our data.

Fe-O octahedra, R = 2.14 Å.

Results:

$$\begin{array}{ll} S_0^2 &= 0.7 \mbox{ (fixed)} \\ N &= 5.1 \pm 0.4 \\ R &= 2.09 \pm 0.01 \mbox{\AA} \\ \Delta E_0 &= -1.3 \pm 0.9 \mbox{ eV} \\ \sigma^2 &= 0.012 \pm 0.002 \mbox{ \AA}^2. \end{array}$$

 $|\chi(R)|$ for FeO data and 1st shell fit.

Analysis Example: 1st Shell of FeO

1^{st} shell fit in k space.

Yes, that is the best fit! But only to the first shell, completely ignoring R > 2Å.

There is clearly another component in the XAFS besides just Fe-O.

Analysis Example: 1st Shell of FeO

1^{st} shell fit in k space.

Yes, that is the best fit! But only to the first shell, completely ignoring R > 2Å.

There is clearly another component in the XAFS besides just Fe-O.

1^{st} shell fit in R space.

 $|\chi(R)|$ and $\operatorname{Re}[\chi(R)]$ for FeO (blue), and a 1^{st} shell fit (red).

Although the fit to the magnitude is not perfect, the fit to $\operatorname{Re}[\chi(R)]$ is very good.

Fitting Strategies

Data analysis seeks a *Model* that best matches a *Measurement*.

We'll use χ^2 (don't confuse with EXAFS χ !!) to describe how good the match is:

$$\chi^{2} = \sum_{i}^{N_{\text{fit}}} \frac{[\chi_{i}^{\text{measured}} - \chi_{i}^{\text{model}}(x)]^{2}}{\epsilon^{2}}$$

where

- $N_{\rm fit}$ = number of points in the data to fit.
- $\epsilon =$ the estimated noise level in the data.
- x is the set of parameters to be varied in the analysis

The Best Fit is the one with lowest χ^2 .

Fitting Strategies

Data analysis seeks a *Model* that best matches a *Measurement*.

We'll use χ^2 (don't confuse with EXAFS χ !!) to describe how good the match is:

$$\chi^{2} = \sum_{i}^{N_{\text{fit}}} \frac{[\chi_{i}^{\text{measured}} - \chi_{i}^{\text{model}}(x)]^{2}}{\epsilon^{2}}$$

where

- $N_{\rm fit}$ = number of points in the data to fit.
- $\epsilon =$ the estimated noise level in the data.
- x is the set of parameters to be varied in the analysis

```
The Best Fit is the one with lowest \chi^2.
```

Questions:

- I How do I know how many independent measurements I have?
- 2 What is ϵ for my data?
- What parameters can/should I vary?

The number of parameters we can reliably extract from our data is limited:

$$N_{
m idp} pprox rac{2\Delta k\Delta R}{\pi}$$

where Δk and ΔR are the k- and R-ranges of the usable data.

The number of parameters we can reliably extract from our data is limited:

$$N_{
m idp} pprox rac{2\Delta k\Delta R}{\pi}$$

where Δk and ΔR are the k- and R-ranges of the usable data.

For a typical range of $k = [3.0, 12.5] \text{ Å}^{-1}$ and R = [1.0, 3.0] Å, there are ~ 12 parameters that can be determined from EXAFS. That's not much!

The Fit statistics and confidence in the measured parameters need to reflect this. But we usually oversample our data ($N_{\rm fit} > N_{\rm idp}$) so we have

$$\chi^{2} = \frac{N_{\rm idp}}{\epsilon^{2} N_{\rm fit}} \sum_{i}^{N_{\rm fit}} [\chi_{i}^{\rm measured} - \chi_{i}^{\rm model}(x)]^{2}$$

Note: I also assumed ϵ is a constant.

Other "goodness-of-fit statistics":

chi-square: As before:

$$\chi^{2} = \frac{N_{\rm idp}}{\epsilon^{2}N_{\rm fit}} \sum_{i}^{N_{\rm fit}} [\chi_{i}^{\rm measured} - \chi_{i}^{\rm model}(x)]^{2}$$

R-factor: \mathcal{R} gives a "fractional misfit" (and not scaled by the data uncertainty ϵ):

$$\mathcal{R} = \frac{\sum_{i}^{N_{\text{fit}}} [\chi_{i}^{\text{measured}} - \chi_{i}^{\text{model}}(x)]^{2}}{\sum_{i}^{N_{\text{fit}}} [\chi_{i}^{\text{measured}}]^{2}}$$

reduced chi-square: scale by the "degrees of freedom" :

$$\chi^2_\nu = \chi^2/(\textit{N}_{\rm idp}-\textit{N}_{\rm varys})$$

Akaike Information Criterion: Also weights to account for degrees of freedom in fit:

$$\mathrm{AIC} = \mathit{N}_\mathrm{data} \log(\chi^2/\mathit{N}_\mathrm{data}) + 2\mathit{N}_\mathrm{varys}$$

For a "Good Fit", $\chi^2_
u$ should be $\sim 1.$

This assumes that we have an accurate estimate of ϵ which never really happens!

Other "goodness-of-fit statistics":

chi-square: As before:

$$\chi^{2} = \frac{N_{\rm idp}}{\epsilon^{2}N_{\rm fit}} \sum_{i}^{N_{\rm fit}} [\chi_{i}^{\rm measured} - \chi_{i}^{\rm model}(x)]^{2}$$

R-factor: \mathcal{R} gives a "fractional misfit" (and not scaled by the data uncertainty ϵ):

$$\mathcal{R} = \frac{\sum_{i}^{N_{\text{fit}}} [\chi_{i}^{\text{measured}} - \chi_{i}^{\text{model}}(x)]^{2}}{\sum_{i}^{N_{\text{fit}}} [\chi_{i}^{\text{measured}}]^{2}}$$

reduced chi-square: scale by the "degrees of freedom" :

$$\chi^2_{
u} = \chi^2/(\textit{N}_{
m idp} - \textit{N}_{
m varys})$$

Akaike Information Criterion: Also weights to account for degrees of freedom in fit:

$$\mathrm{AIC} = \mathit{N}_\mathrm{data} \log(\chi^2/\mathit{N}_\mathrm{data}) + 2\mathit{N}_\mathrm{varys}$$

For a "Good Fit", $\chi^2_{
u}$ should be \sim 1.

This assumes that we have an accurate estimate of ϵ which never really happens!

Propagation of uncertainties in $\chi(k)$

Estimating uncertainties in $\chi(k)$ has always been a challenge.

We have (by default) estimated the uncertainty in $\chi(k)$ as white noise (Newville, Boyanov, and Sayers, J Synch Rad, 1999), using $\chi(R)$ between [15, 25] Å.

Propagation of uncertainties in $\chi(k)$

Estimating uncertainties in $\chi(k)$ has always been a challenge.

We have (by default) estimated the uncertainty in $\chi(k)$ as white noise (Newville, Boyanov, and Sayers, J Synch Rad, 1999), using $\chi(R)$ between [15, 25] Å.

The "high-R" portion of $\chi(R)$ can estimate the "white noise" in the data pretty well.

This is easy to do, but we know it misses an important component:

uncertainties from background subtraction

Uncertainties in $\chi(k)$ from background subtraction

We can propagate the uncertainties from the fit of the background spline to estimate the uncertainty in $\chi(k)$ from the background subtraction.

This is not white noise. In fact, it tends to have a peak somewhat above $2R_{bkg}$

Uncertainties in $\chi(k)$ from background subtraction

We can propagate the uncertainties from the fit of the background spline to estimate the uncertainty in $\chi(k)$ from the background subtraction.

This is not white noise. In fact, it tends to have a peak somewhat above $2R_{bkg}$

Uncertainties in $\chi(k)$ from background subtraction

We can propagate the uncertainties from the fit of the background spline to estimate the uncertainty in $\chi(k)$ from the background subtraction.

This is not white noise. In fact, it tends to have a peak somewhat above $2R_{bkg}$

Using this $\delta\chi(k)$ array as the estimate of the uncertainty of the EXAFS $\chi(k)$ reduces the χ^2 statistic by $2\times$ or more.

This is now the default approach in LARCH.

Error Bars: the uncertainties in the fit variables

A fit finds the "best-fit" set of values for the variables $\{x, y, \ldots\}$: these give the lowest $\chi^2 = \chi_0^2$.

Uncertainties in Parameters x are estimated by increasing the χ^2 by 1:

Error Bars: the uncertainties in the fit variables

A fit finds the "best-fit" set of values for the variables $\{x, y, \ldots\}$: these give the lowest $\chi^2 = \chi_0^2$.

Uncertainties in Parameters x are estimated by increasing the χ^2 by 1:

Some Parameters are *Correlated*:

Changing the value for parameter x away from its best value will change the best value for another parameter, y.

For EXAFS, (R, E_0) and (N, σ^2) are usually very highly correlated (> 0.85).

Increasing χ^2 by 1 assumes we have a "Good Fit", with $\chi^2_{\nu} \approx 1$. We typically have $\chi^2_{\nu} \sim 10$, so we increase the best χ^2 by χ^2_{ν} to estimate error bars. The reported uncertainties do take the correlation into account!

More rigorous methods for uncertainty analysis is available from the LARCH Python code.

Fitting in *R*- or *k*-space: What do we model?

The χ^2 definition didn't say anything about what our data χ_i^{measured} actually is ...

Fitting in *R*- or *k*-space: What do we model?

The χ^2 definition didn't say anything about what our data χ_i^{measured} actually is ... We usually fit in *R*-space, so that we can select which "shells" to ignore:

The χ^2 definition didn't say anything about what our data χ_i^{measured} actually is ... We usually fit in *R*-space, so that we can select which "shells" to ignore:

Fitting $\chi(R)$ (both real and imaginary parts!) gives more meaningful fit statistics – we know that we're not fitting all the spectral features.

Plus: We can have χ_i^{measured} extend over multiple data sets, multiple *k*-weightings, etc.

as long as we generate the corresponding $\chi_i^{\text{model}}(x)$ to match these data.

Adding the 2nd shell Fe – feffNNN.dat for Fe-Fe – and refining R, N, σ^2 :

 $|\chi(R)|$ data for FeO (blue), and fit of $1^{
m st}$ and $2^{
m nd}$ shells (red).

These results are consistent with the known values for FeO: 6 O at 2.14Å, 12 Fe at 3.03Å.

Adding the 2nd shell Fe – feffNNNN.dat for Fe-Fe – and refining R, N, σ^2 :

 $|\chi(R)|$ data for FeO (blue), and fit of $1^{\rm st}$ and $2^{\rm nd}$ shells (red).

These results are consistent with the known values for FeO: 6 O at 2.14Å, 12 Fe at 3.03Å.

Fit	resu	lts:

Shell	N	<i>R</i> (Å)	σ^2 (Å ²)	ΔE_0 (eV)
Fe-O	4.6(0.6)	2.11(.01)	0.011(.002)	1.8(0.7)
Fe-Fe	14.1(1.7)	3.08(.01)	0.015(.002)	1.8(0.7)

Adding the 2nd shell Fe – feffNNNN.dat for Fe-Fe – and refining R, N, σ^2 :

 $|\chi(R)|$ data for FeO (blue), and fit of 1^{st} and 2^{nd} shells (red).

These results are consistent with the known values for FeO: 6 O at 2.14Å, 12 Fe at 3.03Å.

Shell	N	R (Å)	σ^2 (Å ²)	ΔE_0 (eV)
Fe-O	4.6(0.6)	2.11(.01)	0.011(.002)	1.8(0.7)
Fe-Fe	14.1(1.7)	3.08(.01)	0.015(.002)	1.8(0.7)

These are typical even for a "very good fit" on known structures. The calculation for f(k) and $\delta(k)$ are good, but not perfect!

Other views of the data and fit:

The Fe-Fe EXAFS extends to higher-k than the Fe-O EXAFS.

Even in this simple system, there is some *overlap* of shells in *R*-space.

Other views of the data and fit:

The Fe-Fe EXAFS extends to higher-k than the Fe-O EXAFS.

Even in this simple system, there is some *overlap* of shells in *R*-space.

The fit in $\operatorname{Re}[\chi(\mathbf{R})]$ look especially good – this is how the fits are done.

The EXAFS Equation has at least 4 adjustable parameters *Per Path*:

 E_0 , NS_0^2 , R, and σ^2 .

But N_{idp} is low:

$$N_{\rm idp} = 8$$
 for $\Delta R = 1$ Å and $\Delta k = 12.5$ Å⁻¹

The EXAFS Equation has at least 4 adjustable parameters *Per Path*:

 E_0 , NS_0^2 , R, and σ^2 .

But N_{idp} is low:

$$N_{\rm idp} = 8$$
 for $\Delta R = 1$ Å and $\Delta k = 12.5$ Å⁻¹

For simple crystalline structures with well-isolated, single-scattering: path (like FeO), it's OK to fit N, R, σ^2 , and E_0 for every path.

For more complicated problems, we need a way to limit the number of parameters varied.

We might want to impose relationships between parameters to get more meaningful results...

Constraints and Generalized Variables

Instead of varying the Path Parameters directly, we write them in terms of *Generalized Variables*. This allows simple *Constraints* and model building:

Parameter=Variable	
<pre># one variable e0 for 2 paths params = group(e0 = guess(1.0),)</pre>	
<pre>path1 = feffpath('feo.dat', e0='e0') path2 = feffpath('fefe.dat', e0='e0')</pre>	

Instead of varying the Path Parameters directly, we write them in terms of *Generalized Variables*. This allows simple *Constraints* and model building:

Parameter=Variable	
<pre># one variable e0 for 2 paths params = group(e0 = guess(1.0),)</pre>	
<pre>path1 = feffpath('feo.dat', e0='e0') path2 = feffpath('fefe.dat', e0='e0')</pre>	

Mixed Coordination Shell

```
path1 = feffpath('feo.dat', s02='s02*sfrac')
path2 = feffpath('fes.dat', s02='s02*(1-sfrac)')
```

Constraints and Generalized Variables

Instead of varying the Path Parameters directly, we write them in terms of *Generalized Variables*. This allows simple *Constraints* and model building:

Einstein Temperature # Use 1 ''theta'' to set sigma2 for multiple paths params = group(amp=param(1, vary=True), ...) path1_100K = feffpath('fefe.dat', s02='amp', ..., sigma2='sigma2_eins(100, theta)') path1_200K = feffpath('fefe.dat', s02='amp', ..., sigma2='sigma2_eins(200, theta)') path1_300K = feffpath('fefe.dat', s02='amp', ..., sigma2='sigma2_eins(300, theta)')

This allows us to use *Prior Knowledge* into the data analysis, and consider more complicated problems:

- force one *R* for the same bond for data taken from different edges.
- model complex distortions (height of a sorbed atom above a surface).

Also: Each Parameter can have upper and lower bounds say to ensure that $\sigma^2 \ge 0$ Parameters and Constraints M Nevville Univ of Chicago A very simple example of a Multi-Data-Set Fit: Cu metal, at 3 different temperatures: 10K, 50K 150K.

Path Parameters:

- E_0 : Same for all T
- S_0^2 Same for all T
- R: expands linearly with T (slope + offset).
- σ²: goes as Einstein temperature (as before).

12 parameters become 5.

Fit range:

- R = [1.60, 2.75] Å
- $k = [1.50, 18.50] \,\text{\AA}^{-1}$

Cu at three temperatures

define 3 Feff Path, give expressions for Path Parameters
path1_10 = feffpath('feff0001.dat',

s02='amp', e0='del_e0', deltar='dr_off + 10*dr_slope', sigma2='sigma2_eins(10, theta)')

amp theta del_e0 dr_off dr_slope	$\begin{array}{l} 0.91(0.08)\\ 233.5(19.6){\rm K}\\ 0.4(1.3){\rm eV}\\ 0.002(0.003){\rm \AA/K}\\ 0.5(1.8)\times 10^{-5}{\rm \AA} \end{array}$	$ \begin{array}{c} 8 \\ \hline \\ \hline$
5.0 -	Cu foil, 50 K	Cu foil, 150 K
	Mandalana	
(¥) -2.5 -	• • • •	
د -5.0 -		ਹਿੰਦ 24 -
-7.5 -		-6 -
0	2 4 6	0 1 2 3 4 5 6 7
	R (Å)	R (Å)

Structural Disorder and the Pair Distribution Function

An EXAFS measurement averages billions of *snapshots* of the local structure:

- Each absorbed x-ray generates 1 photo-electron.
- the photo-electron / core-hole pair lives for about 10^{-15} s much faster than the thermal vibrations $(10^{-12}$ s).
- An EXAFS measurement samples 10⁴ (dilute fluorescence) to 10¹⁰ absorbed x-rays for each energy point.

So far, we've put this in the EXAFS Equation as $\chi \sim N \exp(-2k^2\sigma^2)$

Structural Disorder and the Pair Distribution Function

An EXAFS measurement averages billions of *snapshots* of the local structure:

- Each absorbed x-ray generates 1 photo-electron.
- the photo-electron / core-hole pair lives for about 10^{-15} s much faster than the thermal vibrations (10^{-12} s).
- An EXAFS measurement samples 10⁴ (dilute fluorescence) to 10¹⁰ absorbed x-rays for each energy point.

So far, we've put this in the EXAFS Equation as $\chi \sim N \exp(-2k^2\sigma^2)$

More generally, EXAFS samples the

Partial Pair Distribution Function

g(R) = probability that an atom is a distance R away from the absorber.

EXAFS and The Pair Distribution Function

To fully account for a highly disordered local structure, we should use

$$\chi(k) = \left\langle \sum_{j} \frac{f_{j}(k) e^{i2kR_{j} + \delta_{j}(k)}}{kR_{j}^{2}} \right\rangle$$

where $\langle x \rangle = \int dR \, x \, g(R) / \int dR \, g(R)$ – averaging over the billions+ of snapshots.

R won't change too much, so we'll neglect the changes to $1/R^2$:

$$\chi \approx \sum_{j} f_{j}(k) \frac{e^{i\delta_{j}(k)}}{kR_{j}^{2}} \left\langle e^{i2kR_{j}} \right\rangle$$

each path in the sum now has a g(R) with respect to the absorbing atom.

EXAFS and The Pair Distribution Function

To fully account for a highly disordered local structure, we should use

$$\chi(k) = \left\langle \sum_{j} \frac{f_{j}(k)e^{i2kR_{j}+\delta_{j}(k)}}{kR_{j}^{2}} \right\rangle$$

where $\langle x \rangle = \int dR \, x \, g(R) / \int dR \, g(R)$ – averaging over the billions+ of snapshots. *R* won't change too much, so we'll neglect the changes to $1/R^2$:

$$\chi \approx \sum_{j} f_{j}(k) \frac{e^{i\delta_{j}(k)}}{kR_{j}^{2}} \left\langle e^{i2kR_{j}} \right\rangle$$

each path in the sum now has a g(R) with respect to the absorbing atom.

EXAFS and The Pair Distribution Function

To fully account for a highly disordered local structure, we should use

$$\chi(k) = \left\langle \sum_{j} \frac{f_{j}(k)e^{i2kR_{j}+\delta_{j}(k)}}{kR_{j}^{2}} \right\rangle$$

where $\langle x \rangle = \int dR \, x \, g(R) / \int dR \, g(R)$ – averaging over the billions+ of snapshots. *R* won't change too much, so we'll neglect the changes to $1/R^2$:

$$\chi \approx \sum_{j} f_{j}(k) \frac{e^{i\delta_{j}(k)}}{kR_{j}^{2}} \left\langle e^{i2kR_{j}} \right\rangle$$

each path in the sum now has a g(R) with respect to the absorbing atom.

The *the cumulant expansion* relates $\langle e^x \rangle$ to $\langle x \rangle$, the moments of g(x):

$$\left\langle e^{i2kR}\right\rangle = \exp\left[\sum_{n=1}^{\infty} \frac{(2ik)^n}{n!} C_n\right].$$

The Cumulants and Moments of a Distribution Function

The cumulants C_n of g(R) are related to the moments of g(R): $\langle r^n \rangle$, with $r = R - R_0$ and R_0 is the centroid of the distribution:

$$\begin{array}{lll} C_1 = \Delta R & \text{deltar} &= \langle r \rangle \\ C_2 = \sigma^2 & \text{sigma2} &= \langle r^2 \rangle - \langle r \rangle^2 \\ C_3 & \text{third} &= \langle r^3 \rangle - 3 \langle r^2 \rangle \langle r \rangle + 2 \langle r \rangle^3 \\ C_4 & \text{fourth} &= \langle r^4 \rangle - 3 \langle r^2 \rangle^2 - 4 \langle r^3 \rangle \langle r \rangle + 12 \langle r^2 \rangle \langle r \rangle^2 - 6 \langle r \rangle^4 \end{array}$$

 C_3 (the *third cumulant*) can be important in many cases.

The Cumulants and Moments of a Distribution Function

The cumulants C_n of g(R) are related to the moments of g(R): $\langle r^n \rangle$, with $r = R - R_0$ and R_0 is the centroid of the distribution:

$$\begin{array}{lll} C_1 = \Delta R & \text{deltar} &= \langle r \rangle \\ C_2 = \sigma^2 & \text{sigma2} &= \langle r^2 \rangle - \langle r \rangle^2 \\ C_3 & \text{third} &= \langle r^3 \rangle - 3 \langle r^2 \rangle \langle r \rangle + 2 \langle r \rangle^3 \\ C_4 & \text{fourth} &= \langle r^4 \rangle - 3 \langle r^2 \rangle^2 - 4 \langle r^3 \rangle \langle r \rangle + 12 \langle r^2 \rangle \langle r \rangle^2 - 6 \langle r \rangle^4 \end{array}$$

 C_3 (the *third cumulant*) can be important in many cases.

But: Sometimes, the cumulant expansion isn't good enough. One can also build models by using paths spaced in R (say, at 0.2 Å steps), and model the amplitude of each Path with a distribution like (following GNXAS):

$$g(R, N, R_0, \sigma, \beta) = rac{2N[e^{-lpha} lpha^{q-1}]}{\sigma eta \Gamma(q)}$$

Here $lpha = q + 2(R - R_0)/(eta \sigma)$, and $q = 4/eta^2$

wł

EXAFS Data Analysis with FEFF

Using FEFF to model EXAFS mostly means paying attention to:

- N_{idp} not very many Parameters can be varied for a limited k and R range.
- Always look at the uncertainties in the Parameters, not just best-fit values.
- Check (or require in the fit) that $\sigma^2 > 0$, N > 0.
- Think about how you might combine Parameters for different Paths, ideally making a physical model.
- Try a third cumulant now and then it might be needed.
- For very disordered systems, cumulants might not be enough.

More information on X-rays and X-ray Absorption Spectroscopy:

https://xafs.xrayabsorption.org/

Fundamentals of XAFS M. Newville, Reviews in Mineralogy & Geochemistry 78, 2014.

Introduction to XAFS G. Bunker, Cambridge Univ Press, 2010.

XAFS for Everyone S. Calvin, CRC Press, 2013.

Elements of Modern X-ray Physics J. Als-Nielsen & D. McMorrow, John Wiley & Sons. 2001