DSA2000 Desktop DSP Main Program Command Protocol

Software Design Description

for

DSA-2000

(aka DesktopDSP)

Command Protocol

Canberra Industries, Inc.

800 Research Parkway

Meriden, CT 06450

Document:
SDD for Desktop DSP module-specific commands protocol

Version:
2.1c

Date:
Dec. 10, 1998

Objective:
To specify the communication syntax between the host application and module

Author:
A. Cianchetti

Table of Contents

61.
Reference Documents:

2.
Edit History
6
3.
Document conventions
7
3.1
Data Types
7
3.2
Acquisition Channels
8
3.3
Owner
8
3.4
ETHERNET STATUS
9
3.5
RX / TX PACKET
10
3.6
Sample Changer Option
11
3.7
Start/Stop Option
11
4.
COMMUNICATIONS
11
4.1
802.2 Protocol
11
4.2
SNAP Protocol
12
4.3
Message Types
12
4.4
Command Header
13
4.5
Packet Message Header
14
4.6
Inquiry Message Header
15
4.7
Module Status Header
15
4.8
Module Event Header(OBSOLETE)
16
4.9
External Start/Stop Control
17
5.
Module Commands
18
5.1
SET ACQUISITION ADDRESS for PHA and MCS Acquisition channel
18
5.2
SET ELAPSED TIME (PHA Channel) or SWEEPS (MCS Channel)
19
5.3
SET MEMORY for PHA and MCS Acquisition channel
20
5.4
SET PRESET TIME (PHA channel) or SWEEPS (MCS channel)
21
5.5
SET ACQUISITION STATUS for PHA and MCS channel
22
5.6
ERASE MEMORY for PHA and MCS Acquisition channel
22
5.7
SET ACQUISITION MODE for PHA or MCS channel
23
5.8
RETURN MEMORY for PHA and MCS Acquisition channel
24
5.9
RETURN MEMORY COMPRESSED for PHA and MCS Acquisition channel
25
5.10
RETURN ADC STATUS for PHA or MCS Acquisition channels
26
5.11
SET HOST MEMORY
27
5.12
RETURN HOST MEMORY
27
5.13
SET OWNER ID and NAME
28
5.14
SET OWNER ID and NAME w/OVERRIDE
28
5.15
RESET
29
5.16
SEND ICB
29
5.17
RECEIVE ICB
30
5.18
SETUP ACQUISITION for PHA or MCS channel
31
5.19
RETURN ACQUISITION SETUP for PHA or MCS channel
33
5.20
SET MODULE EVENT SAP
34
5.21
RETURN MEMORY SEPARATED
35
5.22
Setup Sample Changer Command
36
5.23
Return Sample Changer Status
37
5.24
Advance Sample Changer
37
5.25
Set External Start/Stop Status
38
5.26
38
RETURN EXTERNAL START/STOP STATUS
39
5.27
Set High Voltage Status
40
5.28
Read High Voltage Status
40
5.29
Reset High Voltage Status
42
5.30
Set High Voltage Params
43
5.31
Set Pulser Status
44
5.32
Read Pulser Status
45
5.33
DSP ICB
46
5.33.1
Command Structure
47
5.33.2
Response Structure
48
5.34
Clear ADC Memory
50
6.
ADC Memory Configuration
51
7.
51
Hardware Register Description
52
7.1
Read Registers
52
7.2
Write Registers
55
8.
59
ICB Protocol
60
8.1.1
Register 0 Read/Write
60
8.1.2
Register 1 Read/Write
60
8.1.3
Registers 2-5 Read/Write
61
8.1.4
Register 6 Read
63
9.
 RS232 Protocol
65
9.1.1
 Testing the DSA2000
65
9.1.2
 RS232 Command and Response Structure
65
10.
 ICB and RS232 Command Data Format
67
10.1.1
 Data Identifier Table
68
10.1.2
 Amplifier Setup
71
10.1.3
 ADC Setup
72
10.1.4
 Trapezoid Filter Setup
73
10.1.5
 Stabilizer Setup
75
10.1.6
 Miscellaneous Setup
78
10.1.7
 Pulser
81
10.1.8
 Status Flags
82
10.1.9
 System Functions
83
11.
89
Differences in ICB Protocol between DSA2000 and 9660
90
12.
90
RS232 Command Summary
91
12.1.1
 Program Query
92
12.1.2
 Bootstrap Exit
92
12.1.3
 Bootstrap Enter
92
12.1.4
 Erase Flash Sector
93
12.1.5
 Program Flash Sector
93
12.1.6
 Write Sector Checksum
94
12.1.7
 Read Flash
94
12.1.8
 Checksum Flash Sector
95
12.1.9
 Read Sector Checksum
95
12.1.10
 Write Memory
95
12.1.11
 Read Memory
96
12.1.12
 Read Parameter
96
12.1.13
 Write Parameter
96
13.
96
Flash Memory Programming
97
13.1.1
 Flash Memory Organization
97
13.1.2
 Flash Memory Error Code
99
13.1.3
 Reprogramming Main Program
99
13.2
DSP-Board Digital Stabilizer I/O Registers
101
13.3
DSP-Board PISR Pulser I/O Registers
102
13.4
PHA Range and Group Table
103
13.4.1
PHA Range (PRNG)
103
13.4.2
PHA Groups without MCS (PGRP) 64k x 32
103
13.4.3
PHA Groups with MCS (PGRP) 32k x 32
104
13.4.4
MCS Range
105
13.4.5
MCS Groups (Upper 32k x 32)
105
13.5
HV DAC and ADC
106
14.
Appendix A - Data Compression Algorithms
107
14.1
Standard Compressed (Differential) Format Algorithm
107
14.1.1
Rules
107
14.1.2
Receiver Algorithm (decompression)
107
14.1.3
Transmitter Algorithm (compression)
108
15.
Appendix B - Start/Stop Control
109
15.1
Mode 0 - External Start/Stop disabled
109
15.2
Mode 1 - External Start/Stop set for Start-Only mode
110
15.3
Mode 2 - External Start/Stop set for Stop-Only mode
110
15.4
Mode 3 - External Start/Stop set for Toggle (Start and Stop) mode
111

1.
Reference Documents:

00-1184-00
AIM Acquisition Interface Module Host Communication SDD

39-1203-00
802.2 SNAP Protocol Stack SDD

SDDCTM5.DOC
Alpha Spec Controller Protocol Software Design Document

AIMMNx.DOC
AIM556A Module Protocol Software Design Document

2.
Edit History

Version
Author
Document
Comments

1.0
A.C.
SDD-DS-M0
Origin

1.0a
A.C.
SDD-DS-M0
Updated register map

1.0b
A.C.
SDD-DS-M0
Updated MCS commands

2.0
A.C.
SDD-DS-M1
Modified command set to accomodate PHA and MCS acquisition channels

2.0a
A.C
SDD-DS-M1
Minor updates and clarifications

2.1
A.C
SDD-DS-M2
1. Addition of message types and message descriptions sections

2. Added ClearAdcData and DspICB commands unique to the DSA2000

3. Updated register map based on lastest changes to hardware

4. Added Pulser support for DSA2000

5. Added ICB/RS232 Protocol section modified accordingly for DSA2000

6. Added RS232 commands and program reload information which is identical to the 2060/9660

2.1a
A.C.
SDD-DS-M2
1. Added MOD2 to ID_PULS_MODE which also affected the usMode in SetPulserStatus and ReadPulserStatus command

2.1b
A.C.
SDD-DS-M2B
1. Added PUR-ON status to ID_STATUS_FLGS

2. Added MRESP_NOTENBLD return code to Set Pulser Status and Ret Pulser Status commands to handle the case when pulser has not been enabled

2.1c
A.C.
SDD-DS-M2C
1. Added Bit #15 to stRespRetHVStatus.usStatus to indicate that HV will be turned off when RAMPING status ends (required for VMS driver)

2.1d
A.C.
SDD-DS-M2D
1. Re-entered Command and Response Structure tables in the DSP ICB command section because the actual table showing the syntax had been lost through tnewer versions of MS-WORD

2.

Note: This document must supersede any previous version

3.
Document conventions

Module
This refers to DSA2000 and AIM-modules on the host's Ethernet network

3.1
Data Types

The following nomenclature is appended to the name of each data structure member to identify the item's data type and size. The following convention is used:

Suffix
Data Type
Size in bits
c
char
8

uc
unsigned char
8

s
short
16

us
unsigned short
16

ui
unsigned integer
16

l
long
32

ul
unsigned long
32

sf
short float
32

lf
long float
64

Examples:

ncp_comm_header.cProtocol_typec8
signed 8-bit quantity
ncp_comm_header.dwData_sizeul32
unsigned long 32-bit quantity

3.2
Acquisition Channels

The hardware contains two acquisition channels, #1 and #2. Channel #1 is for PHA acquisition mode and #2 is for MCS acquisition mode. Commands containing the adc number must specify the target channel as ADC1 (010) or ADC2 (110).

3.3
Owner

The owner structure is used to keep all information regarding the owner of the module. The structure description can be seen below:

fModuleOwnedf16
Current ownership state of the module.

cOwnerIDc8
ID of the owner of the module, 0 if unowned

cOwnerNamec8
Name of owner of the module, all spaces or NULL’s if unowned

fModuleInitf16
Has module ever been initialized,, initialized after first ownership

The following structure is now obsolete due to the fact the module event messages are no longer sent from the new AIM, but has been kept for completeness and is still part of the owner structure.

stMEVType[5]

fSendMEVf16
Indicates whether module event message should be sent

ucDSAPuc8
Destination service access point for message

ucSSAPuc8
Source service access point for message

ucSNAPIDuc8
SNAP ID protocol for message

3.4
ETHERNET STATUS

The ethernet status structure is used to mantain error and traffic counters . The structure is described as follows:

Transmit
nCollision n16
Number of collisions

nXmitAbort n16
Number of transmissions aborted

nCarrierSenseLost n16
Number of times carrier sense was lost

nFIFOUnderrun n16
Number of FIFO underruns occurred

nCDHeartbeat n16
Number of collision detect heartbeat errors

nOutOfWindow n16
Number of out of window errors

Receive
nCRC n16
Number of CRC errors

nFramingAlign n16
Number of framing alignment errors

nFIFOOverrun n16
Number of FIFO overrun errors

nMissedPacket n16
Number of missed packets

nOverwrite n16
Number of overwrite errors

nTallyCntOverflow n16
Number of tally counter overflows occurred

Status
nTotalRX n16
Total received packets

nTotalTX n16
Total transmitted packets

nTotalMulticastRX n16
Total multicast packets received

3.5
RX / TX PACKET

The receive and transmit structures are used to represent an entire packet in memory. Each packet constains structures and values described in the communications section of the document. These structures are used as templates for parsing received packets and for building response packets. The basic packet structure can be seen below:

RXPacket
bStatus b8
Status of the message received

bNextPage b8
Next packet pointer

bLengthLow b8
Low byte of the size of the packet

bLengthHigh b8
High byte of the size of the packet

bDestAddr[6] b8
Destination address - should be the module’s address

bSrcAddr[6] b8
Source of the message

bDataLenLow b8
Low byte of the length of the data (actually high due to AIM driver)

bDataLenHigh b8
High byte of the length of the data (actually low due to AIM driver)

bDSAP b8
Destination Service Access Point

bSSAP b8
Source Service Access Point

bU b8
Unnumbered control field

bSNAP[5] b8
SNAP Protocol

stCommHeader
Communications Header structure

stCommPacket
Communications Packet structure

bData b8
Beginning of the data for the packet

TXPacket
bDestAddr[6] b8
Destination address

bSrcAddr[6] b8
Source of the message - should be the module’s address

bDataLenLow b8
Low byte of the length of the data (actually high due to AIM driver)

bDataLenHigh b8
High byte of the length of the data (actually low due to AIM driver)

bDSAP b8
Destination Service Access Point

bSSAP b8
Source Service Access Point

bU b8
Unnumbered control field

bSNAP[5] b8
SNAP Protocol

stCommHeader
Communications Header structure

stCommPacket
Communications Packet structure

bData b8
Beginning of the data for the packet

3.6
Sample Changer Option

Fully programmable Sample Changer control has been incorporated into the DSA2000 hardware. See the commands section for more information on the sample changer related functions. The host has the ability to setup the polarity of the ready and advance signals. The host controls the ADVANCE signal that is sent to the sample changer. A status command has been provided to allow the host to request current changer-ready status, polarity, and advance status. Note that the hardware supports one sample changer interface even though sample-changer commands contain a channel specifier (usADC).

3.7
Start/Stop Option

Fully programmable external start/stop control has been added to the DSA2000 hardware. This feature allows configuring an DSA2000 to accept external input to start, stop, or both start and stop an acquisition. The specific mode is controlled by the host command. The command allows setting one of four different modes. These include no external input, external start only, external stop only, and both external start and stop. The host also can request the current start/stop status for a specified channel and the status of acquisition. Also, the difference in start time from the time the acquisition was waiting for the external start after indicating a start to the time the actual start signal was received is returned to the host so that the application can compensate its actual start-time accordingly. Accuracy of the returned difference-time is within +/- 10 ms.

4.
COMMUNICATIONS

4.1
802.2 Protocol

The DSA2000 supports IEEE 802 Extended Service Packet Format. For IEEE 802 Extended Packet Format, only the IEEE Class I Service Packet types are transmitted and received. These formats include UI, XID, and TEST. Below is an illustration of the layout of this type of packet. All values are in bytes:

DA
6
Destination address

SA
6
Source address

Length
2
Length of the 802.3 frame (excluding padding)

DSAP
1
Destination service access point (SAP)

SSAP
1
Source (SAP)

U
1
Unnumbered control field command / response

PID
5
Channel’s 5-byte protocol identifier

Data

38 - 1492
User supplied data plus padding

CRC
4
Cyclic Redundancy Check value

The ethernet controller supports 802.3 messages so 802.2 will be done via firmware. An IEEE 802.3 message consists of the above DA, SA, and Length followed by Data, and then a CRC. Therefore to support the 802.2 messages, the DSAP, SSAP, and U values are part of the 802.3 message’s data field.

4.2
SNAP Protocol

The SNAP SAP value is a special SAP value reserved for 802 extended format packets. The SNAP SAP value distinguishes an 802 packet from an 802 extended packet. In the Extended Service Packet configuration the SNAP Protocol stack consisting of 5 bytes is used in the PID field of the Ethernet Packet header to further guide messages to the proper destination. For Canberra applications the first three bytes of the SNAP are reserved at 00-00-AF. The 4th and 5th are the SNAP's Service Access Point (SAP) address. This value will be selected by the host application program so that it is unique on that system. The module will always pass all the elements on the SNAP stack from the received message onto the response messages.

[image: image1.wmf]1b

1b

1b

1b

1b

always

00h

always

00h

always

AFh

SNAP's

SAP

 byte #1

SNAP's

SAP

 byte #2

Breakdown of the message's SNAP Protocol Stack

In Extended Format packets, the Ethernet message's DSAP and SSAP are always set to the value 0AAh. This value is used to identify the 802-2 SNAP Frame format.
4.3
Message Types

The unnumbered control field (U), is passed by the P4 argument of the value as shown below:

UI command (00000011)

This is the unnumbered information command. It is the method used to transmit data from one user to another and is the most widely used control field value.

XID command (101p1111)

This isthe exchange identification command. It is used to convey information about the port. The “p” bit is the poll bit and may be either 0 or 1.

XID response (101f1111)

The XID response is a response to an XID command. The “f” bit is the final bit and will match the poll bit from the XID command.

TEST command (111p0011)

The TEST command is used to test a connection. The “p” bit is the poll bit and may be either 0 or 1.

TEST response(111f0011)

The TEST response is a response to a TEST command. The “f” bit is the final bit and will match the poll bit from the TEST command.

Message type is determined by a logical AND of the U type with the value 0xEF. The resulting type indicates the type of message received by the AIM:

TEST
0xE3

XID
0xAF

UI
0x03

All other values are considered an unknown U type and will return the appropriate error condition both to the host via an ethernet message as well as a serial diagnostic message.

REFERENCE: Ethernet/802 Device Drivers Document, 802.2 standard, Alpha Controller Document for SNAP info and graphic

4.4
Command Header

Each packet for the AIM is a structured set of data within the 802.2 data field. The data is after the SNAP protocol ID. The structure of the ethernet packets for the AIM is as follows:

Checkword

long

Protocol Type
char

Protocol Flags
unsigned char

Message Number
unsigned char

Message Type
char

Owner ID

unsigned char (6)

Owner Name

char (8)

Data Size

unsigned long

Module ID

unsigned char

SubMessageNumber
unsigned char

Spares

char(2)

Checksum

unsigned short

Checkword - The checkword is one of the verification tools to determine the validity of the packet. This value is required to be 0xAF0366F2H. This is one indication of the integrity of the packet that has been received.

Protocol Type - When sending a packet to an AIM module, the packet type must have the protocol type for an AIM. The type value is a 1.

Protocol Flags - The protocol flags are not used currently and are set to a value of 0.

Message Number - This is a value used by the host when determining responses to messages it has sent. It needs to compare the response with the message sent, so a unique identifier used by the host, is the message number.

Message Type - The message type is an indication to the message parser of the type of message that is to be processed. The messages types available are packet, module status, module event, and inquiry. Inquiry messages are received, and module status and module event are response messages. The AIM can send and receive packet messages. The messages and their responses are discussed in more detail below in the Commands section.

Owner ID - The owner ID is the ethernet address of the owner of the module. All 0’s indicates no owner.

Owner Name - The name of the owner can be up to 8 characters long consisting of alphanumerics.

Data Size - The data size is the size of data to follow this header structure. The data to follow consists of the packet header and data (for packet type messages), the inquiry header (for inquiry type messages), and module status data, or module event data.

Module ID - Currently, the module ID number is not being used within the firmware and is assumed to be 0.

SubMessage Number - Currently, this value is not being used within the firmware and is assumed to be 0.

Spares - The spares are value place holders to allow for expansion of the header if additional fields need to be added, but are not currently being used.

Checksum - The intention of the checksum is to be the checksum for the data in the packet, however, this functionality is not currently implemented in the firmware, and in the current host driver software.

4.5
Packet Message Header

A packet message header follows the command header in the data section of the 802.2 message. This message header gives information on the packet that has been received. The structure of this header is as follows:

Packet Size
unsigned long

Packet Type
char

Packet Flags
unsigned char

Packet Code
short

Packet Size - The packet size is the size of the data to follow the packet header. Different messages will have different amounts of data. This size is used as part of the packet integrity checks as is the data size in the command header. Size verification is done at a few levels of the data packet. The overall 802.2 packet has a size, followed by the the data size in the command header, and finally the packet size.

Packet Type - The packet type is either command or response. A command type is 1 and a response type is 2.

Packet Flags - Not currently used by the firmware or the host driver.

Packet Code - This code is the command/response identifier. See the commands and responses section found below.

After a packet header, any data that is part of the command or response will follow.

4.6
Inquiry Message Header

The inquiry message header is really just a single value. The inquiry type is the only contents of the header. The possible inquiry types are All, Unowned, or Not Mine. These types are used to indicate if the module receiving the message should respond to it. The types describe themselves and indicate how the module should respond. Type All indicates that the module sends a response. Type Unowned will only send a response if the module has no owner. A type Not Mine type will only send a response if the module is not owned by the message sender. The response to an inquiry message is made with a module status message as described below.

4.7
Module Status Header

The module status header contains owner , firmware , and ADC information intended for the host to use for communicating with the module. The header is layed out in the following way:

Module Type

signed char

Hardware Revision

unsigned char

Firmware Revision

unsigned char

Module Initialized

unsigned char

Communications Flags

long

Number of Inputs

unsigned char

Amount of Acquisition Memory
long

Spares

long (4)

Module Type - The module type would be AIM in this case which is a value of 1.

Hardware Revision - The hardware revision for the new AIM is 1 and the previous revision was 0 for the original. This information can be used by newer drivers to distinguish the type of AIM being talked to.

Firmware Revision - The firmware revision for the new AIM is 7. The old AIM revision value was 6 and 5 on some older AIM modules. This information can be used by newer drivers to distinguish the type of AIM being talked to.

Module Initialized - A flag indicating if the module has been initialized yet. A module becomes initialized when it is owned by a host.

Communications Flags - This parameter is not currently used by the firmware and is just set to 0.

Number of Inputs - For an AIM, the number of input ADC’s allowed is 2.

Amount of Acquisition Memory - The amount of acquisition memory in the new AIM is 64K. The old AIM had to reserve an area of memory making it less than 64K

Spares - These values are not currently used but are available in the event that the message needs to be expanded to support some new values.

4.8
Module Event Header(OBSOLETE)

This type of message has become obsolete in the new AIM. It was determined that the host is responsible for determining when the AIM has stopped acquisition or reached presets. The types of module events that were available in the old AIM are Acquisition Off, Buffer, Diagnostics Complete, and Service Request. The Buffer event is an event that would be sent when the list buffer was filled. However, the new AIM does not support list mode, and did not require the use of the buffer event. The ICB service request event was removed as a specification for the new AIM. Leaving only acquisition off and the diagnostics complete events, it was determined that the module event message type would no longer be used.
4.9
External Start/Stop Control

The DSA2000’s external start/stop control may be programmed in any of the following modes:

Mode 0:
External Start/Stop control is disabled. All external events will be ignored. Start and Stop operations are performed through commands.

Mode 1:
Start-only, where an external pulse will start acquisition provided that the acquisition-start logic has been armed via start-command. Acquisition must be stopped via preset-condition or via stop-command. Subsequent external events received while acquisition is active will be ignored.

Mode 2:
Stop-only, where external events will stop acquisition. Preset-reached condition will also stop acquisition. If external event is received after preset-reached condition has terminated acquisition, the external event will be ignored. Acquisition must be activated via command. Subsequent external events received while acquisition is inactive will be ignored

Mode 3:
Start/Stop, where external events will start acquisition if the current acquisition state is off and the acquisition logic has been armed via start-command, or stop acquisition if the current acquisition state is on. Preset-reached condition or a stop-command will stop acquisition. Subsequent external events after acquisition has been stopped will have no effect until the acquisition logic has been re-armed via start-command.

Preset-reached condition will always terminate acquisition and disarm the start logic regardless of the external start/stop mode selected. In MCS mode external stop events will always be translated as stop-at-end-of-sweep command by the module’s program.

Refer to Appendix B for a pictorial representation of the external start/stop control sequence.

5.
Module Commands

This document specifies the commands supported by the DSA2000 module. The DSA2000’s command set includes that of the AIM556A’s plus additional commands specific to its hardware. These include support for MCS acquisition, High Voltage Power Supply, and Pulse-Injection-Subsequent-Removal control.

In most cases the acquisition-related commands are used for both acquisition modes, PHA and MCS. Distinctions are made in the document where necessary to distinguish one mode from the other.

5.1
SET ACQUISITION ADDRESS for PHA and MCS Acquisition channel

This command sets the starting address and address limit for the specified channel. Both addresses are in bytes. It is assumed that the start of usable acquisition memory is address zero. The limit address is the last address that should be used for that ADC channel.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetAcqAddr data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETACQADDR (110)

Command Message Packet Data structure fields for PHA and MCS
stCmdSetAcqAddr.usAdcs16
Set to 0 or 1 to specify PHA or MCS channel respectively

stCmdSetAcqAddr.ulAddrul32
Address of acquisition

stCmdSetAcqAddr.ulLimitul32
Acquisition limit address

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910
MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_INVALSTACQADR
Invalid Acquisition Address

12210

MRESP_ACQRNGFRC
Fractional Channel Error

13010
5.2
SET ELAPSED TIME (PHA Channel) or SWEEPS (MCS Channel)

This command sets the elapsed live and real times for the PHA channel or elapsed sweeps for the MCS channel. The PHA times are in centiseconds. Loading the elapsed values resets any internal hardware registers.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetPElapsed data structure for PHA or to size of stCmdSetMElapsed data structure for MCS

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETELAPSED (210)

Command Message Packet Data structure fields for PHA
stCmdSetPElapsed.usAdcs16
Set to 0 to specify channel 1 (PHA)

stCmdSetPElapsed.ulLiveul32
Elapsed live time

stCmdSetPElapsed.ulLimitul32
Elapsed real timeAcquisition limit address

Command Message Packet Data structure fields for MCS
stCmdSetMElapsed.usAdcs16
Set to 1 to specify channel 2 (MCS)

stCmdSetMElapsed.ulSweepsul32
Elapsed Sweeps

stCmdSetMElapsed.ulSpareul32
not used

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910
MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_ACQONCOMMINVAL
Acquisition is ON, command invalid
15410

5.3
SET MEMORY for PHA and MCS Acquisition channel

This command sets a specified amount of bytes of data to an address in the acquisition memory. The contents are in standard DEC longword integer format. The address and size are specified in bytes. The amount of data transferred is limited in the ethernet protocol to the maximum size of an ethernet message. Once message and packet header sizes are allowed for, about 1450 bytes of data can be transferred per command message.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetMemory data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETMEMORY (310)

Command Message Packet Data structure fields

stCmdSetMemory.ulAddressul32
Destination address of data

stCmdSetMemory.ulSizeul32
Amount of data to be copied (data follows after structure)

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALSTACQADR
Invalid acquisition address

12210
MRESP_ACQRNGFRC
Fractional range

13010

MRESP_RQSTMEMSIZETOOLG
Memory size entered is too large
23410

5.4
SET PRESET TIME (PHA channel) or SWEEPS (MCS channel)

This command sets up all of the preset information for the specified channel. Acquisition must be off when this command is executed. The host computer is responsible for determining whether or not any preset condition is already satisfied. The preset times for PHA are in centiseconds. Preset start and preset end are the preset totals region start and end channels.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetPPresets data structure for PHA or to size of stCmdSetMPresets data structure for MCS

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETPRESETS (510)

Command Message Packet Data structure fields for PHA
stCmdSetPPresets.usADC s16
Set to 0 to specify channel 1 (PHA)

stCmdSetPPresets.ulLive ul32
Preset live time

stCmdSetPPresets.ulReal ul32
Preset real time

stCmdSetPPresets.ulTotals ul32
Preset totals

stCmdSetPPresets.ulStart ul32
Preset totals start address

stCmdSetPPresets.ulEnd ul32
Preset totals.end address

stCmdSetPPresets.ulLimit ul32
Preset limit

Command Message Packet Data structure fields for MCS
stCmdSetMPresets.usADC s16
Set to 1 to specify channel 2 (MCS)

stCmdSetMPresets.ulSweeps ul32
Preset sweeps 0 through 65535, 0= forever

stCmdSetMPresets.ulSpare1 ul32
not used

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_ACQONCOMMINVAL
Acquisition is ON, command invalid
15410

5.5
SET ACQUISITION STATUS for PHA and MCS channel

This command sets the current acquisition status to ON or OFF for the specified channel. Status is 1 if acquire is ON, and 0 if acquire is to be OFF.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetAcqState data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETACQSTATUS (610)

Command Message Packet Data structure fields for PHA and MCS
stCmdSetAcqState.usADC s16
ADC channel, Set to 0 for PHA and 1 for MCS

stCmdSetAcqState.cStatus c8
New acquisition status defined as follows:

0=
Turn acquisition OFF

1=
Turn acquisition ON or arm the acquisition-start logic if external control is enabled

2=
ABORT (MCS-mode only) stops acquisition immediately

In MCS mode selecting OFF will stop acquisition at the end of the current sweep. Selecting ABORT will stop acquisition immediately regardless of the current sweep status

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALADC
Invalid ADC channel passed

1810

5.6
ERASE MEMORY for PHA and MCS Acquisition channel

This command erases memory starting at the address specified by the command. Address and size are in bytes.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdEraseMem data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_ERASEMEM (710)

Command Message Packet Data structure fields for PHA and MCS
stCmdEraseMem.ulAddress ul32
Address to begin erasing

stCmdEraseMem.ulSize ul32
Number of bytes to erase

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALSTACQADR
Invalid acquisition address

12210
MRESP_ACQRNGFRC
Fractional range

13010

5.7
SET ACQUISITION MODE for PHA or MCS channel

This command sets the acquisition mode to either PHA or LFC. Any other value will result in an error condition.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetPAcqMode data structure for PHA or to size of stCmdSetMAcqMode data structure for MCS

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_SETACQMODE (810)

Command Message Packet Data structure fields for PHA
stCmdSetPAcqMode.usADC s16
Set to 0 for PHA channel

stCmdSetPAcqMode.cMode c8
New mode for channel (PHA / LFC)

Command Message Packet Data structure fields for MCS
stCmdSetMAcqMode.usADC s16
Set to 1 for MCS channel

stCmdSetMAcqMode.cMode c8
New mode for channel, set to 4 for MCS or 0 for NONE

stCmdSetMAcqMode.cInputMode c8
MCS Input data mode, defined as follows:

0=
No input

1=
Fast Discriminator input (selected internally)

2=
External TTL Input

3=
ROI Input (selected internally). The ROI region is selected through the usRoiStart and usRoiStop
stCmdSetMAcqMode.usRoiStart us16
ROI Start channel for the PHA acquisition channel. Value must be within the 0-32767 range. Setting is ignored if the cInputMode does not select ROI Input

stCmdSetMAcqMode.usRoiStop us16
ROI Stop channel for the PHA acquisition channel. Value must be within the 0-32767 range. Setting is ignored if the cInputMode does not select ROI Input

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_ACQONCOMMINVAL
Acquisition is ON, command invalid
15410

5.8
RETURN MEMORY for PHA and MCS Acquisition channel

This command returns the specified amount of bytes from the specified address. The data is returned in standard DEC longword integer format. The amount of data returned per command is limited in the ethernet protocol to about 1450 bytes. The actual amount of data returned can be determined by the host from the response packet size field.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetMemory data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_RETMEMORY (910)

Command Message Packet Data structure fields for PHA and MCS
stCmdRetMemory.ulAddressul32
Address to begin returning data from

stCmdRetMemory.ulSize ul32
Amount of data (in bytes) to be returned

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to amount of bytes returned or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALSTACQADR
Invalid acquisition address

12210
MRESP_ACQRNGFRC
Fractional range

13010

5.9
RETURN MEMORY COMPRESSED for PHA and MCS Acquisition channel

This command returns the specified amount of bytes from the specified address. The returned memory is in a compressed format. For more information on compression see the Appendix. The compressed data is in Nuclear Data four byte channel compressed format. When transferring the compressed data, the module must ensure that data for an integral number of longwords is sent. The number of channels is sent at the start of the response message.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetMemCmp data structure

stCommPacket.usPacket_codes16
Command opcode, set to HCMD_RETMEMCMP (1010)

Command Message Packet Data structure fields for PHA and MCS
stCmdRetMemCmp.ulAddressul32
Address to begin returning data from

stCmdRetMemCmp.ulSize ul32
Amount of data (in bytes) to be returned

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to amount of bytes returned or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_INVALSTACQADR
Invalid acquisition address

12210

MRESP_RETMEMCMP
Return memory compressed response
22710

stRespRetMemCmp.ulChannelsul32
Number of channels compressed to follow this value

5.10
RETURN ADC STATUS for PHA or MCS Acquisition channels

This command returns the current status of the specified ADC channel. The status includes the ADC acquisition status (on/off) and the elapsed information. The elapsed times for PHA are in centiseconds.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetMemCmp data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_RETADCSTATUS (1110)

Command Message Packet Data structure fields

stCmdRetADCStatus.usADCs16
Selects ADC channel, 0 for PHA, 1 for MCS

Response Message Packet Header structure fields for PHA
stCommPacket.dwPacket_sizeul32
Set to size of stRespRetADCStatus or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_ADCSTATUS
Return ADC status response

3510

stRespRetADCStatus.cStatusc8
Status of ADC channel (on/off)

stRespRetADCStatus.ulLive ul32
Current elapsed live time

stRespRetADCStatus.ulReal ul32
Current elapsed real time

stRespRetADCStatus.ulTotals ul32
Current totals

Response Message Packet Header structure fields for MCS
stCommPacket.dwPacket_sizeul32
Set to size of stRespRetMCSStatus or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_MCSSTATUS
Return MCS status response

23910

stRespRetMCSStatus.cStatusc8
Status of ADC channel encoded as follows:

Bit 0
0= OFF, 1= ON

Bit 1
0= normal, 1= Acquisition will be turned OFF at end of current sweep

Bits 2-7
not used

stRespRetMCSStatus.ulSweeps ul32
Current elapsed sweep counter

stRespRetMCSStatus.ulSpare1 ul32
not used

stRespRetMCSStatus.ulSpare2 ul32
not used

5.11
SET HOST MEMORY

This command sets data into the reserved host memory area of the SRAM. Address and size are in bytes. The address is relative to the start of the host memory area. The amount of memory transferred by the maximum ethernet message size.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetHostMem data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_SETHOSTMEM (1310)

Command Message Packet Data structure fields

stCmdSetHostMem.ulAddressul32
Address to begin writing data to

stCmdSetHostMem.ulSize ul32
Amount of data (in bytes) passed in. (Data will follow)

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_SETHOSTMEMSIZETOOLG
Host memory size specified is too big
24210

5.12
RETURN HOST MEMORY

This command returns a specified amount of bytes beginning at the address offset into host memory. The address and size are in bytes. The address is relative to the start of the host memory area. The amount of memory returned in the response packet may be limited by the maximum ethernet message size.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetHostMem data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_RETHOSTMEM (1410)

Command Message Packet Data structure fields

stCmdRetHostMem.ulAddressul32
Address to begin reading from.

stCmdRetHostMem.ulSize ul32
Amount of data (in bytes) to return.

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to amount of data being returned (in bytes).

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_SETHOSTMEMSIZETOOLG
Host memory size specified is too big
24210

5.13
SET OWNER ID and NAME

This command sets the current owner of the module, if it is currently unowned. If null values are passed in, then the module will become unowned. Onwer ID is a 48 bit number, and the name is a 8 character ASCII field.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetOwner data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_SETOWNER (1510)

Command Message Packet Data structure fields

stCmdSetOwner.ucOwnerID[6]c8
Ethernet ID of the owner of the module

stCmdSetOwner.cOwnerName[8] c8
Name of the module

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_OWNERNOTSET
Error occurred, the owner was not set
4210

5.14
SET OWNER ID and NAME w/OVERRIDE

This command sets the current owner of the AIM, regardless of its current owner. The module is disowned if the values in the command are all NULL. Onwer ID is a 48 bit number, and the name is a 8 character ASCII field.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetOwnerOver data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_SETOWNEROVER (1610)

Command Message Packet Data structure fields

stCmdSetOwnerOver.ucOwnerID[6]c8
Ethernet ID of the owner of the module

stCmdSetOwnerOver.cOwnerName[8] c8
Name of the module

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_OWNERNOTSET
Error occurred, the owner was not set
4210

5.15
RESET

This was a command that was not implemented in the old AIM. This command has been added in the new AIM. The function will reset the module by holding the cop timer and not servicing it.
Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0, no packet size

stCommPacket.usPacket_codes16
Command opcode, HCMD_RESET (1710)

Command Message Packet Data structure fields

NONE
Response Message Packet Header structure fields

NONE

5.16
SEND ICB

This command takes up to 64 pairs of registers and data and wites each piece of data to the corresponding register. The message is composed of an array of up to 64 address/data pairs. See the Nuclear Data Instrument Control Bus specification for details on the ICB.
Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSendICB data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_SENDICB (2110)

Command Message Packet Data structure fields

stCmdSendICB.stAddress[64].ucAddressc8
ICB register to be written to (64 registers allowed)

stCmdSendICB.stAddress[64].ucDatac8
Data to be written to ICB
(64 data values 1 byte per register)

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_APUTIMEOUT
Unable to complete writing to register
16210

5.17
RECEIVE ICB

This command takes up to 64 registers and returns the data found at each of those addresses. The data is sent back as 1 byte per address read. It is sent back in the response message immediately following the response packet header.
Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRecvICB data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_RECVICB (2210)

Command Message Packet Data structure fields

stCmdRecvICB.ulRegisters ul32
Number of registers to be read.
stCmdRecvICB.ucAddress[64]c8
ICB register to be read (64 registers allowed)

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to number of bytes of data returned

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_APUTIMEOUT
Unable to complete reading register
16210

5.18
SETUP ACQUISITION for PHA or MCS channel

This command sets up acquisition by combining many of the above commands. This function makes setting the address and limit, presets, and elapsed times possible in one command.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetupPAcq data structure for PHA or to size of stCmdSetupMAcq data structure for MCS

stCommPacket.usPacket_codes16
Command opcode, HCMD_SETUPACQ (2310)

Command Message Packet Data structure fields for PHA
stCmdSetupPAcq.usADC s16
Set to 0 to select PHA channel
stCmdSetupPAcq.ulAddress ul32
Starting address for channel
stCmdSetupPAcq.ulAcqLimit ul32
Ending address for channel
stCmdSetupPAcq.ulPresetLive ul32
Preset live time
stCmdSetupPAcq.ulPresetReal ul32
Preset real time
stCmdSetupPAcq.ulPresetTotals ul32
Preset totals
stCmdSetupPAcq.ulStart ul32
Preset totals start address
stCmdSetupPAcq.ulEnd ul32
Preset totals end address
stCmdSetupPAcq.ulPresetLimit ul32
Preset limit
stCmdSetupPAcq.ulElapsedLive ul32
Elapsed live time
stCmdSetupPAcq.ulElapsedReal ul32
Elapsed real time
stCmdSetupPAcq.cMode c8
Acquisition Mode, 1= PHA. Other values are reserved
Command Message Packet Data structure fields for MCS
stCmdSetupMAcq.usADC s16
Set to 1 to select MCS channel
stCmdSetupMAcq.ulAddress ul32
Starting address for channel
stCmdSetupMAcq.ulAcqLimit ul32
Ending address for channel

stCmdSetupMAcq.usSpare0 us16
not used

stCmdSetupMAcq.usSpare1 us16
not used

stCmdSetupMAcq.usDwellRange s16
Selects the dwell range 0 through 3. Used with the Dwell Value to establish a dwell time. Refer to the table below

stCmdSetupMAcq.usDwellValue s16
Selects the dwell value within the 0000h through 07FFh range which is used by the hardware in conjunction with the Dwell Range to establish a the dwell time as follows:

Range

@Min value (0000h)
@Max Value (07FFh)

0
2.0 us
204.8 us

1
2 us
2048 us

2
1 ms
2048 ms

3
1 s
2048 s

The minimum dwell time is limited by the hardware to 2.0 microseconds. Selecting less than 2.0 microseconds will have no effect

stCmdSetupMAcq.ulPresetSweepsul32
Preset sweep, 0 through 65535, 0= forever
stCmdSetupMAcq.ulElapsedSweepsul32
Elapsed sweep value
Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALSTACQADR
Invalid acquisition address

12210
MRESP_ACQRNGFRC
Fractional range

13010

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_ACQONCOMMINVAL
Acquisition is ON, command invalid
15410

5.19
RETURN ACQUISITION SETUP for PHA or MCS channel

This command returns all values setup in the specified ADC channel. This includes the acquisition start and limit addresses, mode, and presets.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetAcqSetup data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_RETACQSETUP (2410)

Command Message Packet Data structure fields for PHA and MCS
stCmdSetupAcq.usADC s16
Selects ADC channel, 0 for PHA or 1 for MCS
Response Message Packet Header structure fields for PHA
stCommPacket.dwPacket_sizeul32
Set to size of stRespRetPAcqSetup s or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_RETACQSETUP
Return acquisition setup response
20310

stRespRetPAcqSetup.ulAddress ul32
Starting address for channel
stRespRetPAcqSetup.ulAcqLimit ul32
Ending address for channel
stRespRetPAcqSetup .ulPresetLive ul32
Preset live time
stRespRetPAcqSetup.ulPresetReal ul32
Preset real time
stRespRetPAcqSetup.ulPresetTotals ul32
Preset totals
stRespRetPAcqSetup.ulStart ul32
Preset totals start address
stRespRetPAcqSetup.ulEnd ul32
Preset totals end address
stRespRetPAcqSetup.ulPresetLimit ul32
Preset limit
stRespRetPAcqSetup.ulElapsedLive ul32
Elapsed live time
stRespRetPAcqSetup.ulElapsedReal ul32
Elapsed real time

stRespRetPAcqSetup.cMode c8
Acquisition mode, 1= PHA. Other values are reserved

Response Message Packet Header structure fields for MCS
stCommPacket.dwPacket_sizeul32
Set to size of stRespRetMAcqSetup s or 0 if error

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_INVALADC
Invalid ADC channel passed

1810

MRESP_RETMCSSETUP
Return acquisition setup response
24110

stRespRetMAcqSetup.ulAddress ul32
Starting address for channel
stRespRetMAcqSetup.ulAcqLimit ul32
Ending address for channel
stRespRetMAcqSetup.usSpare0 us16
not used

stRespRetMAcqSetup.usSpare1 us16
not used

stRespRetMAcqSetup.usDwellRange s16
Returns the dwell range 0 through 3.

stRespRetMAcqSetup.usDwellValue s16
Returns the dwell value within the 0000h through 07FFh range

stRespRetMAcqSetup.ulPresetSweepsul32
Preset sweep, 0 through 65535, 0= forever
stRespRetMAcqSetup.ulElapsedSweepsul32
Elapsed sweep value

stRespRetMAcqSetup.usRoiStart us16
Storage Offset, 0 through 32k in multiples of 256 channels

stRespRetMAcqSetup.usRoiStop us16
Storage Range, 0 through 32k in multiples of 256 channels

stRespRetMAcqSetup.cInputMode uc8
MCS Data Input Mode, 0= No Input, 1= Fast Discriminator, 2= TTL Input, 3= ROI Input

5.20
SET MODULE EVENT SAP

This command sets up the module event SAP addresses. This is most likely obsolete due to the fact that module event messages are no longer being used in the new AIM. This command enables and disables the sending of module event messages for an ADC. The SSAP and DSAP arguments must be non-0 to enable. These are the 802.2 SAP addresses used when the message is transmitted. Zeroed addresses disable transmission of event messages.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdSetModEvSAP data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_SETMODEVSAP (2510)

Command Message Packet Data structure fields

stCmdSetModEvSAP.usMevSource s16
Module Event Source
stCmdSetModEvSAP.cMevDSAP c8
Destination Service Access Point

stCmdSetModEvSAP.cMevSSAP c8
Source Service Access Point

stCmdSetModEvSAP.cSNAPID[5] c8
SNAP Protocol ID
Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 to indicate no additional data follows this packet

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALMEVSRC
Invalid MEV Source

33010
5.21
RETURN MEMORY SEPARATED

This command allows returning segmented memory in one command. Given the starting address, size of each block, number of blocks, and the offset between blocks, this function will return the full requested set of data within the size limitation of the packet. The reason for this function is to read the first two channels of every group where a GAR or AMX is being used.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdRetMemSep data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_RETMEMSEP (2910)

Command Message Packet Data structure fields

stCmdRetMemSep.ulAddress ul32
Starting address of the first chunk of data to return.
stCmdRetMemSep.ulSize ul32
Size of each chunk

stCmdRetMemSep.ulOffset ul32
Offset between each chunk of data

stCmdRetMemSep.ulChunks ul32
Number of chunks of data to return
Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to 0 if error, otherwise the number of bytes returned

stCommPacket.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS
Operation was successful

910

MRESP_INVALSTACQADR
Invalid MEV Source

22010

MRESP_INVALSTMEMADR
Invalid memory address

13810

MRESP_ACQRNGFRC
Fractional range

13010

5.22
Setup Sample Changer Command
This command establishes the Advance and Ready polarity in the Sample Changer logic

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetSampChg data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETSAMPCHG (4010)

Command Message Packet Data structure fields

stCmdSetSampChg.usAdcs16
Not used

stCmdSetSampChg.cAdvPolarityc8
Advance Polarity, 0= non-invert, 1= invert

stCmdSetSampChg.cRdyPolarityc8
Ready Polarity, 0= non-invert, 1= invert.

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

MRESP_INVALADC (1810)
Invalid ADC acquisition channel passed

5.23
Return Sample Changer Status
This command returns the Advance and Ready polarity setup from the Sample Changer logic.

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdRetSampChg data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_RETSAMPCHG (4110)

Command Message Packet Data structure fields

stCmdRetSampChg.usAdcs16
Not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stRespRetSampChg to indicate more data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to the following:

MRESP_RETSAMPCNG (22910)
Sample Changer Status
MRESP_INVALADC (1810)
Invalid ADC

stRespRetSampChg.cAdvStatus c8
Advance Status, 0= advance off, 1= advance on

stRespRetSampChg.cRdyStatus c8
Ready Status, 0 = not ready, 1= ready

stRespRetSampChg.cAdvPolarityc8
Advance Polarity, 0= non-invert, 1= invert

stRespRetSampChg.cRdyPolarityc8
Ready Polarity, 0= non-invert, 1= invert

5.24
Advance Sample Changer
This command issues the advance signal or turns the signal off.

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetAdvStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETADVSTATUS (4210)

Command Message Packet Data structure fields

stCmdSetAdvStatus.usAdcs16
Not used

stCmdSetAdvStatus.cStatuss16
Set to 0 or 1 to specify advance off or advance on, respectively

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

MRESP_INVALADC (1810)
Invalid ADC acquisition channel passed

5.25
Set External Start/Stop Status
This command sets up the start stop mode of the specified acquisition channel. The possible modes are none, start only, stop only, or start/stop.

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetStartStop data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETSTARTSTOP (4310)

Command Message Packet Data structure fields for PHA and MCS
stCmdSetAdvStatus.usAdcs16
Set to 0 or 1 to specify acquisition PHA or MCS respectively

stCmdSetAdvStatus.cStatuss16
External Control Mode, defined as follows:

0=
External Start/Stop control is disabled.

1=
Start-only, where external pulse will start acquisition.

2=
Stop-only, where external events will stop acquisition.

3=
Start/Stop, where external events will start if the current acquisition state is off, or stop if the current acquisition state is on

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

K_MRESP_SUCCESS (910)
Operation was successful

MRESP_INVALADC (1810)
Invalid ADC acquisition channel passed
MRESP_INVALSTARTSTOP (33810)
Invalid start/stop mode
5.26

RETURN EXTERNAL START/STOP STATUS
This command returns the Advance and Ready polarity setup from the Sample Changer logic for the specified acquisition channel

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdRetStartStop data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_RETSTARTSTOP (4410)

Command Message Packet Data structure fields for PHA and MCS
stCmdRetSampChg.usAdcs16
Set to 0 or 1 to specify acquisition channel PHA or MCS respectively

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stRespRetStartStop to indicate more data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to the following:

MRESP_RETSTARTSTOP (23110)
Start/Stop Status
MRESP_INVALADC (1810)
Invalid ADC

stRespRetStartStop.cMode c8
External Start/Stop mode, defined as follows:

0=
External Start/Stop control is disabled.

1=
Start-only, where external pulse will start acquisition.

2=
Stop-only, where external events will stop acquisition.

3=
Start/Stop, where external events will toggle acquisition

stRespRetStartStop.cStatus c8
External Start/Stop status, encoded as follows:

Bit #0
1= waiting for external start-acquire event, 0= start/stop not armed or disabled

Bit #1
Current acquisition state, 0= inactive, 1= active

Bit #2
1= waiting for Changer-Ready

Bits #3-7
not used

stRespRetStartStop.ulTimeDiff ul32
Time in milliseconds between the issuing of the start-acquire command (Set Acquisition Status) to the actual start of the acquisition hardware. Resolution is within +/- 10ms. If external start/stop logic is enabled and external start event has not occurred, or if the changer is not ready, the ulTimeDiff value will increment until both conditions have been met. The appropriate bit (Bit #0 and/or #2) will reflect the reason why the actual start of acquisition has been deferred.

5.27
Set High Voltage Status
This command sets the high voltage mode, polarity, range, and value. Possible ranges are +/- 5.0kv and +1.3kv.

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetHVStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETHVSTATUS (5010)

Command Message Packet Data structure fields

stCmdSetHVStatus.usControls16
Control word is encoded as follows:

Bit 0
HV On/Off, 0= HV Off, 1= HV On (valid only if Bit #7 is 0)

Bit 1
High Voltage Polarity, 0= Positive, 1= Negative

Bit 2
High Voltage Range, 1= High (+/- 5.0kv), 0= Low (+1.3kv)

Bit 3-6
not used

Bit 7
1= Inhibit change to high voltage state (ignore Bits #0-2)

Bit 8-15
not used

Bit #7 is used to change the DAC value without affecting the current state of the high voltage. Change of polarity or range will not be allowed if the high voltage is already ON.

stCmdSetHVStatus.usDACSettings16
High voltage DAC setting expressed as a 12-bit quantity 0 through FFFh representing 0v through full scale which is dictated by the range setting, 5.0kv or 1.3kv. This value is returned in the Read High Voltage Status command

stCmdSetHVStatus.usSpares16
not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

MRESP_INVALCMD (2610)
Invalid argument

MRESP_INVALHVPOL (34010)
Attempting to change polarity with HVPS on

MRESP_INVALHVRANGE (34210)
Attempting to change range with HVPS on

MRESP_HVFAULTED (34410)
HVPS faults immediately after turn on

5.28
Read High Voltage Status
This command reads the high voltage mode, range, polarity, value, and other status information from the module.

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdRetHVStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_RETHVSTATUS (5110)

Command Message Packet Data structure fields

stCmdRetHVStatus.usSpares16
not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stRespRetHVStatus data structure to indicate more data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_RETHVSTATUS (23310)
Operation was successful

stRespRetHVStatus.usStatuss16
Status word, encoded as follows:

Bit 0
HV On/Off, 0= HV Off, 1= HV On.

Bit 1
High Voltage Polarity, 0= Positive, 1= Negative

Bit 2
High Voltage Range, 1= High (+/- 5.0kv), 0= Low (+1.3kv)

Bit 3-4
not used

Bit 5
1= High Voltage RAMPING

Bit 6
1= High Voltage INHIBITED

Bit 7
1= High Voltage FAULT

Bit 8
HV Reset Polarity setting, 1= Positive edge, 0= negative edge.

Bit 9
HV Inhibit Polarity Control, 1= High (+12v), 0= Low (+5v)

Bit 10
1= High voltage will be turned OFF when RAMPING stops. This bit will be activated This bit will be active only while the RAMPING bit is active

Bit 11-15
not used

Bit #6 and 7 indicate INHIBITED and FAULT respectively. These must be reset through the Reset High Voltage Status command. The high-voltage status will read back as Off whenever INHIBITED or FAULT are set to their active state. The RAMPING bit will be active when the usDACSetting and the usDACValue are not equal.

stRespRetHVStatus.usDACValues16
Actual high voltage DAC value expressed as a 12-bit quantity 0 through FFFh representing 0v through full scale which is dictated by the range setting, 5.0kv or 1.3kv. This value represents the current high voltage value. The RAMPING bit will be active when the usDACSetting and the usDACValue are not equal.

stRespRetHVStatus.usDACSettings16
High voltage DAC setting expressed as a 12-bit quantity. This value represents the target high voltage value that the high-voltage power supply will eventually reach. The RAMPING bit will be active when the usDACSetting and the usDACValue are not equal.

stRespRetHVStatus.usADCValues16
Actual high voltage reading. This value expressed as a 8-bit quantity 0 through FFh representing 0v through full scale which is dictated by the range setting, 5.0kv or 1.3kv.

stRespRetHVStatus.usSpares16
not used

5.29
Reset High Voltage Status
This command resets the high voltage FAULT and INHIBITED status

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdResetHVStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_RESETHVSTATUS (5210)

Command Message Packet Data structure fields

stCmdResetHVStatus.usSpares16
not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

5.30
Set High Voltage Params
This command sets the high voltage control logic signals

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetHVParams data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETHVPARAMS (5310)

Command Message Packet Data structure fields

stCmdSetHVParams.usControls16
Control word is encoded as follows:

Bit 0
High Voltage Polarity Control, 0= Low, 1= High

Bit 1-15
not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

5.31
Set Pulser Status
This command sets the PISR Pulser mode and associated parameters

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdSetPLSRRStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_SETPLSRSTATUS (5710)

Command Message Packet Data structure fields

stCmdSetPLSRStatus.usAdcs16
Must be set to 0 or 1 to select acquisition channel PHA or MCS respectively

stCmdSetPLSRStatus.usModes16
Mode, defined as follows:

0x00
Normal

0x01
Pulser-only

0x02
Gamma-only

0x03
Gamma and Pulser
 (both)

0x04
Pulser OFF

stCmdSetPLSRStatus.usRates16
Rate, defined as follows:

0x00
50 hz

0x01
100 hz

0x02
500 hz

0x03
1000 hz

stCmdSetPLSRStatus.usControls16
Control word is encoded as follows:

Bit 0
LSP/MSP Polarity, 1= active low, 0= active high

Bit 1-15
not used

stCmdSetPLSRStatus.usLowDelayul16
Sets low-pulser delay value, 11-bit value

stCmdSetPLSRStatus.usHighDelayul16
Sets high-pulser delay value, 11-bit value

stCmdSetPLSRStatus.usLowOffsetul16
Sets low-pulser offset value, 14-bit value

stCmdSetPLSRStatus.usHighOffsetul16
Sets high-pulser offset value, 14-bit value

stCmdSetPLSRStatus.usGammaCutofful16
Sets gamma-cutoff value, 14-bit value

stCmdSetPLSRStatus.usLowCutofful16
Sets pulser low-cutoff value, 14-bit value

stCmdSetPLSRStatus.usSpareul16
not used

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to ZERO to indicate no additional data follows this packet

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_SUCCESS (910)
Operation was successful

MRESP_APUTIMEOUT (16210)
Timeout occurred during processor-processor communication

MRESP_NOTENBLD(16410)
Pulser electronics not enabled

5.32
Read Pulser Status
This command returns the PISR Pulser mode and associated parameters from the module

Command Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stCmdRetPLSRRStatus data structure

ncp_comm_packet.usPacket_codes16
Command opcode, set to CMD_RETPLSRSTATUS (5810)

Command Message Packet Data structure fields

stCmdRetPLSRStatus.usAdcs16
Must be set to 0 or 1 to select acquisition channel PHA or MCS respectively

Response Message Packet Header structure fields

ncp_comm_packet.dwPacket_sizeul32
Set to size of stRespRetPLSRStatus data structure to indicate more data follows this packet unless error is returned, in which case the size will be set to zero

ncp_comm_packet.usPacket_codes16
Packet return code, set to any one of the following:

MRESP_RETPLSRSTATUS (23710)
Operation was successful

MRESP_INVALADC (1810)
Invalid ADC

MRESP_INVALACQMODE (11410)
Acquisition channel not in PHA mode

MRESP_NOTENBLD(16410)
Pulser electronics not enabled

stRespRetPLSRStatus.usModes16
Mode, defined as follows:

0x00
Normal

0x01
Pulser-only

0x02
Gamma-only

0x03
Gamma and Pulser
 (both)

0x04
Pulser OFF

stRespRetPLSRStatus.usRates16
Rate, defined as follows:

0x00
50 hz

0x01
100 hz

0x02
500 hz

0x03
1000 hz

stRespRetPLSRStatus.usControls16
Control word is encoded as follows:

Bit 0
LSP/MSP Polarity, 1= active low, 0= active high

Bit 1-15
not used

stRespRetPLSRStatus.usLowDelayul16
Low-pulser delay value, 11-bit value

stRespRetPLSRStatus.usHighDelayul16
High-pulser delay value, 11-bit value

stCmdSetPLSRStatus.usLowOffsetul16
Low-pulser offset value, 14-bit value

stRespRetPLSRStatus.usHighOffsetul16
High-pulser offset value, 14-bit value

stRespRetPLSRStatus.usGammaCutofful16
Gamma-cutoff value, 14-bit value

stRespRetPLSRStatus.usLowCutofful16
Pulser low-cutoff value, 14-bit value

stRespRetPLSRStatus.usSpareul16
not used

5.33
DSP ICB

Command to read and write DSA2000 DSP Parameters through the module’s ICB Interface. It differes from the native Send ICB and Receive ICB commands in that it performs the necessary low-level handshaking with the DSP module, thus relieving the host from that burden. The parameters here consists basically of a list of ICB transactions to be issued to the module, plus a number indicating the number of transactions in the list. Each transaction consists of a DSP Parameter Read or Write operation. For each command in the ulaCommand array there shall be a corresponding response in the ulaData array that indicates the outcome of the command. If the command is a write-parameter operation then the corresponding value in ulaData will contain the outcome of the write operation. If the command is a read-parameter operation the corresponding value in ulaData will contain (a) the outcome of the transaction, and if successful, then (b) the returned data, all within the 32-bit confinment. Both Read and Write operations may be contained in the same command list.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdDspICB data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_DSPICB (6010)

Command Message Packet Data structure fields

stCmdDspICB.usControlus16
Not used

stCmdDspICB.usNumberus16
Number of ICB transactions (parameter read/write operations) contained in the ulaCommand array. Each transaction requires one long data word in ulaCommand.
stCmdDspICB.ulaCommand[N]ula32
Array of ICB transactions (parameter read/write operations). The number of ICB transactions N is determined by usNumber. Each transaction follows the protocol outlined in the ICB Protocol section of this document.

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stRespDspICB data structure plus the number of transactions N * 4

stCommPacket.usPacket_codes16
Packet return code is MRESP_DSPICB

MRESP_DSPICB (24310)
Operation was successful
stRespDspICB. usControlus16
Control Word, encoded as follows:

Bit 0
1= One or more errors contained in the returned list

Bits 1-15
Not used

stRespDspICB. usNumberus16
Number N of returned values (returns from read/write operations) contained in the ulaData array that follows. Each returned value requires one long word in ulaData

stRespDspICB.ulaData[N]ula32
Array of returned values. Each ICB transaction with the DSP section of the DSA2000 is the ulaCommand[N] array shall contain a return value in ulaData[N]
5.33.1
Command Structure

Each command in ulaCommand is a 32-bit quantity and shall have the following basic structure, which basically follows the 9660’s protocol requirement:

5.33.2
Response Structure

Each response in ulaData array is a 32-bit quantity and shall have the following basic structure, which basically follows the 9660’s protocol requirement:

For each command in ulaCommand array there will be a response in the ulaData array. In all cases, whether reads or writes operations, the MSB (R2 bit #7) is used to indicate successful operation for that operation. If any item in ulaData has this bit set, then bit #0 in usControl will be set also. The host can use bit #0 in usControl to determine whether any command in the ulaCommand list failed.

For read operations (RCMD bit in ulaCommand is set) the returned value will be contained in bits 15-0 of the returned 32-bit data word. In all cases the returned value will never exceed 16 bits.

5.34
Clear ADC Memory

Command to erase memory and/or elapsed values on the specified ADC. Will preserve the current state of the external start/stop logic. If ADC’s acquisition is active, state will be restored after the clear operation. For MCS operation the sweep will be restarted if acquisition was active when command is received.

Command Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to size of stCmdClearAdcMem data structure

stCommPacket.usPacket_codes16
Command opcode, HCMD_CLEARADCMEM (5910)

Command Message Packet Data structure fields

stCmdClearAdcMem.usAdcus16
Adc number, 0= PHA, 1= MCS

stCmdClearAdcMem.usControlus16
Control Word, encoded as follows:

bit 0
1= Clear specified ADC’s elapsed time for PHA or sweeps for MCS

bit 1
0= Clear entire memory currently assigned to the specified usAdc number. Mutually exclusive with Bit #2

Bit 2
1= Clear partial memory. Start address and length are specified in ulAddress and ulSize in the same form as in the existing Erase Memory command. Mutually exclusive with Bit #1

bit 3-15
not used

stCmdClearAdcMem.ulAddressul32
Address to begin erasing (see Erase Memory command)

stCmdClearAdcMem.ulSizeul32
Number of bytes to erase (see Erase Memory command)

Response Message Packet Header structure fields

stCommPacket.dwPacket_sizeul32
Set to zero to indicate no additional data follows

stCommPacket.usPacket_codes16
Returned packet code is as follows:

MRESP_SUCCESS (910)
Operation was successful
MRESP_INVALADC (1810)
Operation was successful
6.
ADC Memory Configuration

Channels #1 (PHA only) and #2 (PHA/MCS) both start at fixed physical address locations, as follows:

Channel #1:
80000h through 9FFFFh bytes

Channel #2:
A0000h through BFFFFh bytes

The Range register determines the actual data-storage-region in channels for the acquisition channel. Both MCS and PHA channels have their own Range registers. The starting address for the channel’s storage range is determined by the (a) the channel’s starting address, and (b) the Group register. The Group register indirectly determines the offset of the channel’s storage region relative to the channel’s starting address.

Basically, the offset relative to the channel’s starting address is calculated as follows:

Offset= range * #groups

Set group register “no groups” (or zero) if no offset is desired.

7.

Hardware Register Description

7.1
Read Registers

ADRS
REGISTER
BITS
DESCRIPTION

20180h (read)
ICB Read Data

HDEC_00h

D7-D0
ICB Read-Data Register

20182h (read)
Control Register #1

HDEC_01h

D0
Watchdog update

D1
Watchdog enabled (0) or disabled (1)

D2
Sample Changer Advance status. 0= No advance, 1= Advance is active

D3
Sample Changer Advance Polarity setting, 0= active low, 1= active high

D4
Ethernet interface setting, 0= Thinnet enabled, 1= AUI enabled

D5
Sample Changer Ready Interrupt (INT2) enabled (1) or disabled (0)

D6
0= Clearing Sample Changer Ready Status. Active-low signal

**

D7
Ethernet Acknowledge Cycle direction (1= write)

20184h (read)
PHA Overflow address

HDEC_02h

D7-D0
PHA Channel Overflow address low byte

20186h (read)
PHA Overflow address

HDEC_03h
D7-D0
PHA Channel Overflow address high byte. Multiply the overflow address by 2 to obtain the acquisition memory address

20188h (read)
MCS Overflow address

HDEC_04h

D7-D0
MCS Channel Overflow address low byte

2018Ah (read)
MCS Overflow address

HDEC_05h
D7-D0
MCS Channel Overflow address high byte. Multiply the overflow address by 2 to obtain the acquisition memory address

2018Ch (read)
Control Register #2

HDEC_06h

D0
MCS Channel Overflow Status, 1= overflow, 0= normal

D1
PHA Channel Overflow Status, 1= overflow, 0= normal. NOTE: When active indicates at least one conversion was out-of-range from the start of acquisition to the read of this bit

D2
PHA Out-of-Range Status, 1= out-of-range, 0= normal

D3
PHA Acquisition Status, 1= Acquisition in progress, 0= Acquisition complete.

D4
MCS acquisition Status, 1= Acquisition in progress, 0= Acquisition complete. NOTE: Acquisition is delayed by one dwell time to allow for clock synchronization

PSTART is checked by the program when acquisition interrupt occurs to determine the cause of the interrupt
D5
PHA External Start Status (PSTART), 1= external event occurred, 0= waiting for external event. Cleared via write to HDEC_0D Bit #4

D6
not used

D7
PHA External Start/Stop Polarity setting, 0= activated by falling edge, 1= activated by rising edge. This bit determines at which edge of the external input PSTART or MSTART is developed

2018Eh (read)
High Voltage Control

HDEC_07h

D0
HV status, 1= Enabled (ON), 0= Disabled (OFF)

D1
HV +5Kv Range, 1= Enabled (ON), 0= Disabled (OFF)

D2
HV -5Kv Range, 1= Enabled (ON), 0= Disabled (OFF)

D3
HV +1.3Kv Range, 1= Enabled (ON), 0= Disabled (OFF)

D4
HV Fault Polarity Reset, 1= Pos, 0= neg

D5
HV Inhibit Polarity setting, 0= Low (+5v), 1= High (+12v)

D6
HV Serial ADC Data read

D7
HV Fault status, 0= HV Faulted, 1= normal

20190h (read)
Control Register #3

HDEC_08h
D0
MCS Start/Stop Polarity setting, 0= activated by falling edge, 1= activated by rising edge

D1
not used

D2
not used

.
D3
not used

D4
PHA External Start Interrupt, 1= enabled, 0= disabled

D5
not used

D6
not used

MSTART is checked by the program when acquisition interrupt occurs to determine the cause of the interrupt
D7
MCS External Start Status (MSTART), 1= external event has occurred, 0= waiting for external event. Cleared via write to HDEC_0D Bit #3

20192h (read)
Control Register #4

HDEC_09h

D0
ICB Status, 0= finished (ready), 1= in-progress (busy)

D1
Sample Changer Ready Status, 0= busy, 1= ready

D2
not used

D3
not used

**

D4
PHA & MCS Start/Stop Interrupt Enable, 1= enabled, 0= disabled

D5
not used

D6
not used

D7
not used

7.2
Write Registers
ADRS
REGISTER
BITS
DESCRIPTION

20180h (write)
MCS Sweep Register

HDEC_00h

D7-D0
MCS Preset-Sweep register low. The hardware does not provide elapsed-sweep counter, but will generate NMI at the end of each sweep

20182h (write)
MCS Sweep Register

HDEC_01h

D7-D0
MCS Preset-Sweep register high. The hardware does not provide elapsed-sweep counter, but will generate NMI at at end of each sweep

20184h (write)
MCS Range Register

HDEC_02h

D6-D0
MCS Range Register (see MCS Range table). This register determines the actual number of channels into which MCS data storage is allowed to take place. The data storage starts at the ADC’s starting address (A0000h) plus any offset introduced by the group register

D7
PHA Acquisition Enable (1) or Disable (0)

20186h (write)
MCS Low-side ROI Register LO

HDEC_03h

D7-D0
MCS Low-side ROI low -byte

20188h (write)
MCS Low-side ROI Register HI

HDEC_04h

D5-D0
MCS Low-side ROI high -byte

D6
MCS External Start/Stop Polarity, 0= activated by falling edge, 1= activated by rising edge

D7
not used

2018Ah (write)
MCS High-side ROI Register LO

HDEC_05h

D7-D0
MCS High-side ROI low -byte

2018Ch (write)
MCS High-side ROI Register HI

HDEC_06h

D5-D0
MCS High-side ROI high -byte

D7-D6
Sequence Lockout Initialization which must be initialized during main program initialization as follows:

1. D6=0, D7=0

2. D6=1, D7=0, wait min. 120ns

3. D6=0, D7=1

4. D6=1, D7=1, wait min. 120ns

5. D6=0, D7=1 (normal operation)

This logic controls the arbitration when both PHA and MCS are competing for bus cycles

2018Eh (write)
MCS Dwell Time Register LO

HDEC_07h

D7-D0
MCS Dwell-Time Register low-byte

20190h (write)
MCS Dwell Time Register HI

HDEC_08h

D2-D0
MCS Dwell-Time Register high-byte

D4-D3
Dwell Clock Source, where D4-D3 are encoded as follows:

002 = 1hz,

012 = 1Khz,

102 = 1Mhz,

112 = 10Mhz

D6-D5
MCS Data Source, where D6-D5 are encoded as follows:

002 = GND

012 = Fast Discriminator,

102 = TTL input

112 = ROI

D7
MCS Acquisition Enable (1) or Disable (0)

20192h (write)
ICB Address Register

HDEC_09h
D7-D0
ICB Write-Address, 0 through 255 for modules 0 through 15. Each module occupies 16 addresses.

20194h (write)
ICB Data Register

HDEC_0Ah

D7-D0
ICB Write-Data Register

20196h (write)
General Purpose Register #1

HDEC_0Bh
D0
Watchdog update, active low. To update the watchdog this bit must be driven to 0 then back to 1

D1
Watchdog enable (0) or disabled (1). Active low.

D2
Sample Changer Advance, 0= No Advance, 1= Activate Advance output

D3
Sample Changer Advance Polarity Select, 1= Active-low Advance output, 0= Active-high Advance output

D4
Ethernet Interface select, 0= Enable Thinnet, 1= Enable AUI

D5
Sample Changer Ready Interrupt (INT2) enable (1) or disable (0)

D6
0= Clear Sample Changer Ready status, 1= normal

D7
Ethernet Remote DMA, 1= Start Remote DMA, 0= normal

20198h (write)
High Voltage Control Register

HDEC_0Ch

D0
HV Control, 1= Enable (ON), 0= Disable (OFF)

D1
HV +5Kv Range, 1= Enable (ON), 0= Disable (OFF)

D2
HV -5Kv Range, 1= Enable (ON), 0= Disable (OFF)

D3
HV +1.3Kv Range, 1= Enable (ON), 0= Disable (OFF). NOTE: High Voltage must be zero before the 1.3Kv range can be enabled or disabled

D4
HV Fault Reset, 1= Reset fault condition, 0= normal

D5
HV Inhibit Polarity control, 0= Low (+5v), 1= High (+12v)

D6
PHA External Start/Stop Polarity setting, 0= activated by falling edge, 1= activated by rising edge

D7
not used

2019Ah (write)
General Purpose Register #2

HDEC_0Dh
D0
0= Clear MCS overflow, 1=- normal. Active low

D1
0= Clear PHA overflow, 1=- normal. Active low

D2
0= Clear PHA Out-of-Range, 1=- normal. Active low

D3
0= Clear/Disable MCS External Start Interrupt (MSTART), 1= normal. Active low. If signal is left in low state it also disables additional MSTART interrupts

D4
0= Clear/Disable PHA External Start Interrupt (PSTART), 1= normal. Active low. Active low. If signal is left in low state it also disables additional PSTART interrupts

D5
not used

D6
not used

D7
1= Allow PHA storage into PHA memory region (if PHA acquisition is enabled). Default is 1. This bit is normally set to 0 when MCS/ROI mode is selected to prevent actual PHA-data storage, and set to 1 whenever PHA acquisition is enabled to allow PHA storage in memory

2019Ch (write)
PHA Group Register

HDEC_0Eh

D7-D0
PHA Group Register (see PHA Group Table). This register introduces a digital offset to the data PHA storage. The offset value is added to the ADC’s starting address (80000h for PHA). Set to 00h for no offset.

2019Eh (write)
MCS Group Register

HDEC_0Fh

D6-D0
MCS Group Register (see MCS Group Table). This register introduces a digital offset for the MCS data storage. The offset is added to the ADC’s starting address (A0000h for MCS). Set to 00h if no offset is desired.

D7
MCS Memory control, 1= enabled (Directs MCS storage to upper 32k x 32), 0= not mapped (MCS stores in lower 32k x 32). When set, this bit inhibits PHA storage from the upper 32k. That is, it inhibits PHA storage from the MCS range (A0000h to BFFFFh)

201A0h (write)
PHA Range Register

HDEC_10h
D6-D0
PHA Range Register (see PHA Range Table). This value represents the actual number of contigous channels that are allowed to store PHA data. The storage range’s starting address is the ADC’s starting address (80000h) plus any offset introduced by the PHA group register

201A2h (write)
General Purpose Register #3

HDEC_11h
D0
not used

D1
not used

D2
PHA & MCS External Start/Stop Acquisition Interrupt Enable/Disable control, 1= Enable interrupt (Start PHA, Stop PHA, Start MCS, Stop MCS), 0= Disable interrupt

D3
not used

D4
not used

D5
spare

D6
1= Terminate MCS acquisition at end of current sweep. This is used for STOP vs ABORT operations in MCS. Default at power-up is 0. The bit is self-clearing when the function completes.

D7
1= Enable MCS Sweep Forever. Default at power-up is 0. When set the hardware ignores the preset sweep counter

8.

ICB Protocol

The ICB protocol for the DSA2000 Module requires seven registers, R0 through R6. R0 and R1 are dedicated to the ICB interface as described in the Technical Specification document for the ICB Interface. R2 through R5 are dedicated to the module communication. R6 is for reading the module’s status.

Although a brief descriptions for register R0 and R1 follows, refer to the formal ICB Technical Specification document for detail description.

8.1.1
Register 0 Read/Write

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

R
RA2
RA1
RA0
FAIL
RST
SVCRQ
1
0

W
RA2
RA1
RA0
STGRN
RST
RSRST
STOR
STRED

bit 0-1
10= Second generation of computer-controller NIM

SVCRQ
1= Service Request Asserted. Reset by reading register R0

RST
1= Module has been reset

FAIL
1= Module has failed power-on diagnostics

RA2-0
Non-volatile RAM address bits 0-2

STRED
Red LED status, 1= ON, 0= OFF

STGRN
Green LED status, 1= ON, 0= OFF

STOR
1= Initiate a store cycle into the non-volatile RAM. Requires hardware jumper to enable.

RST
1= Slave reset

RSRST
1= Reset RST of the addressed module

8.1.2
Register 1 Read/Write

Register 1 is used to read data from and read data into non volatile RAM. The location being accessed is determined by RA2-0 in R0

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

R
0
0
0
0
RD3
RD2
RD1
RD0

W
x
x
x
x
RD3
RD2
RD1
RD0

RD3-0
Non-volatile RAM data. Address is specified in R0.

Data read from the module is always returned in R8-R5. Although there are four registers at our disposal to hold the returned data, only R4 and R5 will actually be used. The reason is that we can keep the same data structure for both writing and reading which reduces the complexity of the software driver.

8.1.3
Registers 2-5 Read/Write

These registers are used to transfer data between the host computer and module. The data structure for each register is dependent on the command being processed. Refer to command section later in this document for details. The module will accept the data when register R5 is written to. When loading registers for multiple bytes always load R5 last.

Registers R2-R5 are organized MSB through LSB respectively, as follows:

R2
R3
R4
R5

MSB

LSB

R/W
bits 28-24
bits 23-16
bits 15-8
bits 7-0

All data written to the module or read from the module is limited to 29 bits, 0 through 28. Bits 29-31 are reserved for internal use. Any data written to the reserved bits will be ignored. When reading data from the module bits 31-29 will read 100b respectively

Register Write
Unless otherwise noted in the specific command description, the register usage when writing data from the ICB bus to the module is as follows:

Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

R2 (msb)
n/a2
n/a2
n/a2

RCMD
03
03
03

R3
ID71
ID61
ID51
ID41
ID31
ID21
ID11
ID01

R4
DAT15
DAT14
DAT13
DAT12
DAT11
DAT10
DAT9
DAT8

R5 (lsb)
DAT7
DAT6
DAT5
DAT4
DAT3
DAT2
DAT1
DAT0

A Register-Write operation should always be followed by a read of R6 waiting for the WDONE bit before returning to the application program. This action will guarantee that the module is ready to process the next command. The WDONE bit is self clearing, which means that once set, it will clear itself after reading it.

Register Read
Unless otherwise noted in the specific command description, the register usage when reading data from the module to the ICB bus is as follows:

Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

R2 (msb)
n/a2
n/a2
n/a2
DAT28
DAT27
DAT26
DAT25
DAT24

R3
DAT23
DAT22
DAT21
DAT20
DAT19
DAT18
DAT17
DAT16

R4
DAT15
DAT14
DAT13
DAT12
DAT11
DAT10
DAT9
DAT8

R5 (lsb)
DAT7
DAT6
DAT5
DAT4
DAT3
DAT2
DAT1
DAT0

A Register-Read operation should always be followed by a read of R6 waiting for the RDAV bit before reading data in R2-R5. This action will guarantee that the data in R2-R4 has been updated by the module and the module is ready to process the next command. The RDAV bit is self clearing, which means that once set, it will clear itself after reading it.

1 Refer to the Table Identifier Table for ID codes and description

2 These bits are reserved and will read back as 100b
3 These bits are reserved and must be written as 0b
RCMD
1= Read operation. This bit informs the module that it is to supply a response in registers R2-R5. The response data structure will be specific to the parameter ID in ID7-ID0. The module will set the RDAV bit after it updates R2-R5 with data.

ID7-ID0
Parameter opcode. Refer to the Data Identifier Table for opcodes.

DAT28-DAT0
Data to be transferred, 29 bits maximum. Bits 31-29 are reserved. Refer to the individual parameter description for encoding of the data bits.

8.1.4
Register 6 Read

Register R6 is read-only. It is used exclusively for monitoring the module’s status through the ICB bus. It will be updated by the module in accordance to the status changes within the module. RDAV and DXIP bits are used for handshaking between the module and ICB bus. The data structure is defined as follows:

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

R
DXIP
WDONE or RDAV
spare
LKOUT
ABUSY
MBUSY
MERR
FAIL

DXIP
1= data transfer to the module in progress. This bit indicates to the host that the module has not yet accepted the data written by the host in R2-R5. DXIP should be tested by the host at the completion of each R2-R5 write operation to make sure that the transfer was successful. The module should always accept the data within 100 microseconds.

RDAV
1= Register data in R2-R5 is available for reading. This bit is set by the module after having processed a command that requires a response from the module. This means that data in R2-R5 has been updated. Once set, the bit will be reset automatically after reading R6.

WDONE
1= Write operation has been completed. This bit is set by the module after having processed a write-data command that requires no response from the module. Once set, the bit will be reset automatically after reading R6.

ABUSY
1= Process is busy. This condition is used as a indication that the module is currently performing a lengthy task such as Automatic Pole Zero, Auto BDC correction, or internal diagnostics.

LKOUT
1= Process cannot be disturbed. This condition is posted by the DSP processor prior to exiting into the bootstrap program (from the main program) to inhibit the main processor from polling. Normally this condition is used when reloading the program.

MBUSY
1= Module busy. This condition is used as a indication to the host that the module is currently executing a command. This bit will be set to its active state when the module receives the host request and will be cleared (inactive state) when the module completes the host request. A second request should not be sent to the module when the MBUSY is in the active state. Doing so will risk the possibility of the module missing the request.

MERR
1= Module error. This bit will be set by any of the following conditions:

· Stabilizer Gain-Mode was ON and overrange condition occurred (GOVR bit set in ID_STABLZ_GMOD status)

· Stabilizer Zero-Mode was ON and overrange condition occurred (ZOVR bit set in ID_STABLZ_GMOD status)

The MERR and FAIL bits are reset through the Clear Error system operation using the ID_SYSOP_CMD opcode

FAIL
1= Internal hardware failure occurred. Also sets R0’s FAIL bit and Red LED status. This condition will be set if (a) flash-parameters have not been programmed, or (b) Parameter NOVRAM re-initialization was required

Register R6 is not available to the RS232 port. The RS232 interface must read the Status Flags using the ID_STATUS_FLGS opcode. The MERR and FAIL bits are reset through the Clear Error system operation using the ID_SYSOP_CMD opcode

9.

RS232 Protocol

The same data structure used in the ICB is also used in the RS232 implementation. The RS232 port will be used for test purposes and for updating system firmware. Rate will be fixed at 9600 baud with no parity and 1 stop bit.

The RS232 port will not be used during normal operation.

The presence of the RS232 hardware will be detected as the module program initializes the hardware following a reset, then a determination will be made as to whether the RS232 port should be enabled. The decision will be based on a hardware jumper and if present, the RS232 port will be enabled and remain enabled thereafter until the instrument is again reset.

If the RS232 hardware is present and enabled, the DSP processor will be interrupted with each character received by the hardware. Although a 32-bit quantity is sent to the DSP from the RS232 hardware, only the 8 LSB’s will be used for data.

9.1.1

Testing the DSA2000

The host will be given direct access to the DSA2000 hardware through the Read/Write Memory functions, and through the System Functions operations. The latter will be used to execute pre-established tests and/or modes of operations to be used for the overall testing.

9.1.2

RS232 Command and Response Structure

9.1.2.1
RS232 Command Structure

[SC][NB][CC][data][CS]
[SC]
Start of Command character 24h

[NB]
Number of total bytes in the data field, 00h through FBh

[CC]
command opcode, 00h through FFh

[data]
data field as required by the command

[CS]
Checksum consisting of the arithmetic sum, modulo 256, of each character from SC through the last character in data field, excluding NB, [CS is NOT included], plus the total length of the string from SC through CS inclusive. For example, the command string:

|SC|NB|CC|d0|d1|d2|d3|d4|d5|CS|

|24|06|27|F1|F2|F3|04|05|06|3A|

9.1.2.2
RS232 Response Structure

[SR][NB][data][CS]
[SR]
Start of Response character 2Ah for non-error responses, 2Bh for error responses. For error responses the error code will be returned in the data field. Refer to Appendix B for list of errors.

[NB]
Number of total bytes in the data field, 00h through FBh. For error responses this field will be set to 1.

[data]
data field as required by the command. For error responses this field will consist of a single byte. Refer to Appendix B for list of errors.

[CS]
Checksum consisting of the arithmetic sum, modulo 256, of each character from SR through the last character in data field, excluding NB, [CS is NOT included], plus the total length of the string from SR through CS inclusive. See example above.

9.1.2.3
RS232 Minimum Response

Every RS232 command will return a response. The response structure always conforms to the structure above. The minimum response for a RS232 command is as follows:

[SR][NB][CS]
which translates to:

[2A][00][2D]
10.

ICB and RS232 Command Data Format

All data written to the module or read from the module via the ICB bus must be through registers R2 through R5. Registers R2 and R3 are the control registers. These specify (a) whether the operation is a read or write, (b) the parameters to be read or written, and (c) the table number which the parameters are to be read from or written to. Registers R4 and R5 are the data registers.

The same approach as in the ICB protocol is also used for the RS232 protocol. Since each RS232 transfer is limited to 8 bits, four bytes are required to compose a single read or write operation to the module. Module data can be accessed via the RS232 port using the Read Parameter and Write Parameter commands described later.

The ICB register to RS232 byte relationship for the Read/Write Parameter command is as follows:

ICB:
R2
R3
R4
R5

RS232:
b0
b1
b2
b3

MSB

LSB

Refer to the ICB Protocol section of this document for more details on R2-R5.

In most cases data items are accessed individually through a item identifier specified in R3/b1. This approach generally simplifies driver design. The R/W operation is specified in R2/b0.

10.1.1

Data Identifier Table

The tables below specifies the data items and whether they have R/W access.

Data Identifier Name
ID code (hex)
R/W
Data Field Contents

ID_AMP_CGAIN
01h
R/W
Amplifier Coarse Gain Index, 0-5

ID_AMP_FGGAIN
2Ah
R/W
Amplifier Fine Gain DAC value, 000-FFFh

ID_AMP_SFGAIN
2Bh
R/W
Amplifier Super Fine Gain DAC value, 000-FFFh

ID_ADC_CGAIN
31h
R/W
ADC Conversion Gain index, 0-6 representing 256-16k channels

ID_ADC_CRANGE
32h
R/W
ADC Conversion Range index, 0-6 representing 256-16k channels

ID_ADC_OFFS
33h
R/W
ADC Offset, 0 through 126 representing 0 through 16128 channels

ID_ADC_TYPE
17h
R/W
MCA Type index, 0-2

ID_ADC_LLD
30h
R/W
ADC LLD DAC value, 000-7FFFh

ID_ADC_ZERO
2Ch
R/W
ADC Zero DAC value 0000-186Ah

ID_FILTER_RT
35h
R/W
Digital Filter Rise Time index, 0 through 28

ID_FILTER_FT
36h
R/W
Digital Filter Flat Top index, 0 through 20

ID_FILTER_MDEX
3Ch
R/W
M-term Index 0-2 for decay time selection, where 0= 2.0us, 1 and 2 are reserved

ID_FILTER_MFACT
2Fh
R/W
M-Factor value for selected M-term

ID_FILTER_BLRM
06h
R/W
BLR mode index, 0-3

ID_FILTER_PZM
08h
R/W
Pole Zero mode, 0-2

ID_FILTER_PZ
07h
R/W
Pole Zero DAC setting, 000-FFFh

ID_FILTER_THR
39h
R/W
Filter Threshold mode and and DAC value, 0000-FFFFh

ID_FILTER_FRQ
3Ah
R/W
Filter Cutoff Frequency index, 0 through 20

ID_STABLZ_GCOR
22h
R/W
Stabilizer Gain Correction Range, 0-1

ID_STABLZ_ZCOR
2Dh
R/W
Stabilizer Zero Correction Range, 0-1

ID_STABLZ_GMOD
20h
R/W
Stabilizer Gain Mode index, 0-2

ID_STABLZ_ZMOD
21h
R/W
Stabilizer Zero Mode index, 0-2

ID_STABLZ_GDIV
37h
R/W
Stabilizer Gain Correction Divider, 0-9 representing 2^N divider

ID_STABLZ_ZDIV
38h
R/W
Stabilizer Zero Correction Divider, 0-9 representing 2^N divider

ID_STABLZ_GSPAC
1Ch
R/W
Stabilizer Gain Spacing, 2-512 channels

ID_STABLZ_ZSPAC
1Dh
R/W
Stabilizer Zero Spacing, 2-512 channels

ID_STABLZ_GWIN
1Ah
R/W
Stabilizer Gain Window, 1-128 channels

ID_STABLZ_ZWIN
1Bh
R/W
Stabilizer Zero Window, 1-128 channels

ID_STABLZ_GCENT
18h
R/W
Stabilizer Gain Centroid, 10 through 16376 channels

ID_STABLZ_ZCENT
19h
R/W
Stabilizer Zero Centroid, 10 through 16376 channels

ID_STABLZ_GRAT
28h
R/W
Stabilizer Gain Ratio value 1-10000 as x100, representing 0.01 to 100.00

ID_STABLZ_ZRAT
29h
R/W
Stabilizer Zero Ratio value 1-10000 as x100, representing 0.01 to 100.00

ID_STABLZ_RESET
23h
W
Reset stabilizer

ID_STABLZ_GAIN
3Eh
R/W
Stabilizer Gain correction value, 0000-1FFFh

ID_STABLZ_ZERO
3Fh
R/W
Stabilizer Zero correction value, 000-FFFh

ID_MISC_FDM
13h
R/W
Fast Discriminator Mode, 0-1

ID_MISC_FD
34h
R/W
Fast Discriminator DAC setting, 0 through 1000 representing 0.0% through 100.0%

ID_MISC_INPP
0Eh
R/W
Input Polarity mode, 0-1

ID_MISC_INHP
0Fh
R/W
Inhibit Polarity mode, 0-1

ID_MISC_PURM
10h
R/W
PUR Mode, 0-2

ID_MISC_GATM
11h
R/W
Gate Mode, 0-1

ID_MISC_OUTM
12h
R/W
Output Mode, 0-1

ID_MISC_GD
16h
R/W
Guard Setting, 11 through 25 representing x1.1 through x2.5

ID_MISC_TINH
3Dh
R/W
TRP Inhibit mode, 0-1

ID_MISC_LTRIM
14h
R/W
Live-Time Trim, 0-1000

ID_MISC_BBRN
15h
R/W
Burr-Brown Delay, 0-1

ID_PULS_RATE
02h
R/W
Pulser Rate, 0-3

ID_PULS_MODE
03h
R/W
Pulser Mode, 0-3

ID_PULS_XSPOL
1Fh
R/W
Pulser LSP/MSP Polarity, 0-1

ID_PULS_LODELAY
04h
R/W
Pulser Low Delay, 0-2047

ID_PULS_HIDELAY
05h
R/W
Pulser High Delay, 0-2047

ID_PULS_LOOFFSET
09h
R/W
Pulser Low Offset, 0-16383

ID_PULS_HIOFFSET
0Ah
R/W
Pulser High Offset, 0-16383

ID_PULS_GAMCUTOFF
0Bh
R/W
Pulser Gamma Cutoff, 0-16383

ID_PULS_LOCUTOFF
0Ch
R/W
Pulser Low Cutoff, 0-16383

ID_INFO_TDAC
3Bh
R/W
Test DAC index, 0-3

ID_INFO_THRP
24h
R
Throughput register value for current index

ID_INFO_THRI
25h
R/W
Throughput register index, 0-3

ID_INFO_PZ
26h
R
Last result from Auto-PZ process

ID_INFO_BDC
27h
R
Last result from Auto-BDC process

ID_STATUS_FLGS
46h
R
P/Z Busy, BDC Busy, PUR on/off, spares

ID_SYSOP_CMD
54h
W
System command to activate system-level commands, such as:

· Abort AutoBDC

· Start AutoPZ process

· Start AutoBDC process

· Save flash parameters

· Lock/Unlock front panel functions

· LEDs on/off

· Update hardware from table #0

· Initialize

· Write to any memory-mapped location

· Write FPGA Digital Filter registers (G, H, etc)

· Execute specific diagnositc

· AutoBDC data calculations

· Reading of Y[0-19] bus value

· Reading of calculated threshold value

· Reading of self diagnostic result

· Reading of front-panel switch settings

· Reading of any memory-mapped location

· Reading of module’s program version & other info

· etc

ID_SYSOP_RDATL
55h
R
System command to read system data LSB for test purposes

ID_SYSOP_RDATH
56h
R
System command to read system data MSB for test purposes

ID_SYSOP_LCD
57h
W
System command to write data to LCD display

ID_SYSOP_DAC
58h
W
System command to write data to hardware DACs

10.1.2

Amplifier Setup

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_AMP_CGAIN
R4

R5

CG2
CG1
CG0

ID_AMP_FGAIN
R4

FG11
FG10
FG9
FG8

R5
FG7
FG6
FG5
FG4
FG3
FG2
FG1
FG0

ID_AMP_SFGAIN
R4

SFG11
SFG10
SFG9
SFG8

R5
SFG7
SFG6
SFG5
SFG4
SFG3
SFG2
SFG1
SFG0

CG2-CG0
Coarse gain index defined as follows:

0
x5

1
x15

2
x40

3
x120

4
x330

5
x960

FG11-FG0
Fine gain DAC value 400h through FFFh representing x0.4 through x1.6

SFG11-SFG0
Super Fine gain DAC value 000h through FFFh representing 0.000 through 0.0300

The composite system gain is calculated as:

Gain = Coarse Gain x (Fine Gain + Super Fine Gain)

10.1.3

ADC Setup

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_ADC_CGAIN
R4

R5

G2
G1
G0

ID_ADC_CRANGE
R4

R5

R2
R1
R0

ID_ADC_OFFS
R4

R5

OFFS6
OFFS5
OFFS4
OFFS3
OFFS2
OFFS1
OFFS0

ID_ADC_TYPE
R4

R5

MCA1
MCA0

ID_ADC_LLD
R4

LLD14
LLD13
LLD12
LLD11
LLD10
LLD9
LLD8

R5
LLD7
LLD6
LLD5
LLD4
LLD3
LLD2
LLD1
LLD0

ID_ADC_ZER
R4

ZER12
ZER11
ZER10
ZER9
ZER8

R5
ZER7
ZER6
ZER5
ZER4
ZER3
ZER2
ZER1
ZER0

G2-G0
Conversion gain value expressed as as 256 x 2G where G= 0 through 6 representing 256 through 16k channels

R2-R0
Conversion range value expressed as as 256 x 2R where R= 0 through 6 representing 256 through 16k channels

MCA1-MCA0
Selects the MCA Type for interfacing, expressed as follows:

0=
AIM/ACCUSPEC

1=
S100/S35

2=
SILENA

OFFS6-OFFS0
Digital Offset value 0 through 126 representing the digital offset in 128 channel increments from 0 through 16128 channels

LLD14-LLD0
LLD DAC Value 0000h through 7FFFh representing 0.0% through 100.0%

ZER12-ZER0
Zero DAC Value 010 through 625010 (000016 - 186A16) representing -3.125% through +3.125% respectively

10.1.4

Trapezoid Filter Setup

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_FILTER_RT
R4

RT9
RT8

R5
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT0

ID_FILTER_FT
R4

R5

FT5
FT4
FT3
FT2
FT1
FT0

ID_FILTER_MDEX
R4

R5

MX1
MX0

ID_FILTER_MFACT
R4
M15
M14
M13
M12
M11
M10
M9
M8

R5
M7
M6
M5
M4
M3
M2
M1
M0

ID_FILTER_BLRM
R4

R5

BLR1
BLR0

ID_FILTER_PZM
R4

R5

PZM1
PZM0

ID_FILTER_PZ
R4

PZ11
PZ10
PZ9
PZ8

R5
PZ7
PZ6
PZ5
PZ4
PZ3
PZ2
PZ1
PZ0

ID_FILTER_THR
R4
TH15
TH14
TH13
TH12
TH11
TH10
TH9
TH8

R5
TH7
TH6
TH5
TH4
TH3
TH2
TH1
TH0

ID_FILTER_FRQ
R4

R5

FRQ4
FRQ3
FRQ2
FRQ1
FRQ0

RT9-RT0
Rise Time value ranging from 4 through 280 representing 0.4us - 28.0us. Refer to the Module spec sheet for actual values.

BLR1-BLR0
BLR Setting ranging from 0 through 3. Values defined as follows:

0=
AUTO

1=
SOFT

2=
MEDIUM

3=
HARD

FT5-FT0
Flat Top value 0 through 30 representing 0.0us - 3.0us. Refer to the Module spec sheet for actual values.

MX1-MX0
M-Term Index value ranging from 0 through 2 indicating which M-Term to use. Values are defined as follows:

0=
Use M=Term #1

1=
Use M=Term #2

2=
Use M=Term #3

CAUTION: The M-Index must be specified before accessing the actual M-Term value for both reading and writing. In the current design the M-Index is always zero.

M15-M0
Actual M-Term value for the selected M-Index

CAUTION: The M-Index must be specified before accessing the actual M-Term value for both reading and writing. In the current design the M-Index is always zero.

PZM1-PZM0
Pole Zero Mode, defined as follows:

0=
AUTO

1=
MANUAL

2=
RESET

PZ11-PZ0
Actual P/Z DAC value ranging from 000h through FFFh

TH15-TH0
Actual Threshold Register value ranging from 0000h through FFFFh. THR value set at 0000h implies AUTOMATIC mode, whereas 0001h through FFFFh implies the setting for MANUAL mode

FRQ4-FRQ0
Cutoff Frequency Index ranging from 0 through 20 defined as follows:

0=
100hz
10=
1500hz

1=
200hz
11=
2000hz

2=
300hz
12=
2500hz

3=
400hz
13=
3000hz

4=
500hz
14=
5000hz

5=
600hz
15=
7500hz

6=
700hz
16=
10000hz

7=
800hz
17=
15000hz

8=
900hz
18=
20000hz

9=
1000hz
19=
30000hz

20=
50000hz

10.1.5

Stabilizer Setup

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_STABLZ_GCOR
R4

R5

CORR

ID_STABLZ_ZCOR
R4

R5

CORR

ID_STABLZ_GMOD
R4

R5
GOVR
GOVF

GMOD1
GMOD0

ID_STABLZ_ZMOD
R4

R5
ZOVR
ZOVF

ZMOD1
ZMOD0

ID_STABLZ_GDIV
R4

R5

GDIV3
GDIV2
GDIV1
GDIV0

ID_STABLZ_ZDIV
R4

R5

ZDIV3
ZDIV2
ZDIV1
ZDIV0

ID_STABLZ_GSPAC
R4

GSPC8

R5
GSPC7
GSPC6
GSPC5
GSPC4
GSPC3
GSPC2
GSPC1
GSPC0

ID_STABLZ_ZSPAC
R4

ZSPC8

R5
ZSPC7
ZSPC6
ZSPC5
ZSPC4
ZSPC3
ZSPC2
ZSPC1
ZSPC0

ID_STABLZ_GCENT
R4

GCNT13
GCNT12
GCNT11
GCNT10
GCNT9
GCNT8

R5
GCNT7
GCNT6
GCNT5
GCNT4
GCNT3
GCNT2
GCNT1
GCNT0

ID_STABLZ_ZCENT
R4

ZCNT13
ZCNT12
ZCNT11
ZCNT10
ZCNT9
ZCNT8

R5
ZCNT7
ZCNT6
ZCNT5
ZCNT4
ZCNT3
ZCNT2
ZCNT1
ZCNT0

ID_STABLZ_GWIN
R4

R5

GWIN6
GWIN5
GWIN4
GWIN3
GWIN2
GWIN1
GWIN0

ID_STABLZ_ZWIN
R4

R5

ZWIN6
ZWIN5
ZWIN4
ZWIN3
ZWIN2
ZWIN1
ZWIN0

ID_STABLZ_GRAT
R4
GRAT15
GRAT14
GRAT13
GRAT12
GRAT11
GRAT10
GRAT9
GRAT8

R5
GRAT7
GRAT6
GRAT5
GRAT4
GRAT3
GRAT2
GRAT1
GRAT0

ID_STABLZ_ZRAT
R4
ZRAT15
ZRAT14
ZRAT13
ZRAT12
ZRAT11
ZRAT10
ZRAT9
ZRAT8

R5
ZRAT7
ZRAT6
ZRAT5
ZRAT4
ZRAT3
ZRAT2
ZRAT1
ZRAT0

ID_STABLZ_RESET
R4

R5

RES0

ID_STABLZ_GAIN
R4

GAIN12
GAIN11
GAIN10
GAIN9
GAIN8

R5
GAIN7
GAIN6
GAIN5
GAIN4
GAIN3
GAIN2
GAIN1
GAIN0

ID_STABLZ_ZERO
R4

ZERO11
ZER10
ZERO9
ZERO8

R5
ZERO7
ZERO6
ZERO5
ZERO4
ZERO3
ZERO2
ZERO1
GAIN0

GCOR

ZCOR
Stabilizer Gain and Zero Correction Range, defined as follows:

0=
Ge (+/- 1%)

1=
NaI (+/- 10%)

GMOD1-GMOD0
Gain Mode

ZMOD1-ZMOD0
Zero Mode, defined as follows:

0=
OFF

1=
ON

2=
HOLD

In case of overrange condition (GOVR or ZOVR bits set) the mode will automatically be switched to HOLD. Status bits GOVR, GOVF, ZOVR, and ZOVF are read-only.

GOVR

ZOVR
(Read-Only) Status flag indicating that the stabilizer’s correction hardware exceeded its correction range. Respective mode was switched to HOLD.

GOVF

ZOVF
(Read-Only) Status flag indicating that the stabilizer’s hardware registers have reached overflow condition due to excessively high input rate and/or excessively wide window selection

ZDIV1-ZDIV0
Zero Correction Divider

GDIV1-GDIV0
Gain Correction Divider, expressed as 2^N where N= 0 through 9 representing a divider factor of 1 through 512

GSPC8-GSPC0
Gain Spacing

ZSPC8-ZSPC0
Zero Spacing, expressed as 2 through 512 channels

GW6-GW0
Gain Window

ZW6-ZW0
Zero Window, expressed as 1 through 128 channels

GCNT13-GCNT0
Gain Centroid

ZCNT13-ZCNT0
Zero Centroid, Value ranging from 10 to 16376 to represent the actual setting in channels

GRAT15-GRAT0
Gain Ratio Value

ZRAT15-ZRAT0
Zero Ratio Value. This is the ratio value between the upper and lower window counts that the stabilizer will attempt to mantain. The value will range from 1 to 10000 representing a ration value of 0.01 to 100.00. Default will be at 100 for 1.00 ratio. The ratio is calculated from the upper and lower windows as follows:

ratio = upper / lower * 100

RES0
1= Reset stabilizer zero and gain corrections to midscale and reset any pending stabilizer errors

GAIN12-GAIN0
Actual gain correction value

ZERO11-ZERO0
Actual zero correction value

10.1.6

Miscellaneous Setup

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_MISC_INPP
R4

R5

INPP

ID_MISC_INHP
R4

R5

INHP

ID_MISC_TINH
R4

R5

TINH

ID_MISC_FDM
R4

R5

FDM

ID_MISC_FD
R4

FD9
FD8

R5
FD7
FD6
FD5
FD4
FD3
FD2
FD1
FD0

ID_MISC_PURM
R4

R5

PURM1
PURM0

ID_MISC_GATM
R4

R5

GATM

ID_MISC_OUTM
R4

R5

OUTM

ID_MISC_GD
R4

R5

GD4
GD3
GD2
GD1
GD0

ID_MISC_BBRN
R4

R5

BBRN

ID_MISC_LTRIM
R4

LTRM9
LTRM8

R5
LTRM7
LTRM6
LTRM5
LTRM4
LTRM3
LTRM2
LTRM1
LTRM0

ID_INFO_TDAC
R4

R5

TDC1
TDC0

ID_INFO_THRP
R4
N2
N1
N0
THP12
THP11
THP10
THP9
THP8

(read-only)
R5
THP7
THP6
THP5
THP4
THP3
THP2
THP1
THP0

ID_INFO_THRI
R4

(read/write)
R5

IX3
IX2
IX1
IX0

ID_INFO_PZ
R4

AER2
AER1
AER0
PZ11
PZ10
PZ9
PZ8

(read-only)
R5
PZ7
PZ6
PZ5
PZ4
PZ3
PZ2
PZ1
PZ0

ID_INFO_BDC
R4

AER2
AER1
AER0

(read-only)
R5

FT5
FT4
FT3
FT2
FT1
FT0

INPP
Input Polarity defined:

0= Positive, 1= Negative

INHP
Inhibit Polarity defined:

0= Positive, 1= Negative

TINH
TRP Inhibit mode, defined:

0= Normal, 1= Reset

FDM
Fast Discriminator Mode, where

0= AUTO, 1= MANUAL

FD9-FD0
Value ranging from 0 through 1000 representing the FD DAC setting as 0.0% through 100.0% respectively

PURM1-PURM0
PUR Mode, defined:

0=
OFF

1=
ON

2=
LFC

Status is reflected in ID_STATUS_FLGS

GATM
Gate Mode, defined:

0= ANTI, 1= COINC

OUTM
Output Mode, defined:

0= TRAPEZOID, 1= TAIL

GD4-GD0
Guard Setting, 11 through 25 representing x1.1 through x2.5. Setting of x1.1 implies that the PUR Guard is OFF.

TDC1-TDC0
Test DAC mode. Test DAC Index defined as follows:

0=
Baseline

1=
Threshold

2=
LLD

3=
TDAC OFF

LTRM9-LTRM0
Live-Time Trim value, 0 through 1000

DT9-DT0
(R)

Calculated dead time, returned as 0 through 1000 representing 0.0% through 100.0%. This a read-only value.

THP12-THP0
(R)

Throughput register reading, representing the calculated DSP Rate, MCA Rate, Incoming Rate, and Dead Time values. These read-only values are returned as a composite 16-bit value consisting of a value V and exponent N. The actual value can be calculated as:

actual value = V x 2N

where V is a 13-bit value in bits 0-12 and N is a 3-bit value in bits 13-15. The highest value that can be returned this way is 213 x 27 or approximately 1048K. Refer to IX3-IX0 to determine which value is being read.

N2-N0
Exponent for THP12-0. The exponent N is always zero for Dead Time.

IX3-IX0
Throughput register index, returned as follows:

0=
Dead Time (N always zero)

1=
Incoming Input Rate

2=
DSP rate

3=
MCA rate

4-up
reserved

BBRN
Burr-Brown ADC Delay, 0= Off, 1= On

PZ11-PZ0
Pole Zero value established by the Automatic Pole Zero process. Returned value is within the 0 through 4095 range. The value in PZ11-PZ0 is valid only if the automatic process was successful, which is indicated through bits AER2-AER0. The value in PZ11-PZ0 does not necessarily represent the current P/Z setting. Use ID_FILTER_PZ to access the current P/Z setting.

FT5-FT0
Flat-Top setting established by the Automatic BDC process. Returned value is within the 0 through 30 range representing 0.0us - 3.0us (similar to ID_FILTER_FT). The value in FT5-FT0 is valid only if the automatic process was successful, which is indicated through bits AER2-AER0. The value in FT5-FT0 does not necessarily represent the current flat-top setting. Use ID_FILTER_FT to access the current flat-top setting.

AER2-AER0
Automatic PZ and BDC process error result, encoded as follows:

AER2
AER1
AER0

0
0
0
Process was successful

0
0
1
Process failed, Rate too low

0
1
0
Process failed, Timeout (excessive noise)

0
1
1
Process failed, Rate too high

1
0
0
Process was aborted

10.1.7

Pulser

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_PULS_RATE
R4

R5

RAT1
RAT0

ID_PULS_MODE
R4

R5

MOD2
MOD1
MOD0

ID_PULS_XSPOL
R4

R5

POL0

ID_PULS_LODELAY
R4

LDY10
LDY9
LDY8

R5
LDY7
LDY6
LDY5
LDY4
LDY3
LDY2
LDY1
LDY0

ID_PULS_HIDELAY
R4

HDY10
HDY9
HDY8

R5
HDY7
HDY6
HDY5
HDY4
HDY3
HDY2
HDY1
HDY0

ID_PULS_LOOFFSET
R4

LOF13
LOF12
LOF11
LOF10
LOF9
LOF8

R5
LOF7
LOF6
LOF5
LOF4
LOF3
LOF2
LOF1
LOF0

ID_PULS_HIOFFSET
R4

HOF13
HOF12
HOF11
HOF10
HOF9
HOF8

R5
HOF7
HOF6
HOF5
HOF4
HOF3
HOF2
HOF1
HOF0

ID_PULS_GAMCUTOFF
R4

GCT13
GCT12
GCT11
GCT10
GCT9
GCT8

R5
GCT7
GCT6
GCT5
GCT4
GCT3
GCT2
GCT1
GCT0

ID_PULS_LOCUTOFF
R4

LCT13
LCT12
LCT11
LCT10
LCT9
LCT8

R5
LCT7
LCT6
LCT5
LCT4
LCT3
LCT2
LCT1
LCT0

RAT1-RAT0
Pulser Rate selection, defined as follows:

0=
50 hz

1=
100 hz

2=
500 hz

3=
1000 hz

MOD2-MOD0
Pulser Mode selection, defined as follows:

0=
Normal

1=
Pulser-only

2=
Gamma-only

3=
Pulser and Gamma

4=
Pulser OFF (default)

5 & up are reserved

POL0
Pulser LSP/MSP Polarity, 1= active low, 0= active high

LDY10-LDY0
Low Pulser Delay, 0-2047
HDY10-HDY0
High Pulser Delay, 0-2047
HOF13-HOF0
High Pulser Offset, 0-16383
GCT13-GCT0
Gamma Cutoff Value, 0-16383
LCT13-LCT0
Low Cutoff Value, 0-16383
10.1.8

Status Flags

All bits are read-only

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_STATUS_FLGS
R4

(read-only)
R5

PURON
MERR
DGBSY
MINT
BDBSY
PZBSY

PZBSY
(R)
Automatic Pole Zero status, defined:
1= Busy, 0= done

BDBSY
(R)
Automatic BDC status, defined:

1= Busy, 0= done

MINT
(R) Module has been re-initialized through reset. This bit is cleared through the Clear Error function

DGBSY
(R)
Diagnostic status, defined:
1= Busy, 0= done

MERR
(R)
Module Error. See Register 6 Read section for description.

PURON
(R)
PUR (or LTC) 1= ON/LFC, 0= OFF

10.1.9

System Functions

ID
Reg#
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

ID_SYSOP_CMD
R4
V7
V6
V5
V4
V3
V2
V1
V0

R5
CMD7
CMD6
CMD5
CMD4
CMD3
CMD2
CMD1
CMD0

ID_SYSOP_RDATL
R4
RDA15
RDA14
RDA13
RDA12
RDA11
RDA10
RDA9
RDA8

R5
RDA7
RDA6
RDA5
RDA4
RDA3
RDA2
RDA1
RDA0

ID_SYSOP_RDATH
R4
RDA31
RDA30
RDA29
RDA28
RDA27
RDA26
RDA25
RDA24

R5
RDA23
RDA22
RDA21
RDA20
RDA19
RDA18
RDA17
RDA16

ID_SYSOP_LCD
R4
CH7
CH6
CH5
CH4
CH3
CH2
CH1
CH0

(write-only)
R5

ROW
COL3
COL2
COL1
COL0

ID_SYSOP_DAC
R4
DAT11
DAT10
DAT9
DAT8
DAT7
DAT6
DAT5
DAT4

(write-only)
R5
DAT3
DAT2
DAT1
DAT0
DAC3
DAC2
DAC1
DAC0

NOTE: These operations are primarily for factory testing of the instrument and should not be performed under normal use, since some of the operations are destructive in that they will alter factory settings. The ID_SYSOP_CMD functions are mostly write-only unless specified in the individual descriptions.

Operations are specified through the ID_SYSOP_CMD function. Any data where applicable must be read through the ID_SYSOP_RDAT function. Results from operations are loaded into a general purpose 32-bit data register named gpdata that must be read through the ID_SYSOP_RDATL and ID_SYSOP_RDATH functions.

Dedicated registers address and wdata are used for performing general memory read and write operations. Since the writing of the G & H registers require critical timing, dedicated registers are provided for these as well.

The module mantains a array of four general-purpose read/write 32-bit registers in its non-volatile memory (NOVRAM). The array is named gparray, and may be accessed using the predefined functions below. The actual usage for the gparray remains TBD.

CMD7-CMD0
System Functions codes, defined as follows:

00h
Clear Errors and abort any AutoBDC or AutoPZ in process. Will reset any system errors. Also will reset the MERR bit in R6, as well as the MERR and MINT bits in ID_STATUS_FLGS

01h
Update hardware. V0-V7 contain the identifier value that specifies the hardware to be written. Values in V0-V7 are defined as follows:

64h
Digital Filter

65h
Pole Zero

66h
PUR, Gate, and MCA Type hardware

67h
Amplifier Super Fine Gain hardware

68h
Analog Control hardware, including Amp Fine & Coarse gains, Input Polarity, Inhibit Polarity, Fast Discriminator mode

69h
Manual Fast Discriminator register

6Ah
LLD register

6Bh
ADC Gain and Range registers

6Ch
MCA Offset register

6Dh
MCA Zero register

6Eh
Filter Cutoff Frequency register

6Fh
Filter Threshold Factor

70h
Test Dac index register

71h
PUR Mode and value registers

72h
Stabilizer registers

73h
Inhibit Mode hardware

74h
BLR registers

FFh
Update all hardware

02-07h
unused

08h
Activale automatic P/Z. Asserts the PZBSY bit while the process is busy. Deasserts the bit when done. Use SysOp 600Ah to read the value during or at the completion of the P/Z process.

09h
Activale automatic BDC. Asserts the BDBSY bit in ID_STATUS_FLGS and MBUSY bit in R6 while the process is busy. Deasserts the bits when done. Use SysOp 600Ah to read the value during or at the completion of the BDC process.

0Ah
Initialize Module. Bit V0 determines the level of initialization, where:

1=
Generate hardware reset

0=
Generate software reset.

When hardware reset is generated the entire program is reloaded from ROM to RAM. The NOVRAM will not be reset.

0Bh
Reset entire NOVRAM. Sets the MINT bit. CAUTION must be observed when this function is invoked because the entire database, incuding the factory default tables, will be reset.

0Ch
Save flash parameters. Error code will be placed in the gpdata register and is defined as follows:

0=
no error

1=
flash erase error

2=
flash write error

0D-0Fh
unused

10h
LED On/Off operation, where V0-V1 specify the LED itself and V7 the operation. Bits are defined as follows:

V0
1= Selects Front-Panel BUSY led

V1-V6
N/A - unused

V7
ON/OFF Control, 1= ON, 0= OFF

11h
Front Panel Lock operation, where V0 specifies whether the lock operation itself, defined as:

V0
1= Front panel locked, 0= front panel unlocked

When the front-panel is locked the main program will not respond to switch changes. When set to UNLOCKED a LCD display update is forced automatically.
12h
Force LCD update from current menu level
13-2Fh
unused

30h
Reset WData register then Load G register 7-0, from value in V7-V0 (uses WData register)

31h
Load G register 15-8, from value in V7-V0 (used WData register)

32h
Reset GPData register then Load H register 7-0, from value in V7-V0 (used GPData register)

33h
Load H register 15-8, from value in V7-V0 (used GPData register)

34h
Write G & H terms currently in WData and GPData registers to Digital Filter hardware

35-3Fh
unused

40h
Reset Address register then Load Address register bits 7-0, from value in V7-V0

41h
Load Address register bits 15-7, from value in V7-V0

42h
Load Address register bits 23-16, from value in V7-V0

43h
Load Address register bits 31-24, from value in V7-V0

44h
Reset Wdata register then Load Wdata register bits 7-0, from value in V7-V0

45h
Load Wdata register bits 15-7, from value in V7-V0

46h
Load Wdata register bits 23-16, from value in V7-V0

47h
Load Wdata register bits 31-24, from value in V7-V0

48h
Write pre-loaded Wdata value to the pre-loaded Address location (this is equivalent to a memory or memory-mapped i/o write operation)

49h
Load GPdata register from the pre-loaded Address location (this is equivalent to a memory or memory-mapped i/o read operation)

4A
Same as 49h but auto-increment the Address register by one after each read. This operation is useful when performing sequential reads

4Bh
Same as 48h but auto-increment the Address register by one after each write. This operation is useful when performing sequential writes

4C-4Fh
unused

51-53h
unused

54h
Load GParray index 0-3 for accessing one of its registers. Uses Wdata register.

55h
Write value in V7-V0 into GParray’s preselected index location bits 7-0

56h
Write value in V7-V0 into GParray’s preselected index location bits 15-8

57h
Write value in V7-V0 into GParray’s preselected index location bits 23-16

58h
Write value in V7-V0 into GParray’s preselected index location bits 31-24

59h
Load GPdata register from GParray’s preselected index location. Returned data is in RDA31-RDA0.

5Ah
Read front-panel hardware register and load GPdata register RDA31-RDA0 accordingly. The front-panel should be ‘locked’ prior to performing this operation to eliminate the normal module’s program from interfering. Returned bits are as follows:

RDA0
1= Rotary position #0 (GAIN)

RDA1
1= Rotary position #1 (FILTER)

RDA2
1= Rotary position #2 (MCA)

RDA3
1= Rotary position #3 (MISC)

RDA4
1= Rotary position #4 (INFO)

RDA5
1= Rotary position #5 (TABLES)

RDA6-7
unused

RDA8
1= Parameter-select down

RDA9
1= Parameter-select up

RDA10
1= Parameter-adjust down

RDA11
1= Parameter-adjust up

RDA12
1= Auto BDC engaged

RDA13
1= Auto P/Z engaged

RDA14
1= Recall table engaged

RDA15
1= Store Table engaged

5Bh
Reset front-panel hardware.

5C-5Fh
unused

60h
Load GPdata register with value specified in V7-V0, defined as follows:

00h
Y[19-0] value

01h
Read bitmap of system flags. Bits are defined as follows:

bit 00
1= dynamic update of dead-time

bit 01
1= dynamic update of count rate

bit 02
1= dynamic update of dsp rate

bit 03
1= dynamic update of mca rate

bit 04
1= test mode enabled

bit 05
1= NOVRAM was or being initialized

bit 06
1= main initialization complete

bit 07
1= front-paned completely locked

bit 08
1= front-panel locked except for Auto P/Z and Auto BDC buttons

bit 09
1= error message being displayed

bit 10
1= graphic message being displayed

bit 11
1= ICB hardware detected

bit 12
1= RS232 hardware detected

bit 13
1= cold-timeout expired

bit 14
1= module initialization occurred

bit 15
1= Dynamic calculation of ICR for Auto BLR

bit 16
1= System error developed. Use function 10h to read bitmap of system errors

02h
Raw baseline value, unscaled

03h
FBL register, scaled by 32

04h
Number of clock ticks since program initialization

05h
Address of raw AutoBDC buffer (1024 bytes)

06h
Address of AutoBDC time-distribution buffer (120 bytes)

07h
Start of NOVRAM location

08h
THR register, scaled by 32

09h
Address of BDC data structure (used for test)

0Ah
Auto-BDC or auto-P/Z results during or at the completion of the respective operation.

During the Auto-BDC process this value is updated with the instantenous rise-time measurement. When the process completes this value is updated with the final rise-time measurement based on the measuring algorithm. Returned value is in nanoseconds from 0 through 3600.

During the auto-P/Z process this value is updated with each compensation made to the P/Z Dac. At the completion of the process, this value is updated with the final compensation at the point of convergence. Returned value is within the 0 through 4095 range.

The final result of the automatic PZ and BDC processes can be read through the ID_INFO_PZ and ID_INFO_BDC parameters

0Bh
MAXBL register, unscaled

0Ch
Positive Peak Baseline register, scaled by 32

0Dh
ICR in 8k granularity

0Eh
TMP2 register

0Fh
Current menu level, 0-N where 0= first menu item and N is the last.

10h
System Error bitmap, defined as follows:

bit 0
Invalid M-Factor stored in flash memory

bit 1
Rom diagnostic failure

bit 2
Ram diagnostic failure

11h
Load with value in Address register

12h
Load with address of Auto P/Z structure (used for testing)

13h
Load with number of P/Z events (used for testing)

14h
Load with address of stabilizer structure (used for testing)

15-FEh
not used

FFh
Load with 44332211h to be used for testing purposes

61h
Load gpdata register with program firmware version. Returned data is encoded as follows:

RDA15-0
Main program firmware version retured as a 16-bit value, i.e. 010916 represents V1.09

RDA28-16
Bootstrap program firmware version returned as a 13-bit value, i.e. 010416 reprents V1.04

RDA31-28
reserved and will read back as 000b
62h
Read DMA buffer N where N is 0 or 1 specified through V7-V0. Data is returned in packets as SR|NB|XX|XX|XX|XX|00|01|CS where XX|XX|XX|XX is the actual data for a single word. The number of words returned is determined by dmacount variable in DPP.ASM module plus 1. The first word returned is always the value in the dmacount variable.

63h-7Fh
unused

80h
Execute internal diagnostic whose code is specified in V7-V0. Results are placed into the gpdata register. Will set MBUSY in R6 and DGBUSY in ID_STATUS_FLGS function. Refer to the internal self-diagnostic section for details.

??-FFh
unused

NOTE: Functions 60h and 61h will automatically return a response containing the GPDATA register contents.

V7-V0
Used as arguments for specific functions where required. These are specified in the individual function descriptions

RDA15-RDA0
General purpose register gpdata (LSW) bits 15-0

RDA31-RDA16
General purpose register gpdata (MSW) bits 31-16

CH7-CH0
ASCII character to be written to the LCD display

ROW
LCD row to receive the character, defined as follows:

0= top row

1= bottom row

COL3-COL0
LCD column to receive the character, 0 through 11, representing left to right respectively

DAC3-DAC0
DAC select to receive 12-bit data, defined as follows:

01h=
Fine Gain DAC

02h=
Super Fine Gain DAC

03h=
Pole Zero DAC

04h=
Fast Discriminator Threshold DAC

05h=
Stabilizer 1 (Fine) DAC

06h=
Stabilizer 2 (Coarse) DAC

07-0Fh
not used

DAT11-DAT0
Actual data to be written to the DAC

11.

Differences in ICB Protocol between DSA2000 and 9660

The table lists the differences in the ICB Protocol between the 9660 and DSA2000 Modules.

Operation
DSA2000
9660
Comments

Register R2 Write, bits 0,1, and 2
Always zero
TBL0-TBL2
Only one parameter table is supported in the DSA2000

Register R6 Status
LKOUT
spare
used as a processor-to-processor synch. control

SysOp 60FFh
returns 44332211h for ICB comm. verification
spare
used by main processor to verify proper ICB communication

SysOp 6100h
returns full versions for main and boot programs
returns abbreviated versions for main and boot programs
full program version levels are displayed during main program initialization which is sent to the external diagnostic port

ID_PULS_xxxxxxx
PISR Pulser support
n/a
the PISR pulser is not supported by the 2060/9660 hardware

12.

RS232 Command Summary

The RS232 Port will be used for testing the instrument and for reloading firmware into the instrument. It will not be used during the instrument’s normal mode of operation. Flash-related operations will be performed only through the bootstrap program.

Command
Opcode (hex)
Function

ID_PGM_QUERY
14h
Returns identification string consisting of instrument name and program version

ID_PGM_BEXIT
15h
Exits the bootstrap program and enters the instrument’s main program

ID_PGM_BENTER
16h
Exits the instrument’s main program and enter’s the bootstrap program

ID_PGM_ERASFS
17h
Erases specified flash memory sector

ID_PGM_WRITFS
18h
Writes specified multi-byte data into specified flash memory sector beginning at specified address

ID_PGM_READFS
13h
Reads specified number of bytes from specified flash sector

ID_PGM_CSUMFS
19h
Performs checksum calculation on specified flash memory sector

ID_PGM_VALIDFS
1Ah
Writes the checksum and validation bit into the flash memory’s parameter block for the specified flash sector

ID_PGM_READCS
1Bh
Reads the specified sector’s checksum from the flash memory’s parameter block

ID_PGM_WRITM
1Ch
Writes data into a memory location or memory--mapped i/o register

ID_PGM_READM
1Dh
Reads data from a memory location or memory--mapped i/o register

ID_PGM_READPAR
1Eh
Reads the instrument’s run-time parameters1

ID_PGM_WRITPAR
1Fh
Writes run-time parameters to the instrument1

ID_PGM_RESTART
20h
Forces program restart by generating hardware reset

ID_PGM_DEVICE
21h
Returns storage device information to the programming utility

12.1.1

Program Query

Returns instrument program versions, serial number, and any additional information TBD.

Opcode:
ID_PGM_QUERY

Command data:
0 bytes

Response data:
10 bytes defined as follows:

b0
Operating mode, bits are encoded as follows:

0-6
Flash sector(s) found with checksum or validation error (boot mode only)

7
1= Running bootstrap, 0= running main program

b1
Main program version 00h through FFh

b2
Bootstrap program version, 00h through FFh

b3
Error return code for boot mode, defined as follows:

FFh
Program sector not validated

FEh
Program sector checksum failure

FDh
Sector not erased

00h
No error

b4-b9
spares

b0 bit #7 is used to indicate boot or main program mode.

12.1.2

Bootstrap Exit

Exit bootstrap program and restart the application program from its power-up conditions. Any volatile RAM parameters will be erased. If command is issued while in the application program a NOP will be performed.

Opcode:
ID_PGM_BEXIT

Command data:
0 bytes

Response data:
same as Program Query
12.1.3

Bootstrap Enter

Enter bootstrap program. If command is issued while in the bootstrap program a NOP will be performed.

Opcode:
ID_PGM_BENTER

Command data:
0 bytes

Response data:
same as Program Query
12.1.4

Erase Flash Sector

Command to erase the specified flash memory sector. Multiple sectors could be specified in the same command.

Opcode:
ID_PGM_ERASFS

Command data:
1 byte, defined as follows:

b0
Bitmap of sectors to erase. The bit position corresponds to the sector number, where bit #0 is for sector #0

Response data:
2 bytes, defined as follows:

b0
Returned error sector whose bit indicates the sector number where the error occurred. Encoding of bits is same as in the command. Returned value will be zero if the erase was successful.

b1
Flash Memory Error code. See Flash Memory Programming section for explanation.

12.1.5

Program Flash Sector

Writes a specified number of bytes into the specified flash memory sector starting at the specified sector offset

Opcode:
ID_PGM_WRITFS

Command data:
variable (5 bytes minimum), data structure as follows:

b0
Bitmap of destination sector number where the bit position corresponds to the actual sector number

b1-b2
Sector offset 0000h through 3FFFh

b3
Number of actual memory data bytes that follow, 01h through F8h

b4-bN
actual data bytes

The command data stream is always 5 bytes or more because b0-b3 plus at least one data byte are always required.

Response data:
2 bytes, same as Erase Flash Sector
12.1.6

Write Sector Checksum

Writes a 16-bit checksum value into the specified flash sector’s slot. This value is verified against the calculated value during the initialization process. The operation also writes the sector’s validation bit to indicate that the programming was successful.

Opcode:
ID_PGM_VALIDFS

Command data:
3 bytes byte, defined as follows:

b0
Sector number 0-7

b1-b2
16-bit checksum value, lsb-msb

Response data:
3 bytes. See Program Flash Sector command.

12.1.7

Read Flash

Reads a specified number bytes from the specified sector starting at the specified offset

Opcode:
ID_PGM_READFS

Command data:
4 bytes, defined as follows:

b0
Sector number 0-7

b1-b2
Sector offset 0000h through 3FFFh

b3
Number of data bytes to read, 01h through 80h

Response data:
Variable

b0
Sector number being read from (same as in command)

b1-b2
Sector offset (same as in command)

b3
Actual number of bytes returned (usually same as in the command except where the request number plus the offset exceeds the sector’s upper boundary, in which case the returned number will reflect the actual number of bytes rather than the requested value)

The response data stream shall consist of a minimum of bytes because b0-b3 plus at least one read value must be returned.

12.1.8

Checksum Flash Sector

Calculates and returns the specified checksum of the specified flash sector.

Opcode:
ID_PGM_CSUMFS

Command data:
1 byte, defined as follows:

b0
Bitmap of destination sector number where the bit position corresponds to the actual sector number

Response data:
3 bytes, defined as follows:

b0-b1
Checksum as a 16-bit quantity

b2
Bitmap of the flash sector validation bits, where the bit being reset indicates that the corresponding sector has been validated. All bits will be set (7Fh) after complete program erase. Note that bit #8 (the bootstrap’s validation bit) will always be returned as being ‘valid’

12.1.9

Read Sector Checksum

Retrieves the stored checksum for the specified flash sector.

Opcode:
ID_PGM_READCS

Command data:
1 byte, defined as follows:

b0
Sector number 0-7

Response data:
3 bytes, defined as follows:

b0-b1
Checksum as a 16-bit quantity

b2
Bitmap of the flash sector validation bits, where the bit being reset indicates that the corresponding sector has been validated. All bits will be set (7Fh) after complete program erase. Note that bit #8 (the bootstrap’s validation bit) will always be returned as being ‘valid’

12.1.10

Write Memory

Write data directly into a RAM or memory-mapped i/o address. These are to be used during testing of the instrument to manipulate the hardware.

Opcode:
ID_PGM_WRITM

Command data:
8 bytes, defined as follows:

b0-b3
32-bit destination address, LSB-MSB

b4-b7
32-bit data to be written, LSB-MSB

Response data:
Minimum Response

12.1.11

Read Memory

Reads data directly from a RAM or memory-mapped i/o address. These are to be used during testing of the instrument.

Opcode:
ID_PGM_READM

Command data:
4 bytes, defined as follows:

b0-b3
32-bit source address, LSB-MSB

Response data:
4 bytes, defined as follows:

b0-b3
32-bit data read from the specified address, LSB-MSB

12.1.12

Read Parameter

Reads the specified parameter from the instrument. Refer to the ICB protocol for syntax specification and returned data format. This command is not supported in bootstrap mode.

Opcode:
ID_PGM_READPAR

Command data:
6 bytes, defined as follows:

b0-b3
Same as R2-R5 in the ICB Protocol

b4-b5
spares

Response data:
6 bytes, defined as follows:

b0-b3
Same as R2-R5

b4-b5
spares

12.1.13

Write Parameter

Writes the specified parameter into the instrument. Refer to the ICB protocol for syntax specification and data format. This command is not supported in bootstrap mode.

Opcode:
ID_PGM_WRITPAR

Command data:
6 bytes, defined as follows:

b0-b3
Same as R2-R5 in the ICB Protocol

b4-b5
spares

Response data:
6 bytes, defined as follows:

b0-b3
Same as R2-R5

b4-b5
spares

13.

Flash Memory Programming

The Flash memory used in the DSA2000 is AMD29F010 which is a 128k x 8 device. The flash is non-volatile in that it retains its contents after a power-down. It is also reprogrammable in that its contents can be changed under program control. It is used in the instrument to store the main program and a smaller bootstrap program. All flash-memory activities are performed through the bootstrap program. Test activities are performed through the main program, although some, such direct hardware manipulations, may be performed through the bootstrap for test purposes.

Upon power reset, control will be given to the bootstrap program. The bootstrap will then verify that (a) Main Program sectors have been programmed, (b) the stored checksums for Main Program sectors match the calculated values for each sector, (c) the main program (or at least a portion of it) is valid, and (d) we have permission to execute the main program. Failing to meet any of these conditions will force the bootstrap to retain control of the RS232 serial port so that a main program can be downloaded, or tests can be performed. The execution of the main program will not be attempted.

A scheme will be provided to ‘force’ the bootstrap to retain control of the serial RS232 port for test purposes and for reloading the main program. This is accomplished by issuing a series ID_PGM_BENTER command while in bootstrap mode, i.e. immediately after reset.

The bootstrap program will/should not be reloaded in the field. The bootrap sector could be protected from accidental erasure.

13.1.1

Flash Memory Organization

The entire flash memory resides at 900000h through 91FFFFh. It is sectored into eight separate sectors beginning with sector #0, with each sector’s size being 16k x 8. The flash storage configuration is as follows, keeping in mind that the addresses are relative to the device starting address.

Sector
start
stop
usage

0
00000
03FFF
Bootstrap loader

1
04000
07FFF
Main program

2
08000
0BFFF
Main program

3
0C000
0FFFF
Main program

4
10000
13FFF
Main Program

5
14000
17FFF
Main Program

6
18000
1BFFF
Main Program

7
1C000
1FFFF
Parameters

The main program starts at sector #1 and spans to sector #6. Sector #7 will be dedicated to the flash parameter block. This block will contain sufficient space for other storage such as hardware revision levels, etc. The bootstrap program will occupy sector #0. Based on this layout, the bootstrap program will not exceed 16k x 8 in size.

Executable code for the main and bootstrap programs will be stored in flash as a memory image starting at sector #0. The parameter block data will occupy the first 64 bytes of the parameter sector (sector #7) and its data structure shall be as follows:

Offset
Usage

0000-0000
Flash Status Byte whose bits represent whether the corresponding sector has been programmed. The encoding is as follows:

bit 0
Sector #0, 0= programmed, 1= not programmed

bit 1
Sector #1, 0= programmed, 1= not programmed

bit 2
Sector #2, 0= programmed, 1= not programmed

bit 3
Sector #3, 0= programmed, 1= not programmed

bit 4
Sector #4, 0= programmed, 1= not programmed

bit 5
Sector #5, 0= programmed, 1= not programmed

bit 6
Sector #5, 0= programmed, 1= not programmed

bit 7
not used

This bit ‘validates’ the respective sector. It is used by the bootstrap after a reset to determine whether control should be transferred to the main program

0001-0002
16-bit checksum for sector #0 (bootstrap program)

0003-0004
16-bit checksum for sector #1 (main program)

0005-0006
16-bit checksum for sector #2 (main program)

0007-0008
16-bit checksum for sector #3 (main program)

0009-000A
16-bit checksum for sector #4 (main program)

000B-000C
16-bit checksum for sector #5 (main program)

000D-000E
16-bit checksum for sector #6 (main program)

000F-0010
not used

0011-0012
Bootstrap program version1

0013-0014
Main program version1

0015-001F
not used

0020-0021
M-Factor #1

0022-0023
M-Factor #2

0024-0025
M-Factor #3

0026-003F
not used

1The Bootstrap and Main program versions are written by the program during the program’s initialization sequence. After erasing the parameter sector, the versions will read back as ‘erased’ until the program is re-initialized.

The main-checksums are used by the bootstrap program after a reset to determine whether control shopuld be transferred to the main program.

13.1.2

Flash Memory Error Code

This value is returned when the flash memory contents are altered through the erase or program flash commands.

00h

No error

FFh
Programming was successful but data verification test failed

FEh
Cannot write data into destination address

FDh
Attempting to alter contents of a protected sector

FCh
Error in command argument

FBh
Attempting to validate a already-validated sector

FAh
Unable to write lo-byte of checksum

F9h

Unable to write hi-byte of checksum

F8h

Invalid command

F7h

Erase algorithm did not start

F6h

Erase algorithm timed out

13.1.3

Reprogramming Main Program

The bootstrap program should not be reprogrammed in the field because if a reset occurs as result of power failure or hardware-generated while the bootstrap is being reprogrammed the instrument cannot be reprogrammed and must be returned to the factory.

To reprogram the instrument’s main program the following basic precedure should be followed. Error checking should be performed at all times, especially following flash-related operations.

1. Copy the parameter block and preserve the critical parameters, i.e. M-Factors. These will need to be restored immediately after erasing the parameter block

2. Erase the sectors that hold the main program and as well as the parameter sector. DO NOT ERASE THE BOOT SECTOR.

3. Load the main program as a memory image , calculating the checksum duringh the load.

4. When one complete sector has been loaded, have the instrument calculate its checksum for that sector then compare it against the host-calculated value. If a match is found, then write the checksum for that sector into the parameter block. This process also validates the sector as having been programmed.

5. Continue loading until the complete application has been loaded. The loading program can reduce the loading time by ‘skipping’ sections of memory that are to loaded with ‘FF’s because that is the erased state of the flash.

Cycle power or reset the instrument to force control to the bootstrap program, which then will perform its verification and test the integrity of the main program before attempting its execution. If all conditions are met, the newly loaded program will be executed.

13.2
DSP-Board Digital Stabilizer I/O Registers

ADRS
REGISTER
BITS
DESCRIPTION

810230h
ZLWS
D12-D0
Zero Low Window Start

810231h
ZLWE
D12-D0
Zero Low Window End

810232h
ZHWS
D12-D0
Zero High Window Start

810233h
ZHWE
D12-D0
Zero High Window End

810234h
GLWS
D12-D0
Gain Low Window Start

810235h
GLWE
D12-D0
Gain Low Window End

810236h
GHWS
D12-D0
Gain High Window Start

810237h
GHWE
D12-D0
Gain High Window End

810239h
OD

Output Decode

81023Ah
OF

Output Finish

13.3
DSP-Board PISR Pulser I/O Registers

ADRS
REGISTER
BITS
DESCRIPTION

810238h
Rate
D1-D0
Rate Selection register, defined as follows:

D1
D0
Operation
0
0
50 hz rate/each for pulsers

0
1
100 hz rate/each for pulsers

1
0
500 hz rate/each for pulsers

1
1
1Khz rate/each for pulsers

Mode
D3-D2
Mode Selection register, defined as follows:

D3
D2
Operation
0
0
Normal Mode

0
1
Pulser-Only Mode

1
0
Gamma-Only Mode

1
1
Gamma & Pulser Mode

LSP/MSP Polarity
D4
1= Active Low, 0= Active High

81023Bh
Low Pulser Delay
D9-D0

81023Ch
High Pulser Delay
D9-D0

81023Dh
Low Pulser Offset
D12-D0

81023Eh
High Pulser Offset
D12-D0

81023Fh
Gamma Cutoff
D12-D0

810228h
Low Pulser Cutoff
D12-D0

810229h
Conv. Gain Tracking Register
D12-D0
This register must be set each time the conversion gain is changes. Must be set as follows:

Gain
Setting

16k
0000h

8k
2000h

4k
3000h

2k
3800h

1k
3C00h

512
3E00h

256
3F00h

13.4
PHA Range and Group Table

13.4.1
PHA Range (PRNG)

D5
D4
D3
D2
D1
D0
No. channels

0
0
0
0
0
0
256 Channels

0
0
0
0
0
1
512 Channels

0
0
0
0
1
1
1024 Channels

0
0
0
1
1
1
2048 Channels

0
0
1
1
1
1
4096 Channels

0
1
1
1
1
1
8192 Channels

1
1
1
1
1
1
16384 Channels

13.4.2
PHA Groups without MCS (PGRP) 64k x 32

256 Channels
256 Groups
 0 0 0 0 0 0 0 Group#1
1 1 1 1 1 1 1 1 Group#256

512 Channels
128 Groups
 0 0 0 0 0 0 X Group#1
1 1 1 1 1 1 1 X Group#128

1K Channels

64 Groups
 0 0 0 0 0 X X Group#1
1 1 1 1 1 1 X X Group#64

2K Channels

32 Groups
 0 0 0 0 X X X Group#1
1 1 1 1 1 X X X Group#32

4K Channels

16 Groups
 0 0 0 X X X X Group#1
1 1 1 1 X X X X Group#16

8K Channels

8 Groups
 0 0 X X X X X Group#1
1 1 1 X X X X X Group#8

16K Channels
4 Groups
 0 X X X X X X Group#1
1 1 X X X X X X Group#4

13.4.3
PHA Groups with MCS (PGRP) 32k x 32

256 Channels
128 Groups
 0 0 0 0 0 0 0 Group#1
1 1 1 1 1 1 1 1 Group#128

512 Channels
64 Groups
 0 0 0 0 0 0 X Group#1
1 1 1 1 1 1 1 X Group#64

1K Channels

32 Groups
 0 0 0 0 0 X X Group#1
1 1 1 1 1 1 X X Group#32

2K Channels

16 Groups
 0 0 0 0 X X X Group#1
1 1 1 1 1 X X X Group#16

4K Channels

8 Groups
 0 0 0 X X X X Group#1
1 1 1 1 X X X X Group#8

8K Channels

4 Groups
 0 0 X X X X X Group#1
1 1 1 X X X X X Group#4

16K Channels
2 Groups
 0 X X X X X X Group#1
1 1 X X X X X X Group#2

16k
4 groups

8k
8 groups

4k
16 groups

2k
32 groups

1k
64 groups

512
128 groups

256
256 groups

13.4.4
MCS Range

MRNG14
MRNG13
MRNG12
MRNG11
MRNG10
MRNG09
MRNG08
Number of Channels

0
0
0
0
0
0
0
256

0
0
0
0
0
0
1
512

0
0
0
0
0
1
1
1k

0
0
0
0
1
1
1
2k

0
0
0
1
1
1
1
4k

0
0
1
1
1
1
1
8k

0
1
1
1
1
1
1
16k

1
1
1
1
1
1
1
32k

13.4.5
MCS Groups (Upper 32k x 32)

AA16 = 1

256 channels
128 groups

512 channels
64 groups

1k channels
32 groups

2k channels
16 groups

4k channels
8 groups

8k channels
4 groups

16k channels
2 groups

32k channels
1 group

13.5
HV DAC and ADC

The DAC is a AD7243 12-bit Serial DACPORT. Refer to Analog Devices’s AD7243 DIGITAL-TO-ANALOG CONVERTER Rev 0 Specifications for communication timing diagrams and specifications. The ADC is a TLC548C 8-BIT ADC with Serial Control. Refer to Texas Instrument’s Spec Sheet SLA067A-Nov 93- Rev 3/95 for communication timing diagrams and specifications.

The interfacing signals are through latched bits in memory-mapped I/O at 20300h and 2018Eh, as follows:

20300h (write)
HV DAC
D0
DAC LD\

D1
DAC CLR\

D2
CLK

D3
DAC CS\

D4
ADC CLK

D5
ADC CS

D6
DAC Serial Data

2018Eh (read)

D5
ADC Serial Data

14.
Appendix A - Data Compression Algorithms

14.1
Standard Compressed (Differential) Format Algorithm

This algorithm provides a method of compressing spectral data prior to transmitting and decompressing it for reconstruction after it is received. For 32-bit spectral data (4 bytes/chan) this algorithm will reduce the actual transmission to about 1.1 byte/channel. Because of it's simplicity the compress/decompress routine will be fast.

14.1.1
Rules

1. Each byte represents an 8-bit signed number which is the difference between the value of the last channel and the current one.

2. The value 127 is a special 'escape' code. It indicates that the next two bytes form a 16-bit signed number representing the difference between the value of the last channel and the current one.

3. The value -128 (0x10000000) is another 'escape' code. It indicates that the next 'n' bytes are the absolute value of the current channel, where 'n' is the number of bytes/channel.

14.1.2
Receiver Algorithm (decompression)

//initialization

LastChanValue = 0

CurrentChanNumber = starting channel number
//may not necessarily be 1

NumberOfChannels = from first 2 bytes of the data

LastChannel = CurrentChanNumber+NumberOfChannels

while done is FALSE (loop #0)

Get next byte and store into C

if C is 127 then

Get next two bytes and store into J

sign-extend J

add J to LastChanValue

Store LastChanValue into CurrentChanValue

else if C is -128 then

Get next N bytes and store into CurrentChanValue and also into LastChanValue

//N is the bytes/chan, i.e. 4 for spectral data, 2 for display data

else

sign-extend C

add to LastChanValue

store result into CurrentChanValue and also into LastChanValue

Increment CurrentChanNumber

if CurrentChanNumber exceeds LastChannel

Set done to TRUE

return to start of loop #0

//out of loop... we are done.

14.1.3
Transmitter Algorithm (compression)

//initialization.

LastChanValue = 0

CurrentChanNumber = starting channel to be transmitted/stored

LastChannel = CurrentChanNumber+NumberOfChannels

Send 2 bytes representing NumberOfChannels

while done is FALSE (loop #0)

Get current channel's value and store into CurrentChanValue

subtract LastChanValue from CurrentChanValue & store result into R

if R is greater than 32767 OR less than -32768 (0x1000000000000000) then

send a -128 (0x10000000) byte

send N bytes representing CurrentChanValue, LSB first

//N is the bytes/chan, i.e. 4 for spectral data, 2 for display data

else if R is greater than 126 OR less than -127

send a 127 byte

send least significant 2 bytes of R, LSB first

else

send LSB of R

Save CurrentChanValue into LastChanValue

Increment CurrentChanNumber

if CurrentChanNumber exceeds LastChannel

Set done to TRUE

return to start of loop #0

//out of loop... we are done.

The arithmetic in the above algorithms is done in the size of spectral storage, which will 32 bits for spectral data and 16 bits for scaled display data. The spectral storage integers themselves may be viewed as being either signed or unsigned, depending on the system. All values are sent/stored in order of increasing significance by byte.

REFERENCE:
Nuclear Data Differential Spectral Data Format

R. J. Huckins 27-Jan-84

15.
Appendix B - Start/Stop Control

15.1
Mode 0 - External Start/Stop disabled

15.2
Mode 1 - External Start/Stop set for Start-Only mode

15.3
Mode 2 - External Start/Stop set for Stop-Only mode

15.4
Mode 3 - External Start/Stop set for Toggle (Start and Stop) mode

Sum [SC-d5, less NB]= 	330h

Total Length [SC-CS]= 	0Ah

Checksum = 	(330h + 0Ah) MOD 100h

CS=	3Ah

	

		

Range (MCS)

Range (PHA)

7

6

5

4

3

2

1

0

PRNG:

Group

Stop Button

Start Button

Preset Reached Condition

Acquisition Stop Logic

Acquisition Start Logic

Stop Button

Start Button

Preset Reached Condition

External event (MSTART or PSTART)

Acquisition Stop Logic

Acquisition Start Logic

Stop Button

Start Button

External event (MSTOP or PSTOP)

Preset Reached Condition

Acquisition Stop Logic

Acquisition Start Logic

Start Button

Stop Button

External event (MSTOP or PSTOP)

Preset Reached Condition

External event (MSTART or PSTART)

Acquisition Stop Logic

Acquisition Start Logic

ICB R2

ICB R3

ICB R4

ICB R5

bits 31-24 (msb)

bits 23-16

bits 15-8

bits 7-0 (lsb)

data LSB

data MSB

Param ID

CMD type

Refer to the 2060/9660 Data Identifier Table in Section 3.1.1 of the 2060/9660 Module-To-Host Communication Protocol Document

MSB of data to be written for write-parameter type commands, or data to be written for read-parameter (RCMD=1) type command

LSB of data to be written for write-parameter type commands, or data to be written for read-parameter (RCMD=1) type command

R2 bits are encoded as follows:

bits	function

Table number, always set to 0

1- RCMD (read parameter operation)

never used

5-7	reserved

LSB of data read from module for read-parameter type commands (RCMD-=1)

MSB of data read from module for read-parameter type commands (RCMD-=1)

not used

R2 bits are encoded as follows:

bits	function

 7	0= command timed out, 1= command was successful. If any item in ulaData has this bit set, then bit #0 in usControl will be set also

6-0	not used

bits 7-0 (lsb)

bits 15-8

bits 23-16

bits 31-24 (msb)

ICB R5

ICB R4

ICB R3

ICB R2

Page
 of 112

_1075619540.doc
��������������������

SNAP's

SAP

 byte #2

SNAP's

SAP

 byte #1

always

AFh

always

00h

always

00h

1b

1b

1b

1b

1b

