""" Fit Multiple Data Sets ====================== Fitting multiple (simulated) Gaussian data sets simultaneously. All minimizers require the residual array to be one-dimensional. Therefore, in the ``objective`` we need to ```flatten``` the array before returning it. TODO: this should be using the Model interface / built-in models! """ import matplotlib.pyplot as plt import numpy as np from lmfit import Parameters, minimize, report_fit def gauss(x, amp, cen, sigma): """Gaussian lineshape.""" return amp * np.exp(-(x-cen)**2 / (2.*sigma**2)) def gauss_dataset(params, i, x): """Calculate Gaussian lineshape from parameters for data set.""" amp = params['amp_%i' % (i+1)] cen = params['cen_%i' % (i+1)] sig = params['sig_%i' % (i+1)] return gauss(x, amp, cen, sig) def objective(params, x, data): """Calculate total residual for fits of Gaussians to several data sets.""" ndata, _ = data.shape resid = 0.0*data[:] # make residual per data set for i in range(ndata): resid[i, :] = data[i, :] - gauss_dataset(params, i, x) # now flatten this to a 1D array, as minimize() needs return resid.flatten() ############################################################################### # Create five simulated Gaussian data sets x = np.linspace(-1, 2, 151) data = [] for i in np.arange(5): params = Parameters() amp = 0.60 + 9.50*np.random.rand() cen = -0.20 + 1.20*np.random.rand() sig = 0.25 + 0.03*np.random.rand() dat = gauss(x, amp, cen, sig) + np.random.normal(size=x.size, scale=0.1) data.append(dat) data = np.array(data) ############################################################################### # Create five sets of fitting parameters, one per data set fit_params = Parameters() for iy, y in enumerate(data): fit_params.add('amp_%i' % (iy+1), value=0.5, min=0.0, max=200) fit_params.add('cen_%i' % (iy+1), value=0.4, min=-2.0, max=2.0) fit_params.add('sig_%i' % (iy+1), value=0.3, min=0.01, max=3.0) ############################################################################### # Constrain the values of sigma to be the same for all peaks by assigning # sig_2, ..., sig_5 to be equal to sig_1. for iy in (2, 3, 4, 5): fit_params['sig_%i' % iy].expr = 'sig_1' ############################################################################### # Run the global fit and show the fitting result out = minimize(objective, fit_params, args=(x, data)) report_fit(out.params) ############################################################################### # Plot the data sets and fits plt.figure() for i in range(5): y_fit = gauss_dataset(out.params, i, x) plt.plot(x, data[i, :], 'o', x, y_fit, '-') plt.show()