""" Fit Using Inequality Constraint =============================== Sometimes specifying boundaries using ``min`` and ``max`` are not sufficient, and more complicated (inequality) constraints are needed. In the example below the center of the Lorentzian peak is constrained to be between 0-5 away from the center of the Gaussian peak. See also: https://lmfit.github.io/lmfit-py/constraints.html#using-inequality-constraints """ import matplotlib.pyplot as plt import numpy as np from lmfit import Minimizer, Parameters, report_fit from lmfit.lineshapes import gaussian, lorentzian def residual(pars, x, data): model = (gaussian(x, pars['amp_g'], pars['cen_g'], pars['wid_g']) + lorentzian(x, pars['amp_l'], pars['cen_l'], pars['wid_l'])) return model - data ############################################################################### # Generate the simulated data using a Gaussian and Lorentzian line shape: np.random.seed(0) x = np.linspace(0, 20.0, 601) data = (gaussian(x, 21, 6.1, 1.2) + lorentzian(x, 10, 9.6, 1.3) + np.random.normal(scale=0.1, size=x.size)) ############################################################################### # Create the fitting parameters and set an inequality constraint for ``cen_l``. # First, we add a new fitting parameter ``peak_split``, which can take values # between 0 and 5. Afterwards, we constrain the value for ``cen_l`` using the # expression to be ``'peak_split+cen_g'``: pfit = Parameters() pfit.add(name='amp_g', value=10) pfit.add(name='amp_l', value=10) pfit.add(name='cen_g', value=5) pfit.add(name='peak_split', value=2.5, min=0, max=5, vary=True) pfit.add(name='cen_l', expr='peak_split+cen_g') pfit.add(name='wid_g', value=1) pfit.add(name='wid_l', expr='wid_g') mini = Minimizer(residual, pfit, fcn_args=(x, data)) out = mini.leastsq() best_fit = data + out.residual ############################################################################### # Performing a fit, here using the ``leastsq`` algorithm, gives the following # fitting results: report_fit(out.params) ############################################################################### # and figure: plt.plot(x, data, 'bo') plt.plot(x, best_fit, 'r--', label='best fit') plt.legend(loc='best') plt.show()