.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_documentation_model_loadmodelresult.py: doc_model_loadmodelresult.py ============================ .. image:: /examples/documentation/images/sphx_glr_model_loadmodelresult_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[Model]] Model(gaussian) [[Fit Statistics]] # fitting method = leastsq # function evals = 29.0000000 # data points = 101.000000 # variables = 3.00000000 chi-square = 3.40883599 reduced chi-square = 0.03478404 Akaike info crit = -336.263713 Bayesian info crit = -328.418352 [[Variables]] amplitude: 8.88022277 +/- 0.11359552 (1.28%) (init = 5) center: 5.65866081 +/- 0.01030506 (0.18%) (init = 5) sigma: 0.69765538 +/- 0.01030503 (1.48%) (init = 1) fwhm: 1.64285285 +/- 0.02426649 (1.48%) == '2.3548200*sigma' height: 5.07800352 +/- 0.06495781 (1.28%) == '0.3989423*amplitude/max(2.220446049250313e-16, sigma)' [[Correlations]] (unreported correlations are < 0.100) C(amplitude, sigma) = 0.577 | .. code-block:: default ## import warnings warnings.filterwarnings("ignore") ## # import matplotlib.pyplot as plt import numpy as np from lmfit.model import load_modelresult data = np.loadtxt('model1d_gauss.dat') x = data[:, 0] y = data[:, 1] result = load_modelresult('gauss_modelresult.sav') print(result.fit_report()) plt.plot(x, y, 'bo') plt.plot(x, result.best_fit, 'r-') plt.show() # .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.072 seconds) .. _sphx_glr_download_examples_documentation_model_loadmodelresult.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: model_loadmodelresult.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: model_loadmodelresult.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_