.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_example_fit_with_inequality.py: Fit Using Inequality Constraint =============================== Sometimes specifying boundaries using ``min`` and ``max`` are not sufficient, and more complicated (inequality) constraints are needed. In the example below the center of the Lorentzian peak is constrained to be between 0-5 away from the center of the Gaussian peak. See also: https://lmfit.github.io/lmfit-py/constraints.html#using-inequality-constraints .. code-block:: default import matplotlib.pyplot as plt import numpy as np from lmfit import Minimizer, Parameters, report_fit from lmfit.lineshapes import gaussian, lorentzian def residual(pars, x, data): model = (gaussian(x, pars['amp_g'], pars['cen_g'], pars['wid_g']) + lorentzian(x, pars['amp_l'], pars['cen_l'], pars['wid_l'])) return model - data Generate the simulated data using a Gaussian and Lorentzian line shape: .. code-block:: default np.random.seed(0) x = np.linspace(0, 20.0, 601) data = (gaussian(x, 21, 6.1, 1.2) + lorentzian(x, 10, 9.6, 1.3) + np.random.normal(scale=0.1, size=x.size)) Create the fitting parameters and set an inequality constraint for ``cen_l``. First, we add a new fitting parameter ``peak_split``, which can take values between 0 and 5. Afterwards, we constrain the value for ``cen_l`` using the expression to be ``'peak_split+cen_g'``: .. code-block:: default pfit = Parameters() pfit.add(name='amp_g', value=10) pfit.add(name='amp_l', value=10) pfit.add(name='cen_g', value=5) pfit.add(name='peak_split', value=2.5, min=0, max=5, vary=True) pfit.add(name='cen_l', expr='peak_split+cen_g') pfit.add(name='wid_g', value=1) pfit.add(name='wid_l', expr='wid_g') mini = Minimizer(residual, pfit, fcn_args=(x, data)) out = mini.leastsq() best_fit = data + out.residual Performing a fit, here using the ``leastsq`` algorithm, gives the following fitting results: .. code-block:: default report_fit(out.params) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[Variables]] amp_g: 21.2722837 +/- 0.05138760 (0.24%) (init = 10) amp_l: 9.46504191 +/- 0.05445416 (0.58%) (init = 10) cen_g: 6.10496394 +/- 0.00334614 (0.05%) (init = 5) peak_split: 3.52163535 +/- 0.01004618 (0.29%) (init = 2.5) cen_l: 9.62659929 +/- 0.01066173 (0.11%) == 'peak_split+cen_g' wid_g: 1.21434950 +/- 0.00327315 (0.27%) (init = 1) wid_l: 1.21434950 +/- 0.00327315 (0.27%) == 'wid_g' [[Correlations]] (unreported correlations are < 0.100) C(amp_g, wid_g) = 0.620 C(amp_g, peak_split) = 0.380 C(peak_split, wid_g) = 0.344 C(amp_g, amp_l) = -0.295 C(amp_l, cen_g) = -0.276 C(amp_g, cen_g) = 0.194 C(amp_l, wid_g) = -0.165 C(cen_g, wid_g) = 0.155 and figure: .. code-block:: default plt.plot(x, data, 'bo') plt.plot(x, best_fit, 'r--', label='best fit') plt.legend(loc='best') plt.show() .. image:: /examples/images/sphx_glr_example_fit_with_inequality_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /Users/Newville/Codes/lmfit-py/examples/example_fit_with_inequality.py:61: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.094 seconds) .. _sphx_glr_download_examples_example_fit_with_inequality.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: example_fit_with_inequality.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: example_fit_with_inequality.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_