.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_documentation_builtinmodels_peakmodels.py: doc_builtinmodels_peakmodels.py =============================== .. rst-class:: sphx-glr-horizontal * .. image:: /examples/documentation/images/sphx_glr_builtinmodels_peakmodels_001.png :class: sphx-glr-multi-img * .. image:: /examples/documentation/images/sphx_glr_builtinmodels_peakmodels_002.png :class: sphx-glr-multi-img * .. image:: /examples/documentation/images/sphx_glr_builtinmodels_peakmodels_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[Model]] Model(gaussian) [[Fit Statistics]] # fitting method = leastsq # function evals = 25 # data points = 401 # variables = 3 chi-square = 29.9943157 reduced chi-square = 0.07536260 Akaike info crit = -1033.77437 Bayesian info crit = -1021.79248 [[Variables]] amplitude: 30.3135620 +/- 0.15712686 (0.52%) (init = 43.62238) center: 9.24277047 +/- 0.00737496 (0.08%) (init = 9.25) sigma: 1.23218359 +/- 0.00737496 (0.60%) (init = 1.35) fwhm: 2.90157056 +/- 0.01736670 (0.60%) == '2.3548200*sigma' height: 9.81457817 +/- 0.05087283 (0.52%) == '0.3989423*amplitude/max(2.220446049250313e-16, sigma)' [[Correlations]] (unreported correlations are < 0.250) C(amplitude, sigma) = 0.577 [[Model]] Model(lorentzian) [[Fit Statistics]] # fitting method = leastsq # function evals = 21 # data points = 401 # variables = 3 chi-square = 53.7535387 reduced chi-square = 0.13505914 Akaike info crit = -799.830322 Bayesian info crit = -787.848438 [[Variables]] amplitude: 38.9727645 +/- 0.31386183 (0.81%) (init = 54.52798) center: 9.24438944 +/- 0.00927619 (0.10%) (init = 9.25) sigma: 1.15483925 +/- 0.01315659 (1.14%) (init = 1.35) fwhm: 2.30967850 +/- 0.02631318 (1.14%) == '2.0000000*sigma' height: 10.7421156 +/- 0.08633945 (0.80%) == '0.3183099*amplitude/max(2.220446049250313e-16, sigma)' [[Correlations]] (unreported correlations are < 0.250) C(amplitude, sigma) = 0.709 [[Model]] Model(voigt) [[Fit Statistics]] # fitting method = leastsq # function evals = 21 # data points = 401 # variables = 3 chi-square = 14.5448627 reduced chi-square = 0.03654488 Akaike info crit = -1324.00615 Bayesian info crit = -1312.02427 [[Variables]] amplitude: 35.7554146 +/- 0.13861321 (0.39%) (init = 65.43358) center: 9.24411150 +/- 0.00505482 (0.05%) (init = 9.25) sigma: 0.73015627 +/- 0.00368460 (0.50%) (init = 0.8775) gamma: 0.73015627 +/- 0.00368460 (0.50%) == 'sigma' fwhm: 2.62950494 +/- 0.00806900 (0.31%) == '1.0692*gamma+sqrt(0.8664*gamma**2+5.545083*sigma**2)' height: 10.2203969 +/- 0.03009415 (0.29%) == '(amplitude/(max(2.220446049250313e-16, sigma*sqrt(2*pi))))*wofz((1j*gamma)/(max(2.220446049250313e-16, sigma*sqrt(2)))).real' [[Correlations]] (unreported correlations are < 0.250) C(amplitude, sigma) = 0.651 | .. code-block:: default ## import warnings warnings.filterwarnings("ignore") ## # import matplotlib.pyplot as plt from numpy import loadtxt from lmfit.models import GaussianModel, LorentzianModel, VoigtModel data = loadtxt('test_peak.dat') x = data[:, 0] y = data[:, 1] # Gaussian model mod = GaussianModel() pars = mod.guess(y, x=x) out = mod.fit(y, pars, x=x) print(out.fit_report(min_correl=0.25)) plt.plot(x, y, 'b-') plt.plot(x, out.best_fit, 'r-', label='Gaussian Model') plt.legend(loc='best') plt.show() # Lorentzian model mod = LorentzianModel() pars = mod.guess(y, x=x) out = mod.fit(y, pars, x=x) print(out.fit_report(min_correl=0.25)) plt.figure() plt.plot(x, y, 'b-') plt.plot(x, out.best_fit, 'r-', label='Lorentzian Model') plt.legend(loc='best') plt.show() # Voigt model mod = VoigtModel() pars = mod.guess(y, x=x) out = mod.fit(y, pars, x=x) print(out.fit_report(min_correl=0.25)) fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8)) axes[0].plot(x, y, 'b-') axes[0].plot(x, out.best_fit, 'r-', label='Voigt Model\ngamma constrained') axes[0].legend(loc='best') # free gamma parameter pars['gamma'].set(value=0.7, vary=True, expr='') out_gamma = mod.fit(y, pars, x=x) axes[1].plot(x, y, 'b-') axes[1].plot(x, out_gamma.best_fit, 'r-', label='Voigt Model\ngamma unconstrained') axes[1].legend(loc='best') plt.show() # .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.463 seconds) .. _sphx_glr_download_examples_documentation_builtinmodels_peakmodels.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: builtinmodels_peakmodels.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: builtinmodels_peakmodels.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_