.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_example_fit_multi_datasets.py: Fit Multiple Data Sets ====================== Fitting multiple (simulated) Gaussian data sets simultaneously. All minimizers require the residual array to be one-dimensional. Therefore, in the ``objective`` we need to ```flatten``` the array before returning it. TODO: this should be using the Model interface / built-in models! .. code-block:: default import matplotlib.pyplot as plt import numpy as np from lmfit import Parameters, minimize, report_fit def gauss(x, amp, cen, sigma): """Gaussian lineshape.""" return amp * np.exp(-(x-cen)**2 / (2.*sigma**2)) def gauss_dataset(params, i, x): """Calculate Gaussian lineshape from parameters for data set.""" amp = params['amp_%i' % (i+1)] cen = params['cen_%i' % (i+1)] sig = params['sig_%i' % (i+1)] return gauss(x, amp, cen, sig) def objective(params, x, data): """Calculate total residual for fits of Gaussians to several data sets.""" ndata, _ = data.shape resid = 0.0*data[:] # make residual per data set for i in range(ndata): resid[i, :] = data[i, :] - gauss_dataset(params, i, x) # now flatten this to a 1D array, as minimize() needs return resid.flatten() Create five simulated Gaussian data sets .. code-block:: default x = np.linspace(-1, 2, 151) data = [] for i in np.arange(5): params = Parameters() amp = 0.60 + 9.50*np.random.rand() cen = -0.20 + 1.20*np.random.rand() sig = 0.25 + 0.03*np.random.rand() dat = gauss(x, amp, cen, sig) + np.random.normal(size=x.size, scale=0.1) data.append(dat) data = np.array(data) Create five sets of fitting parameters, one per data set .. code-block:: default fit_params = Parameters() for iy, y in enumerate(data): fit_params.add('amp_%i' % (iy+1), value=0.5, min=0.0, max=200) fit_params.add('cen_%i' % (iy+1), value=0.4, min=-2.0, max=2.0) fit_params.add('sig_%i' % (iy+1), value=0.3, min=0.01, max=3.0) Constrain the values of sigma to be the same for all peaks by assigning sig_2, ..., sig_5 to be equal to sig_1. .. code-block:: default for iy in (2, 3, 4, 5): fit_params['sig_%i' % iy].expr = 'sig_1' Run the global fit and show the fitting result .. code-block:: default out = minimize(objective, fit_params, args=(x, data)) report_fit(out.params) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[Variables]] amp_1: 6.35769745 +/- 0.02471391 (0.39%) (init = 0.5) cen_1: -0.06087255 +/- 0.00141148 (2.32%) (init = 0.4) sig_1: 0.27096733 +/- 6.7335e-04 (0.25%) (init = 0.3) amp_2: 6.23505243 +/- 0.02466565 (0.40%) (init = 0.5) cen_2: 0.90331537 +/- 0.00143924 (0.16%) (init = 0.4) sig_2: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1' amp_3: 6.74510330 +/- 0.02487197 (0.37%) (init = 0.5) cen_3: 0.30698606 +/- 0.00133040 (0.43%) (init = 0.4) sig_3: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1' amp_4: 3.62962270 +/- 0.02384778 (0.66%) (init = 0.5) cen_4: 0.00271542 +/- 0.00247235 (91.05%) (init = 0.4) sig_4: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1' amp_5: 6.29975266 +/- 0.02469084 (0.39%) (init = 0.5) cen_5: -0.15885172 +/- 0.00142452 (0.90%) (init = 0.4) sig_5: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1' [[Correlations]] (unreported correlations are < 0.100) C(sig_1, amp_3) = -0.337 C(amp_1, sig_1) = -0.320 C(sig_1, amp_5) = -0.317 C(sig_1, amp_2) = -0.314 C(sig_1, amp_4) = -0.189 C(amp_1, amp_3) = 0.108 C(amp_3, amp_5) = 0.107 C(amp_2, amp_3) = 0.106 C(amp_1, amp_5) = 0.101 C(amp_1, amp_2) = 0.100 Plot the data sets and fits .. code-block:: default plt.figure() for i in range(5): y_fit = gauss_dataset(out.params, i, x) plt.plot(x, data[i, :], 'o', x, y_fit, '-') plt.show() .. image:: /examples/images/sphx_glr_example_fit_multi_datasets_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /Users/Newville/Codes/lmfit-py/examples/example_fit_multi_datasets.py:88: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.139 seconds) .. _sphx_glr_download_examples_example_fit_multi_datasets.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: example_fit_multi_datasets.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: example_fit_multi_datasets.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_