.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_documentation_parameters_valuesdict.py: doc_parameters_valuesdict.py ============================ .. image:: /examples/documentation/images/sphx_glr_parameters_valuesdict_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[Fit Statistics]] # fitting method = leastsq # function evals = 63 # data points = 301 # variables = 4 chi-square = 10.9764657 reduced chi-square = 0.03695780 Akaike info crit = -988.718387 Bayesian info crit = -973.889945 [[Variables]] amp: 4.96174550 +/- 0.03830181 (0.77%) (init = 10) decay: 0.02571887 +/- 4.5357e-04 (1.76%) (init = 0.1) shift: -0.09714733 +/- 0.00991436 (10.21%) (init = 0) omega: 1.99750219 +/- 0.00321063 (0.16%) (init = 3) [[Correlations]] (unreported correlations are < 0.100) C(shift, omega) = -0.785 C(amp, decay) = 0.584 C(amp, shift) = -0.120 | .. code-block:: default ## import warnings warnings.filterwarnings("ignore") ## # import numpy as np from lmfit import Minimizer, Parameters, report_fit # create data to be fitted x = np.linspace(0, 15, 301) data = (5.0 * np.sin(2.0*x - 0.1) * np.exp(-x*x*0.025) + np.random.normal(size=x.size, scale=0.2)) # define objective function: returns the array to be minimized def fcn2min(params, x, data): """Model a decaying sine wave and subtract data.""" v = params.valuesdict() model = v['amp'] * np.sin(x * v['omega'] + v['shift']) * np.exp(-x*x*v['decay']) return model - data # create a set of Parameters params = Parameters() params.add('amp', value=10, min=0) params.add('decay', value=0.1) params.add('shift', value=0.0, min=-np.pi/2., max=np.pi/2) params.add('omega', value=3.0) # do fit, here with the default leastsq algorithm minner = Minimizer(fcn2min, params, fcn_args=(x, data)) result = minner.minimize() # calculate final result final = data + result.residual # write error report report_fit(result) # try to plot results try: import matplotlib.pyplot as plt plt.plot(x, data, 'k+') plt.plot(x, final, 'r') plt.show() except ImportError: pass # .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.080 seconds) .. _sphx_glr_download_examples_documentation_parameters_valuesdict.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: parameters_valuesdict.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: parameters_valuesdict.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_