""" Fit Using Bounds ================ A major advantage of using lmfit is that one can specify boundaries on fitting parameters, even if the underlying algorithm in SciPy does not support this. For more information on how this is implemented, please refer to: https://lmfit.github.io/lmfit-py/bounds.html The example below shows how to set boundaries using the ``min`` and ``max`` attributes to fitting parameters. """ import matplotlib.pyplot as plt from numpy import exp, linspace, pi, random, sign, sin from lmfit import Parameters, minimize from lmfit.printfuncs import report_fit p_true = Parameters() p_true.add('amp', value=14.0) p_true.add('period', value=5.4321) p_true.add('shift', value=0.12345) p_true.add('decay', value=0.01000) def residual(pars, x, data=None): argu = (x * pars['decay'])**2 shift = pars['shift'] if abs(shift) > pi/2: shift = shift - sign(shift)*pi model = pars['amp'] * sin(shift + x/pars['period']) * exp(-argu) if data is None: return model return model - data random.seed(0) x = linspace(0, 250, 1500) noise = random.normal(scale=2.80, size=x.size) data = residual(p_true, x) + noise fit_params = Parameters() fit_params.add('amp', value=13.0, max=20, min=0.0) fit_params.add('period', value=2, max=10) fit_params.add('shift', value=0.0, max=pi/2., min=-pi/2.) fit_params.add('decay', value=0.02, max=0.10, min=0.00) out = minimize(residual, fit_params, args=(x,), kws={'data': data}) fit = residual(out.params, x) ############################################################################### # This gives the following fitting results: report_fit(out, show_correl=True, modelpars=p_true) ############################################################################### # and shows the plot below: # plt.plot(x, data, 'ro') plt.plot(x, fit, 'b') plt.show()