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Overview

1.1 Introduction 1

1.2 About This Manual 1

1.3 Additional Documentation 3

1.4 RFCs 4

1.1  Introduction

The Wind River Network Stack is a dual IPv4/IPv6 TCP/IP stack that is designed 
for use in modern, embedded real-time systems. It includes many services and 
protocols that you can use to build networking applications.

This is the third volume of the Wind River Network Stack Programmer's Guide. For 
information on the following topics, see the Overview chapter of the Wind River 
Network Stack Programmer's Guide, Volume 1:

■ an overview of the Wind River Network Stack

■ a list of features unique to Wind River platforms

■ a guide to relevant additional documentation

■ where to get the latest release information

1.2  About This Manual

The following is an overview of the information you will find in this manual. See 
1.3 Additional Documentation, p.3 to learn about the other two volumes that 
describe the Wind River Network Stack, and additional documentation that you 
may find helpful.
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1. Overview 

This chapter.

2. Configuring and Managing Memory 

This chapter describes the following:

■ Configuring the memory limit at build time (2.2 Setting the Memory Limit, p.8).

■ Creating and using netBufLib pools (2.3 netBufLib Buffer Pools, p.10).

■ The legacy network stack data pool and network stack system pool, used by 
previous versions of the network stack and sometimes still required by 
particular applications (2.4 Legacy Network Stack Pools, p.20).

3. Working with Network Drivers and Devices

In addition to drivers supplied for physical network interfaces, the Wind River 
Network Stack also includes drivers for the creation of GIF, GRE, SIT, 6to4, and 
6over4 devices—over IPv4, IPv6, or both. This chapter provides instructions and 
some background information on how to create and configure device instances 
associated with the network stack. 

4. Working with Tunneling and Shared Memory

This chapter describes the following tunneling over IPv4 or IPv6, and using a 
shared-memory network driver to allow multiple processors to communicate over 
their common backplane.

5. Integrating a New Network Device Driver

This chapter describes how to integrate a new network interface driver with 
Wind River Network Stack. For this, use the MUX, which is an interface that 
insulates network services from the particulars of network interface drivers, and 
vice versa. 

6. Integrating a New Network Service

A network service is an implementation of the network and transport layers of the 
OSI network model. Under the Wind River Network Stack, network services 
communicate with the data link layer through the MUX interface. This chapter 
describes how to integrate a new network service with the MUX and, thus, with 
the network stack.

7. Working with the 802.1Q VLAN Tag

This chapter describes the implementation of 802.1Q VLAN tagging for VxWorks 
and tells you how to configure VxWorks to include this feature. 

NOTE:  The tunneling feature is available only in the Wind River Platforms builds 
of the network stack. The Wind River General Purpose Platform, VxWorks Edition, 
does not support tunneling.

NOTE:  The 802.1Q VLAN tagging feature is available only in the Wind River 
Platforms builds of the network stack. The Wind River General Purpose Platform, 
VxWorks Edition, does not support 802.1Q VLAN tagging.
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8. Quality of Service and 9. Ingress Traffic Prioritization

These chapters describe the network stack’s Quality of Service (QoS) capability, in 
which the stack treats some network traffic to better service than others. The 
Wind River Network Stack implements the Differentiated Services (DiffServ) 
model of QoS, which classifies traffic entering a network and conditionalizes it 
before treating it in an appropriate manner. Similarly, the ingress traffic 
prioritization feature allows you to assign priorities to the packets arriving at an 
interface and have the stack process higher-priority packets before lower-priority 
packets.

A. Networking Shell Commands

This appendix contains reference entries for the common networking shell 
commands.

1.2.1  About the IP Addresses Used in This Manual 

When working with the examples in this manual, you may find it convenient to cut 
and paste example text into source code or to a command line. To avoid disrupting 
the use of IPv4 or IPv6 addresses that are, or might be, put into service, the 
examples in this manual restrict themselves to the following address spaces: 

■ 10/24 – one part of the private address space

■ 127.0/8 – loopback addresses

■ 169.254/16 – link local addresses

■ 172.16/12 – another part of the private address space

■ 192.0.2/24 – test and documentation addresses

■ 192.168/16 – another part of the private address space

■ 2001:DB8::/32 – test and documentation addresses (RFC 2849)

■ FE80::/10 – link local addresses

1.3  Additional Documentation

The following sections describe additional documentation about the technologies 
described in this book.

NOTE:  The QoS feature is available only in the Wind River Platforms builds of the 
network stack. The Wind River General Purpose Platform, VxWorks Edition, does 
not support QoS.

The Wind River Network Stack does not support ingress filtering in symmetric 
multiprocessing (SMP) builds.
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Wind River Documentation

The Wind River Network Stack is described in the three volumes of the Wind River 
Network Stack Programmer’s Guide:

■ Volume 1 has an overview with general information about the network stack, 
and describes the network and transport layers. 

■ Volume 2 describes application-layer protocols and socket programming.

■ Volume 3 (this volume) describes network services, drivers, and the MUX, 
which is an abstraction layer between drivers and services.

The user’s guide for your Platform includes instructions on how to build a 
component or product into VxWorks, either through the Workbench Kernel 
Configuration Editor or the vxprj utility.

For information on using Workbench to create a VxWorks image project and to 
include build components, see Wind River Workbench by Example. For information 
on using the vxprj command-line utility, see the Wind River VxWorks Command-Line 
Tools User’s Guide.

The Wind River VxWorks Platforms Migration Guide details how to migrate from an 
earlier release of the network stack.

For information on host-side network diagnostic tools, see the Wind River 
Workbench User’s Guide.

Online Resources

Online resources are as follows:

■ The Internet Engineering Task Force, http://www.ietf.org

Books

Additional documentation is as follows:

■ Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture, 
Douglas E. Comer. 

■ UNIX Network Programming, Volume 2, Second Edition by W. Richard Stevens

1.4  RFCs

The Wind River Network Stack interfaces and drivers comply with the IETF RFCs 
listed in this section. The RFCs are accessible from the following Web site:

http://www.ietf.org

■ RFC 1700: Assigned Numbers 

■ RFC 1853: IP in IP Tunneling 

http://www.ietf.org
http://www.ietf.org
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■ RFC 2002: IP Mobility Support

■ RFC 2473: Generic Packet Tunneling in IPv6 Specification 

■ RFC 2529: Transmission of IPv6 over IPv4 Domains without Explicit Tunnels 

■ RFC 2674: Definitions of Managed Objects for Bridges with Traffic Classes, Multicast 
Filtering and Virtual LAN Extensions 

– Although the MUX-L2 implements selected RFC 2674 static VLAN 
objects, the VLAN configuration methodology is not compatible with the 
RFC 2674 MIB. RFC 2674 VLAN management is VLAN-centric and 
requires a port list bitmap specifying the ports belonging to a VLAN. The 
VLAN management for the MUX-L2 is port-centric and achieves VLAN 
configuration on a per-port basis.

■ RFC 2697: A Single Rate Three Color Marker 

■ RFC 2784: Generic Routing Encapsulation (GRE) 

■ RFC 2893: Transition Mechanisms for IPv6 Hosts and Routers 

■ RFC 3056: Connection of IPv6 Domains via IPv4 Clouds 

This section lists RFCs relevant to the Wind River Network Stack interfaces and 
drivers:

■ RFC 894: A Standard for the Transmission of IP Datagrams over Ethernet Networks 

■ RFC 1213: Management Information Base for Network Management of TCP/IP-based 
internets: MIB-II 

■ RFC 2233: The Interfaces Group MIB using SMIv2 

■ RFC 2849: The LDAP Data Interchange Format (LDIF) - Technical Specification 
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   2
Configuring and Managing Memory

2.1 Introduction 7

2.2 Setting the Memory Limit 8

2.3 netBufLib Buffer Pools 10

2.4 Legacy Network Stack Pools 20

2.1  Introduction

The Wind River Network Stack and the network drivers that work with it use 
several types of memory pools for memory allocation. Memory allocated by the IP 
network stack comes ultimately from the system heap. The stack creates multiple 
“slab memory caches” based upon the system heap; each cache provides the stack 
with buffers of a fixed size, sometimes partially initialized as objects of a particular 
kind. These memory caches can grow dynamically, as needed, with a limit on total 
allocation, by the stack, across all the memory caches.  If the maximum is reached, 
a limited form of “garbage collection” may occur, which returns any completely 
free memory slabs held in a memory cache to the system pool. The stack allocates 
both packet buffers and various fixed-size control structures from these memory 
caches. The stack allocates several other control structures directly from the system 
heap; these direct allocations do not have an explicit bound.

To receive network packets, IPNET-native network drivers allocate packet buffers 
and packet control structures from the memory caches that make up the stack’s 
packet pool. This use is also bounded by the overall limit on allocation into the 
stack’s memory caches.

Traditional M_BLK-oriented VxWorks network drivers use netBufLib pools to 
allocate buffers into which they receive packets. Such drivers create these pools 
when the MUX loads a network interface (usually at initialization time). Other 
protocols, such as TIPC, also use netBufLib pools. The memory used in these pools 
comes ultimately from the system heap. However, these pools do not generally 
grow after creation.
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This chapter describes the following:

■ What to consider when configuring the memory limit 2.2 Setting the Memory 
Limit, p.8. 

■ How to create and use netBufLib pools (2.3 netBufLib Buffer Pools, p.10).

■ How to configure the legacy network stack data pool and network stack 
system pool, used by previous versions of the network stack and still required 
by some applications (2.4 Legacy Network Stack Pools, p.20).

2.2  Setting the Memory Limit

When configuring memory, it is not required (nor possible) to configure the 
number or size of packets. The network stack is given a maximum amount of 
memory, which it uses to create the packet pool layout, and the layout of the packet 
pool changes dynamically to adapt to the current workload.

For example, if an application suddenly starts sending or receiving very large  
UDP datagrams, the stack adjusts the packet pool to contain more large (that is, 
10KB or 64KB) packets and decreases the number of 1500-byte packets, if it needs 
to stay within the total memory limit.

The maximum memory usage is configurable at build time by setting 
IPNET_MEMORY_LIMIT, which is defined in 
installDir/ip_net2-6.x/ipnet2/config/ipnet_config.h, as shown below:

/*
 *=========================================================
 *                       IPNET_MEMORY_LIMIT
 *==========================================================
 * Defines the maximum amount of memory that the stack is allowed to use.
 * The limit must be large enough to allow enough packet buffers, packet
 * headers, sockets, timers to support the workload the system has.
 * Most memory will be used to packet buffers. Each socket can queue up to
 * (send buffer size + receive buffer size) buffer octets. Each device
 * will need up to TX + RX descriptors of MTU sized packets.
 */
#define IPNET_MEMORY_LIMIT (1024 * 1024 * 20)

This parameter specifies the number of bytes the stack is allowed to allocate. The 
default value is 16 MB.

Finding the Current Limit

To find the current value of IPNET_MEMORY_LIMIT, you can run either of the 
following commands:

-> ipnet_conf_memory_limit
ipnet_conf_memory_limit = 0x4385bc: value = 16777216 = 0x1000000

You can also use the slab command—see slab, p.185.
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Evaluating Memory Needs

When setting the memory limit value, keep in mind that the memory must be 
enough for all sockets, packet headers, packet buffers, timers, events, TCP segment 
control blocks (one per non-packed TCP segment), IPv4/IPv6 address blocks, and 
poll signals—used to implement select( ) and blocking calls to sendmsg( ) and 
recvmsg( ). 

As a reference, Table 2-1 lists the size of each, which are designated for 32-bit CPUs 
and can vary between releases. The actual sizes can be obtained by using the slab 
shell command.

The sizes of the packets were chosen for the following reasons:

■ 1500 bytes is, by far, the most commonly used size. This matches the MTU of 
Ethernet and loopback devices.

■ 3000 bytes was chosen because a PPP frame can, in the worst case, can grow to 
twice its original size during TX framing. Thus, 3000 represents 2 times 1500.

■ 10000 bytes is big enough to hold most fragmented UDP datagrams. There are 
a number of protocols that generate UDP datagram up to 8192 bytes.

■ 65535 bytes is the largest packet supported by IPv4 and IPv6, without IPv6 
jumbogram extension header.

Table 2-1 Memory Sizes

Item Size (bytes)

Each socket 544

Each packet header 672

Each packet buffer takes 1682, 3182, 10182, 65718 (or 1500, 
3000, 10 KB and 64 KB buffers)a 

Each timer 20

Each event 24

Each TCP segment control block 32

Each IPv4 address block 112

Each IPv6 address block 140

Each poll signal 72

a. A packet that can hold 1500 bytes of L3 header + L4 header + L4 payload will occupy 
1682 bytes of memory. The packet has to be larger than the maximum number of L3+L4 
data since there has to be room for L2 headers and also room for putting the data at any 
specific alignment that the stack might want.
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The total amount of memory assigned to the stack must never be so small that it 
cannot fill:

■ the send and receive buffer of at least one socket

■ all RX and TX descriptors of at least one network interface

For example, a socket with 64KB send and receive buffers using the gei driver 
would need about 800KB for just the buffer and header. This does not include any 
memory for socket, timers, and so on.

Thus, the minimum amount of memory would be 1MB for the system to function 
properly when using one socket under high load with no fragmentation, or using 
a few (10 or so) sockets under light load.

The default value of 16MB should work for most systems that are using the default 
VxWorks limit of 50 open file descriptors in the system, which also limits the 
number of sockets to 50. In most cases, even 10MB should be sufficient.

For more information on calculating the memory requirement for your 
application, see the Wind River VxWorks Platforms User’s Guide..

2.3  netBufLib Buffer Pools

The upper layers of the VxWorks network stack do not use netBufLib buffer pools, 
nor do IPNET-native network drivers; but traditional M_BLK-oriented network 
device drivers do, as does the TIPC protocol. If you modify or exchange data 
directly with M_BLK-oriented drivers, you may need to be familiar with the 
netBufLib library and its interfaces. You may also find this library useful if your 
application needs a flexible, standalone buffer management implementation.

The netBufLib library facilitates creation and management of pools of buffers 
(called clusters—see also 2.3.1 Tuples, p.11), along with the control structures—
M_BLKs and CL_BLKs—that link clusters into chains and (in some cases) share 
clusters between different code paths. The netBufLib library presents a high-level 
interface that depends upon particular back-end implementations, which allocate 
and free pool resources. There are three different netBufLib back ends currently 
implemented in the Wind River Network Stack:

netBufPool
The default, and most full-featured pool implementation. It supports multiple 
cluster pools of different sizes, and allows you to allocate either separate 
M_BLKs, CL_BLKs, and clusters, or to allocate all three together, in coordinated 
tuples. To use this pool back end, include the INCLUDE_NETBUFPOOL 
component in your build.

linkBufPool
A pool implementation specialized to provide optimized allocation of tuples 
of a single cluster size. Wind River recommends that non-IPNET-native 
network drivers use this back end for the device receive pools that they create. 
This back end fuses together the M_BLK and CL_BLK control structures into a 
single contiguous M_LINK structure. You cannot allocate unattached clusters, 
M_BLKs, or CL_BLKs when you use linkBufPool; you may, however, create a 
linkBufPool without attached clusters and allocate M_LINK structures from it 
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that are not attached to clusters. To use this pool back end, include the 
INCLUDE_LINKBUFPOOL component in your build.

vxmux_null_buf 
This pool back end is not for application use. It is only for internal use by the 
stack.

It is a single-purpose back end implementation, which the stack uses when it 
passes packets to device drivers for them to transmit. Since the network device 
drivers expect packets to be described by M_BLK/CL_BLK/cluster tuples (see 
2.3.1 Tuples, p.11, for more on tuples), but the stack does not use this format, 
the stack must “repackage” packets that it passes to the driver transmit 
routine, so that they appear as tuples. The stack does this efficiently by using 
the nullBufPool back end. IPNET-native style network device drivers use the 
stack-native packet format to avoid even the minimal overhead of the 
nullBufPool wrapping. 

To enable the netBufLib library, include the INCLUDE_NETBUFLIB component in 
your image. You can call display routines for netBufLib pools, if you include the 
INCLUDE_NETPOOLSHOW component in your image. Some less frequently used 
routines in the netBufLib API are in a separate library, netBufAdvLib, to which 
you can gain access if you include the INCLUDE_NETBUFADVLIB component. The 
capabilities of this library are described briefly in the section on creating netBufLib 
pools, see 2.3.2 Creating netBufLib Pools, p.12 and the reference entry for 
netBufAdvLib for more information.

2.3.1  Tuples

The netBufLib API describes a packet by a tuple or by a chain of tuples. The tuple 
is a construct that consists of an M_BLK structure, a CL_BLK structure, and a cluster 
buffer.

■ The M_BLK is similar in nature to the mbuf used in the BSD network stack. 
Among other members, the M_BLK has a pClBlk field, which is a pointer to 
the CL_BLK.

■ The CL_BLK in turn holds a pointer to the cluster buffer. The cluster buffer is 
the DMA buffer. The M_BLK also has a pointer into the cluster buffer but this 
pointer can be modified by software to add or subtract offsets. The cluster 
buffer pointer in the CL_BLK always points to the base of the cluster buffer. The 
CL_BLK also maintains a reference count for the cluster and, optionally, a 
function pointer and function arguments to be used when freeing an external 
cluster (one not allocated from a netBufLib-style pool).

■ The access path to the start address of a cluster buffer in a tuple is 
pMblk->pClBlk->clNode.pClBuf.

! CAUTION:  The IP stack, as well as other protocols that attach to a network device 
through the MUX, may pass a segmented packet described by a chain of more than 
one M_BLK tuple to a network driver for transmission. Thus, a network driver 
transmit routine must be able to handle such multi-segment packets. However, the 
IP stack will not handle a received multi-segment packet that a network device 
passes it via the MUX; the IP stack expects that all received packets that are 
delivered to it be described by a single tuple with a single contiguous data block in 
the tuple's cluster. Network drivers must abide by this restriction.
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Allocating a Tuple

Use the netTupleGet( ) routine to allocate a tuple.

Freeing a Tuple Chain

To free a tuple chain linked through the mBlkHdr.mNext field, call 
netMblkClChainFree( ). To free only the first tuple of such a chain and return a 
pointer to the next, call netMblkClFree( ).

Copying a Tuple Chain

To construct a copy of a tuple chain (or part of a chain) which shares references to 
the clusters in the original chain, and hence does not copy bulk data, call 
netMblkChainDup( ). To copy a tuple chain’s data into a (sufficiently large) buffer, 
call netMblkToBufCopy( ).

There are various other routines available for manipulating, allocating, and freeing 
tuples or bare clusters, and control structures; see the netBufLib reference manual 
entry, or the source code at 
installDir/components/ip_net2-6.x/vxmux/src/mem/netBufLib.c.

2.3.2  Creating netBufLib Pools

To create netBufLib pools, call either the older netPoolInit( ) routine or the newer 
netPoolCreate( ) routine. Wind River recommends that you call the 
netPoolCreate( ) routine, since it frees you from having to allocate memory for the 
clusters, CL_BLKs, and M_BLKs making up a netBufLib pool. 

Pools that you create by calling netPoolCreate( ) have the following additional 
capabilities that are not available in pools that you create by calling netPoolInit( ):

■ By calling netPoolRelease( ) you can safely free those pools that you created 
with netPoolCreate( ). This routine puts a pool into a release state; when all the 
holders of buffers belonging to the pool have returned them to the pool, the 
pool is automatically freed. A driver can use this routine to free a network 
device’s receive pool when the device is unloaded.

■ By calling the netPoolIdGet( ) routine you can look up by name a pool that 
you created with netPoolCreate( ). You can obtain the name of such a pool by 
calling netPoolNameGet( ).

! CAUTION:  Certain fields within an M_BLK that previous versions of the 
Wind River Network Stack used might not be used by the current stack version, or 
might possibly be used for different purposes. Such fields include the rcvif, 
header, aux, and altq_hdr members of the M_PKT_HDR substructure in each 
M_BLK. Applications should not assume, however, that these members are 
available for their own use.

NOTE:  If you are using the netBufPool back end, you can allocate a bare cluster 
using netClusterGet( ), a bare CL_BLK using netClBlkGet( ), and a bare M_BLK 
using netMblkGet( ), then join the cluster and cluster block with netClBlkJoin( ) 
and join the M_BLK to the cluster block/cluster pair combination using 
netMblkClJoin( ). But it is simpler and more efficient for you to call 
netTupleGet( ) for this purpose.
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■ Several agents (network interfaces, protocols, and so forth) may share a pool 
that you create with netPoolCreate( ). An agent that wants to use such a pool 
may call netPoolAttach( ) to look up a pool by name and attach to it; this 
increments a count that prevents the pool from being released until all agents 
that have attached to it detach from it by calling netPoolDetach( ).

■ You can associate a set of attributes with pools that you create with 
netPoolCreate( )—including shareability, buffer alignment, and the memory 
partitions out of which the buffers and control structures that netPoolCreate( ) 
allocates at pool creation time (see pNetBufCfg Parameter, p.14 ).

■ You can bind a pool that you create with netPoolCreate( ) to another pool, 
called its parent pool, by calling the netPoolBind( ) routine. When an agent 
attempts to allocate a packet from a pool, but that pool does not have sufficient 
resources, the attempt will repeat in the pool’s parent pool. When the agent 
later frees the packet, the packet is returned to whichever pool it was originally 
allocated from. A parent pool may be the parent of several child pools, and 
provides a shared back-up supply for the child pools, which are usually 
private to one agent. You cannot successfully release a parent pool while there 
are still children bound to it; you must first unbind its child pools by calling 
netPoolUnbind( ). You must configure a parent pool to have the same pool 
attributes as any child pools that you attach to it, and each of these pools must 
be sharable (see attributes, p.14).

To enable the pool attachment, pool binding, and pool attributes capabilities, 
include the component INCLUDE_NETBUFADVLIB in your image. The 
netPoolRelease( ) capability, and pool look-up by name, are available for pools 
that you create with netPoolCreate( ) even if you do not include the 
INCLUDE_NETBUFADVLIB component.

Pools that you create with netPoolInit( ) lack the above capabilities. However, 
netPoolInit( ) allows (and requires) that you create a pool using pre-allocated 
memory for the clusters and control structures. If your code needs to create a pool 
in this manner, it should call the netPoolInit( ) routine rather than 
netPoolCreate( ).

netPoolCreate( ) 

To create a memory pool, call netPoolCreate( ):

NET_POOL_ID netPoolCreate
(
NETBUF_CFG * pNetBufCfg, /* Configuration Structure */
POOL_FUNC * pFuncTbl /* Optional plug in function table */
)

This routine takes two parameters, pFuncTbl and pNetBufCfg.

pFuncTbl Parameter 

The pFuncTbl parameter is a pointer to a table of function pointers that specifies 
which netBufLib back end implementation governs the new pool (see 
2.3 netBufLib Buffer Pools, p.10). Set this parameter to one of the following values:

_pNetPoolFuncTbl
to use the netBufPool back end with a backward-compatible memory 
requirements routine that guarantees only four-byte alignment for both 
clusters and control structures1
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NULL
to use the netBufPool back end with a memory requirements routine 
(_netMemReqDefault( ) in netBufLib.c) that yields more stringent alignment, 
which may yield marginally better performance than the 
backwards-compatible memory requirements routine chosen when 
_pNetPoolFuncTbl is explicitly passed

_pLinkPoolFuncTbl
to use the linkBufPool back end

pNetBufCfg Parameter

The pNetBufCfg parameter is a NETBUF_CFG structure that you have filled in to 
indicate what sort of pool you want to create. NETBUF_CFG is defined in 
netBufLib.h as:

typedef struct netBufCfg
{
char *          pName; /* Pool Name */
UINT32          attributes; /* pool attributes */
void *          pDomain; /* RTP ID or NULL for kernel */
int             ctrlNumber; /* # of ctrl structures to pre-allocate */
PART_ID         ctrlPartId; /* Mem Partition for Control structures */

/*     NULL = use Kernel partition */
int             bMemExtraSize; /* Additional memory for runtime buffers */
PART_ID         bMemPartId; /* Mem Partition for buffers */

/*     NULL = default for kernel or RTP */
NETBUF_CL_DESC * pClDescTbl; /* desired cluster sizes and count */
int             clDescTblNumEnt; /* num of entries in cluster table */
} NETBUF_CFG;

The members of this structure are as follows:

pName 
A string of length less than NET_POOL_NAME_SZ (this is 16 bytes for most 
architectures). netPoolCreate( ) copies this name into the NET_POOL structure 
that it returns.

pDomain and bMemExtraSize 
These members are ignored at present. Set them to NULL and 0 (zero) 
respectively. 

ctrlPartId and bMemPartId 
Set these to the memory partitions from which the pool is to allocate memory 
for control structures (M_BLKs and CL_BLKs) and for cluster buffers, 
respectively. Set these to NULL if you want to allocate this memory from the 
kernel system heap.

ctrlNumber 
Set this to the number of M_BLKs the pool allocates; the pool will allocate the 
same number of CL_BLKs as well.

attributes 
The pool’s nominal cluster alignment and whether the pool can be shared (see 
2.3.2 Creating netBufLib Pools, p.12 for a discussion of pool sharing). Set this to 
one of the following values:

■ ATTR_AI_SH_ISR – integer-aligned; shareable

■ ATTR_AC_SH_ISR – cache-line-aligned; shareable

1. As opposed to, for example, cache-line alignment.
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■ ATTR_AI_ISR – integer-aligned; private

■ ATTR_AC_ISR – cache-line-aligned; private

The actual alignment of clusters is not actually controlled by the value of this 
member, but by the memory requirements routine provided either by the back 
end implementation, or (when _pFuncTbl is NULL) by netBufLib itself. See 
Memory Requirements Routines, p.18.

pClDescTbl 
Points to an array of clDescTblNumEnt NETBUF_CL_DESC structures with 
which you specify the number and (un-rounded) size of clusters in one of the 
cluster pools belonging to the NET_POOL that you are creating with 
netPoolCreate( ). The NETBUF_CL_DESC structure is defined in netBufLib.h 
as: 

typedef struct netBufClDesc
{
int clSize; /* Cluster Size */
int clNum; /* Number of clusters in pool */
} NETBUF_CL_DESC;

Note that the linkBufPool back end allows you to choose only a single cluster 
size (that is, clDescTblNumEnt is either 1 or 0; when 0, the pool provides only 
bare M_LINKs, and you have to attach your own clusters).

There are also cluster size limitations when you use the netBufPool back end:

■ The minimum cluster size is 16 bytes.

■ The maximum cluster size is 65536 bytes.

■ In a given pool, only one cluster size is allowed in each interval [2n, 2n+1) 
between successive powers of two.

Figure 2-1 shows two examples of sets of cluster sizes. The first, {48, 92, 
244}, is valid because there is at least one power of two between the 
different sizes. The second, {48, 88, 128, 192}, is invalid because the cluster 
sizes of 128 and 192 both fall within the range bound by [128, 256].

In addition, although the {48, 92, 244} set of cluster sizes does not skip a 
size band, netBufPool does allow this. Thus, {48, 244} would be a valid set 
of cluster sizes for a single memory pool. When you set up your 
pClDescTbl array of CL_DESC structures, it is recommended to order the 
sizes from smaller to larger.

clDescTblNumEnt 
The number of NETBUF_CL_DESC structures in the array pointed to by 
pClDescTbl, and so the number of different cluster pools belonging to the 
NET_POOL.

Figure 2-1 Choosing Correct netBufPool Cluster Sizes

5122561286432

48 92 244 }{

128 19288 }{ 48

This set is correctly chosen so that
only one size lies between two
adjacent powers of two.

This set is invalid. The cluster sizes
of 128 and 192 lie within a range 
bound by two adjacent powers of two.
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Example 2-1 Establishing a Network Driver Pool with netPoolCreate( ) and _pLinkPoolFuncTbl

A network driver could create a network tuple pool using the linkBufPool back 
end by calling a routine like the following:

NET_POOL_ID myPoolCreate
(
int tupleCnt, /* how many tuples? */
int clSize, /* how big is each cluster? */
char * poolName /* name for network pool; commonly NULL */
)
{
NETBUF_CFG netBufCfg;
NETBUF_CL_DESC clDescTbl;
NET_POOL_ID pPool;

if (tupleCnt <= 0 || clSize < 0)
return (NULL);

bzero ((char *)&netBufCfg, sizeof(netBufCfg));
bzero ((char *)&clDescTbl, sizeof(clDescTbl));

netBufCfg.pName = poolName;
netBufCfg.attributes = ATTR_AC_SH_ISR;
netBufCfg.ctrlNumber = tupleCnt;

if (size > 0)
{
netBufCfg.clDescTblNumEnt = 1;
netBufCfg.pClDescTbl = &clDescTbl;
clDescTbl.clNum = tupleCnt;
clDescTbl.clSize = clSize;
}

pPool = netPoolCreate (&netBufCfg, _pLinkPoolFuncTbl);

return (pPool);
}

The driver must specify a cluster size big enough for the maximum receivable 
frame. The netPoolCreate( ) call will round up the specified cluster size to a 
multiple of NETBUF_ALIGN (64), and return clusters aligned on 
NETBUF_ALIGN-byte boundaries.

In the current release, if size is at least 1500, then netPoolCreate( ):

■ Adds the default cluster offset, specified by the 
NETBUF_LEADING_CLSPACE_DRV parameter of component 
INCLUDE_NETBUFLIB, to the requested cluster size.

■ Adjusts the mBlkHdr.mData pointers, for the tuples allocated from the pool, 
to point to that same offset after the start of the cluster.

This function also supports the much less common case of creating a pool with 
only bare M_LINKs and no clusters, by passing zero for clSize.

netPoolInit( )

If for some reason you cannot use netPoolCreate( ) to create a network pool, you 
can call the netPoolInit( ) routine to initialize a netBufLib network pool for which 
you first allocate the memory yourself. You must allocate memory for the 
NET_POOL structure, as well as the clusters, M_BLKs, and CL_BLKs.

Pools that you create with netPoolInit( ) do not support some administrative 
capabilities of pools that you create using netPoolCreate( ) (see the discussion of 
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these capabilities in 2.3.2 Creating netBufLib Pools, p.12). However, pools created 
with netPoolInit( ) and netPoolCreate( ) are equivalent in regard to pool back end 
support and basic allocation/freeing of M_BLKs, CL_BLKs, and clusters.

STATUS netPoolInit
(
NET_POOL_ID pNetPool, /* pointer to a net pool */
M_CL_CONFIG * pMclBlkConfig, /* pointer to a mBlk configuration */
CL_DESC * pClDescTbl, /* pointer to cluster desc table */
int clDescTblNumEnt, /* number of cluster desc entries */
POOL_FUNC * pFuncTbl /* pointer to pool function table */
)

The parameters that you pass to netPoolInit( ) are as follows:

pNetPool
A pointer to a NET_POOL structure that describes the pool to initialize.2

pMclBlkConfig 
An M_CL_CONFIG structure that specifies the number of M_BLKs and 
CL_BLKs and which memory buffer for netPoolInit( ) to carve them from. This 
structure is defined in netBufLib.h as:

typedef struct
{
int mBlkNum; /* number of mBlks */
int clBlkNum; /* number of cluster Blocks */
char * memArea; /* pre allocated memory area */
int memSize; /* pre allocated memory size */
} M_CL_CONFIG;

When you use the linkBufPool back end, netPoolInit( ) ignores the clBlkNum 
member; in such a pool, the number of CL_BLKs is always equal to the number 
of M_BLKs, since linkBufPool joins the two control structures into a 
contiguous M_LINK structure.

When you use the netBufPool back end, you usually will choose the number 
of cluster blocks to be equal to the total number of clusters in all cluster pools, 
and choose the number of M_BLKs to be at least this large, or larger if you 
anticipate cluster sharing. One exception to this general guideline is that if you 
primarily intend to allocate bare clusters (rather than tuples), you need not 
have as many control structures as clusters in the pool.

You must specify a memory region (memArea, memSize) sufficiently large for 
the number of control structures, considering also the alignment of the 
structures that the back end in use requires. Each M_BLK structure has, 
preceding it, a hidden pointer to the NET_POOL it comes from, and you must 
account for the space for these hidden pointers in memSize. For the 
netBufPool back end, the alignment requirement for both M_BLKs and 
CL_BLKs is just the size of a pointer (4 bytes); but for the linkBufPool back end, 
M_LINKs must have an alignment of NETBUF_ALIGN.

An easy way to find the memory required for these structures is to call the 
memory requirements routine pFuncTbl->pMemReqRtn (see Memory 
Requirements Routines, p.18 for more information). 

pClDescTbl 
An array of clDescTblNumEnt CL_DESC structures, each of which describes a 
single cluster pool within the network buffer pool. The CL_DESC structure is 
defined in netBufLib.h as:

2. The NET_POOL structure is internal and, thus, is not documented.
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typedef struct clDesc
{
int clSize; /* cluster type */
int clNum; /* number of clusters */
char * memArea; /* pre-allocated memory area */
int memSize; /* size of pre-allocated memory size */
} CL_DESC; 

Such a cluster pool is characterized by the number of clusters within it, and the 
(usable) size of each cluster within the pool. Note that when using the 
linkBufPool back end, only one cluster size is allowed. When using the 
netBufPool back end, the same restrictions on cluster sizes mentioned for 
netPoolCreate( ) apply (see pClDescTbl, p.15).

Specify a region of available memory (memArea, memSize) from which 
netPoolInit( ) carves the clusters. If you specify a memSize value that is too 
small for the number of clusters in the pool, netPoolInit( ) fails, returning 
ERROR.

If you instruct netPoolInit( ) to use the netBufPool back end, when calculating 
memSize, account for the presence of a hidden CL_POOL pointer preceding 
each cluster. For the linkBufPool back end, while there is no hidden cluster 
pool pointer, the alignment requirements of each cluster are more stringent: 
you must round up each cluster size to a multiple of NETBUF_ALIGN, and add 
an additional NETBUF_ALIGN to allow for the whole block to align correctly. 
An easy way to calculate the memory needs in either case is to call the memory 
requirements routine described in Memory Requirements Routines, p.18.

When using the linkBufPool back end, if you specify any clusters at all, you 
must specify the same number of clusters as M_BLKs, since linkBufPool 
permanently joins M_BLKs, CL_BLKs, and clusters into tuples. You cannot 
allocate bare M_BLKs, CL_BLKs, or clusters from such a pool.

clDescTblNumEnt 
The number of structures in pClDescTbl.

pFuncTbl 
The back end’s table of function pointers; set this to _pNetPoolFuncTbl for the 
netBufPool back end, or _pLinkPoolFuncTbl for the linkBufPool back end.

Memory Requirements Routines

Call the memory requirements routines to determine the amount of memory you 
need for a particular number of M_BLKs, CL_BLKs, or clusters of a particular size. 
You can also call memory requirements routines to determine the required 
alignment of each single M_BLK, CL_BLK, or cluster.

Each of the two back ends netBufPool and linkBufPool provides its own memory 
requirements routine, and netBufLib also provides a default memory 
requirements routine, _netMemReqDefault( ), that it uses when the second 
argument to netPoolCreate( ) is NULL. Alternatively, if you provide a custom 
POOL_FUNC back end function table, netBufLib obtains its memory requirements 
routine from the pMemReqRtn member of the POOL_FUNC, or uses 
_netMemReqDefault( ) if that member is NULL.
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The prototype of a netBufLib memory requirements routine is defined in 
netBufLib.h as follows: 

int memoryRequirementsRoutine 
(
int type, /* NB_BUFTYPE_[CLUSTER|M_BLK|CL_BLK] */
int num, /* number of clusters or control structures */
int size /* Cluster size (ignored for control structures) */
)

The arguments to this call are as follows:

type 
What type of memory the caller wants to size, one of the following:

■ NB_BUFTYPE_CLUSTER – cluster memory

■ NB_BUFTYPE_M_BLK – M_BLK memory

■ NB_BUFTYPE_CL_BLK – CL_BLK memory 

num 
The number of items; when this is zero, the routine returns the required 
alignment for a single M_BLK, CL_BLK, or cluster of the specified size. 

size 
For clusters only, this indicates the cluster size.

For instance, netPoolCreate( ) would make the following call to find out how 
much memory is needed for 200 clusters of size 1518 (pMemReq points to the 
appropriate memory requirements routine):

size = pMemReq (NB_BUFTYPE_CLUSTER, 200, 1518);

To find the alignment required for each M_BLK, it makes the following call:

align = pMemReq (NB_BUFTYPE_M_BLK, 0, 0);

pMemReq( ) returns a size such that a block of that size is sufficient to hold the 
specified number of properly aligned items, no matter the alignment of the block. 
This means that the memory requirements routine adds some extra size to 
guarantee correct alignment of the first block. To disregard this extra size and find 
the memory space used by each aligned item, use an expression such as the 
following:

oneItem = (pMemReq (NB_BUFTYPE_CL_BLK, 2, 0) -
pMemReq (NB_BUFTYPE_CL_BLK, 1, 0));

If for some reason you need to modify the alignments that clusters or control 
structures use, one way to do this is to copy the POOL_FUNC table from the 
appropriate back end, and replace the pMemReqRtn member in this copy of the 
table with a pointer to your own memory requirements routine, and then pass the 
pointer to the copied POOL_FUNC table as the pFuncTbl argument to either 
netPoolCreate( ) or netPoolInit( ). 

For more information, see the reference entry for netPoolInit( ).
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2.4  Legacy Network Stack Pools

Previous versions of the Wind River Network Stack made use of two special 
netBufLib pools: 

■ the network stack data pool 

■ the network stack system pool

The stack used the data pool for packets sent to the network and for data in socket 
send buffers; it used the system pool for control structures such as sockets, route 
entries, protocol control blocks, socket addresses, and so on.

The network stack no longer uses netBufLib pools internally, except when it 
communicates with network device drivers. It does not require the legacy network 
stack data and system pools, and so the component INCLUDE_NET_POOL that 
includes and configures these pools is not present in the default VxWorks build. 
However, there may be certain cases in which you need these legacy pools.

For example, you may need the network stack data pool if you must prefix a 
link-layer header to a packet that a non-network-stack protocol sends, but there is 
insufficient leading space in the packet’s head cluster to prefix the header. This 
may occur, for instance, in code that calls muxAddressForm( ) to prefix a link 
header to a datagram before sending it using muxSend( ). The 
muxAddressForm( ) routine (or the device-specific formAddress( ) routine that it 
calls) uses the macro M_PREPEND( ) to prefix space for the link header to the 
packet. This macro, defined in 
installDir/components/ip_net2-6.x/vxcoreip/include/net/mbuf.h, adjusts pointers 
and lengths if there is sufficient leading space in the head cluster (and if the head 
cluster is not shared); otherwise, it calls the routine m_prepend( ), which attempts 
to allocate a 128-byte tuple from the network stack data pool, to prefix to the 
existing chain and hold the link header. If the network stack data pool does not 
exist, this allocation fails (gracefully), and the attempt to send the packet fails.

Another example is an application or protocol that uses the muxTkSend( ) routine 
to send a packet to an END device, specifying a non-NULL destination MAC 
address. This routine calls the END’s formAddress( ) routine in this case also.

If your application or protocol calls muxAddressForm( ) or muxTkSend( ) in this 
way and relies upon M_PREPEND( ) to successfully allocate a tuple, you may need 
to include the component INCLUDE_NET_POOL in your VxWorks image, and 
configure the data pool with at least one pool of clusters of size 128-bytes or larger, 
along with M_BLKs and CL_BLKs. (An alternative is to create a pool of your own 
for this purpose, and set the NET_POOL pointer _pNetDpool to point to this pool.)

For reference, here is a brief description of the parameters of the 
INCLUDE_NET_POOL component, used to configure the network stack system 
pool and network stack data pool. Note that both of these pools use the netBufPool 
back end.

NUM_SYS_MBLKS
The number of M_BLK structures in the system pool.

NUM_SYS_CLBLKS
The number of CL_BLK structures in the system pool.
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PMA_SYSPOOL
The address of a pre-allocated memory buffer that the system pool carves its 
M_BLKs and CL_BLKs from. To allow the initialization code to allocate this 
memory buffer, set this parameter and PMS_SYSPOOL to zero.

PMS_SYSPOOL
The size in bytes of the pre-allocated buffer at PMA_SYSPOOL.

NUM_SYS_n 
SIZ_SYS_n 
PMA_SYS_n 
PMS_SYS_n 

These parameters, with n being one of 16, 32, 64, 128, 256, 512, 1024, or 2048, 
configure a cluster pool within the system pool. The value of SIZ_SYS_n 
specifies the usable size in bytes of each cluster in the pool, and must be at least 
n but less than 2 times x. NUM_SYS_n is the number of clusters in the cluster 
pool. PMA_SYS_n is the address of a pre-allocated buffer of length PMS_SYS_n 
bytes, which netPoolInit( ) carves into the clusters for the pool. To allow the 
initialization code to allocate memory itself for the cluster pool, set both 
PMA_SYS_n and PMS_SYS_n to zero.

NUM_DAT_MBLKS
The number of M_BLK structures in the data pool.

NUM_DAT_CLBLKS
The number of CL_BLK structures in the data pool.

PMA_DATPOOL
Address of a pre-allocated memory buffer to carve for the data pool’s M_BLKs 
and CL_BLKs. To allow the initialization code to allocate the memory, set this 
parameter and PMS_DATPOOL to zero.

PMS_DATPOOL
The size in bytes of the pre-allocated buffer at PMA_DATPOOL.

NUM_DAT_n 
PMA_DAT_n 
PMS_DAT_n 

These parameters, with n being one of 64, 128, 256, 512, 1024, 2048, 4096, 8192, 
16384, 32768, or 65536, configure a cluster pool within the data pool. The value 
of n is the usable size in bytes of each cluster in the pool; unlike the system 
pool, the data pool’s cluster sizes are hard-coded as powers of two. 
NUM_DAT_n is the number of clusters in the cluster pool. PMA_DAT_n is the 
address of a pre-allocated buffer of length PMS_DAT_n bytes, which 
netPoolInit( ) carves into the clusters for the pool. To allow the initialization 
code to allocate memory itself for the cluster pool, set both PMA_DAT_n and 
PMS_DAT_n to zero.

2.4.1  Legacy Tuple Pool for IPNET-Native Devices

The INCLUDE_END2_LINKBUFPOOL (Legacy linkBufPool for END2 devices) 
component creates a single linkBufPool to be shared by all IPNET-native devices 
for the benefit of M_BLK-oriented protocols that allocate tuples out of an END 
device's private network pool. Note that such allocation is not a recommended 
practice, but some legacy protocols engage in it. Table 2-2 lists the parameters for 
this component.
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Table 2-2 INCLUDE_END2_LINKBUFPOOL Parameters

Parameter and Description
Default Value and 

Data Type

END2_LINKBUFPOOL_NTUPLES 
Specifies the number of tuples in END2 legacy linkBufPool.

8a

int

END2_LINKBUFPOOL_CLSIZE 
Specifies the size of tuple clusters in END2 legacy 
linkBufPool. Note that multiple devices, possibly with 
different MTUs, share the same pool; so choose a size 
sufficient for the maximum MTU value.

1600

uint

a. This value may increase to approximately 40.
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3.1  Introduction

This chapter begins with an overview of the MUX model, which provides an 
interface between the data-link and TCP/IP protocol layers. It then describes how 
to do the following tasks:

■ create, configure, and bring up network interface devices

■ add and delete route table entries

■ configure router advertisement and solicitation

■ add automatic IPv4 interface configuration

■ use a reverse ARP (RARP) client

3.2  Overview of the MUX

In the Wind River Network Stack, network interface drivers pass information up 
in the network stack through the mediation of an interface layer known as the 
MUX. The MUX insulates network services (protocols) from the specifics of 
network interface drivers and vice versa. This decoupling lets you add new 
network drivers (not necessarily Ethernet-based) without needing to alter the 
network service. Likewise, the decoupling lets you add a new network service 
without needing to modify the existing MUX-based network interface drivers.
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OSI Network Model

The OSI Network Model describes seven layers through which data passes when 
it is transmitted from an application on one machine to a peer on a remote 
machine.

Starting in the application layer, data passes down through each layer of the stack 
to the physical layer, which handles the physical transmission to the remote 
machine. After arriving on the remote machine, data passes up through each layer 
from the physical to the application.

In the abstract, each layer in the stack is independent of the other layers. When a 
protocol in one layer communicates with a peer protocol in the same layer on a 
remote machine, it passes its message to the layer immediately below it. The 
protocol itself is not responsible for passing messages further than the adjacent 
layer.

MUX Layer 

In practice, network stacks that implement each layer with perfect independence 
are rare. Within TCP/IP, the protocols that manage the transport and network 
layer routines are sufficiently coupled that they are sometimes referred to as the 
protocol layer. The MUX is an interface between the data link layer and this 
protocol layer.

Figure 3-1 OSI Network Model and the MUX 

Application The network applications that use the data
being transferred, such as HTTP or FTP.

The layer in which data is encrypted, translated,
or compressed before it is transmitted.

The layer establishes and maintains the 
connection between communicating machines.

The layer in which data is packaged and
tracked to assure that the packets have been
received correctly. TCP, the Transmission
Control Protocol, is a transport layer protocol.

The layer that adds routing information to 
each data packet. IP, the Internet Protocol, 
is an example network protocol.

The layer that prepares the packets for
transmission through the physical layer and 
handles problems such as packet collision.
Ethernet is a data link protocol.
 

The actual wiring and hardware that support
the network connection.
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Session
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The MUX is not a new layer. There are no MUX-level protocols that communicate 
with peers in the MUX of a remote machine. The MUX concerns itself solely with 
standardizing communication between the protocol and data link layers of a single 
stack. Because of the MUX, a protocol layer service and network driver do not need 
direct knowledge of the other’s internal implementation details.

For example, when a network driver needs to pass along a packet it receives, the 
driver does not directly access any structure or routine within a protocol layer 
service implementation. Instead, the driver calls a MUX routine that handles the 
details. The MUX does this by calling the receive routine that the network service 
registered with the MUX. This design lets any MUX-compatible network service 
use any MUX-compatible network driver.

3.3  Working with Network Driver Instances

You can configure the Wind River Network Stack at either build time or run time 
to automatically load, start, and configure multiple network interfaces. 

The required network drivers should already have been built into the VxWorks 
image. Although it is possible to dynamically download network drivers—if one 
has an alternate download path not depending on the driver itself—it is rarely 
done.

Network drivers in VxWorks are either:

■ legacy pre-VxBus network drivers

■ VxBus network drivers

Both types are frequently referred to as END drivers (meaning Enhanced Network 
Driver drivers), and their device instances are END devices. 

From the point of view of network configuration, the two types of drivers differ 
primarily in how one causes the network devices that they control to be loaded into 
the MUX and started. The VxWorks Device Driver Developer's Guide contains 
detailed information on how VxBus drivers are registered with the VxBus system 
and how their device instances are initialized, loaded into the MUX, and started; 
this is done under control of the VxBus system, and the VxBus network drivers. 

Step 1: Loading Legacy Devices

Devices controlled by legacy network drivers are loaded in the MUX and started 
in one of two ways:

NOTE:  This section covers real (hardware) network interface devices and their 
device drivers. While “pseudo” or “virtual” network interfaces can be loaded in 
the MUX (and may be specific to a particular network service, above the MUX), 
such virtual interfaces are not included in this discussion.

! WARNING:  You should not call muxDevLoad( ) to manually load a device 
controlled by a VxBus network driver.
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■ Devices with entries listed in the endDevTbl array, usually defined in the 
BSP’s configNet.h file, are loaded and started at system boot by network 
initialization code.1 Devices may be entered in the endDevTbl array either 
statically or, in some cases, by BSP-specific code that scans a bus (usually a PCI 
bus) for network device instances.

■ Devices not listed in the endDevTbl array can be manually (or 
programmatically) loaded into the MUX and started later, by calling 
muxDevLoad( ) and then muxDevStart( ).2 

You can see what devices are already loaded in the MUX by calling the 
muxShow( ) function from the C-interpreter shell (either the target-resident 
version or the host shell).

To manually add a device (controlled by a legacy network driver) into the MUX, 
call muxDevLoad ("deviceName", deviceUnit), specifying the appropriate device 
name and unit number.  For example, to load the “fei2” device controlled by the 
legacy fei driver, you could use this command:

-> pFei2End = muxDevLoad ("fei", 2)

If successful, muxDevLoad( ) returns an END device cookie, which is really a 
pointer to the device’s END_OBJ structure, although most code should treat the 
pointer as opaque. If unsuccessful, muxDevLoad( ) returns NULL. (You can also 
get the device cookie using the endFindByName( ) routine.)

Step 2: Starting Legacy Devices

Having successfully loaded the device, you can start it (that is, enable packet 
transmission and reception by the device) by calling muxDevStart( ) with the 
device cookie:

-> muxDevStart (pFei2End)

muxDevStart( ) returns OK if successful, ERROR if it fails. To stop a successfully 
started device, call muxDevStop( ) with the device cookie. as follows:

-> muxDevStop (pFeiEnd)

Note that starting or stopping an END device in this way affects all network 
services that bind to the device through the MUX; such services may handle 
whether a device is administratively “up” or “down” differently, but if a device is 
stopped, it is effectively down for all services bound to it.

Step 3: Attaching to a Device

Whether an END device is managed by a VxBus driver or a legacy END driver, 
once the END device is loaded in the MUX and started, you can then bind network 
services to the device.

To attach the Wind River network stack to an END device, call the 
ipcom_drv_eth_init( ) routine. For example, to bind the IP stack to the fei2 device, 
call: 

-> ipcom_drv_eth_init ("fei", 2, 0)

1. The code is the usrNetEndLibInit( ) function in usrNetEndLib.c (for VIP builds) or in 
usrNetwork.c (for legacy BSP builds).

2. Some such devices will require special BSP setup, which we do not discuss here.
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The first two arguments are the device name and unit number. The last argument, 
0, represents the NULL string. It is possible to make the network stack use an alias 
of its own for the device name; for example, if one called instead:

-> ipcom_drv_eth_init ("fei", 2, "eth3")

In this case, the interface would be known within the network stack (for instance, 
in ifconfig output) as "eth3". However, the MUX would still refer to the device as 
'fei2'. If the third argument to ipcom_drv_eth_init( ) is zero (NULL), the stack uses 
the same name as the MUX for the device.

As a shortcut method, ipAttach( ) can attach the network stack to the device in the 
same way as a call to ipcom_drv_eth_init( ) with NULL as the third argument. 
Thus, running the command:

-> ipAttach (2, "fei") 

has the same effect as the first ipcom_drv_eth_init( ) call above.

The ipAttach( ) function is available if the component 
INCLUDE_IPWRAP_IPPROTO is included in the VxWorks image.

Step 4: Displaying and Configuring Devices

Once you have attached the network stack to the device, you can display it and 
configure it as required for each network service. To configure the device, use the 
ifconfig command. The most convenient way to call this command is using the 
command interpreter shell (in the component INCLUDE_SHELL_INTERP_CMD). 
For example:

# ifconfig -a 

lists all the network interfaces in the network stack, while:

# ifconfig fei2 10.21.0.1/24 up 
# ifconfig fei2 inet6 add feed:1::cafe/64 

adds an IPv4 and an IPv6 address to the fei2 network interface.

If the command interpreter shell is not available, ifconfig is also available as a 
wrapper function ifconfig( ) (include the component 
INCLUDE_IPWRAP_IFCONFIG). You can call this routine from the C interpreter 
shell. It takes a single string argument, so it would be used as follows:

-> ifconfig "-a" 
-> ifconfig "fei2 10.21.0.1/24 up" 

The ifconfig( ) routine can be called programmatically, but the ifconfig command 
is also available programmatically as the routine:

IP_PUBLIC int ipnet_cmd_ifconfig(int argc, char **argv);

Step 5: Adding a Default Route

Other elementary network configuration includes adding a default route (in the 
example below, using the route command) and adding static host name entries to 
the host table:

# route add default 10.21.0.254 # add 10.21.0.254 as the default router
# route show # display routing table, also netstat -r
# C # change to C interpreter shell
-> hostAdd ("peer1", "10.21.0.11")  # add "peer1" as static host name

# for 10.21.0.11
-> hostShow # display host table
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For more information, see the Wind River Network Stack Programmer’s Guide, Vol. 1: 
Adding Routing Support.

3.3.1  Attaching a Service to a Network Interface 

A protocol or service, such as IPv4, must attach itself to one or more network 
interfaces to communicate with remote peers. When a service attaches to an 
interface, packets addressed to that interface can flow up to the service. This also 
lets the service transmit packets out through the interface.

If you want the IP stack to automatically attach to and configure up to four 
network interfaces, include the build configuration components 
INCLUDE_IPNET_IFCONFIG_n, and set the value of the configuration parameters 
IFCONFIG_n (where n is 1, 2, 3, or 4).  By default, only 
INCLUDE_IPNET_IFCONFIG_1 is in the image, so only one interface is attached 
and configured, according to the IFCONFIG_1 parameter.

Set the IFCONFIG_n parameter to a series of strings, each of which begins with one 
of the following keywords:

ifname
The name that the IP stack uses for the network interface, for example: 
"ifname eth0". If you simply specify "ifname" without an interface name, the 
network stack will use the same name as the MUX uses for the interface, which 
is given by the devname keyword.

devname
The name of the device to attach to, as it appears in the MUX, for example 
"devname fei0". The default is "devname driver", which indicates that the 
stack gets the name of the device, to attach itself to, from the "boot device" 
entry in the boot parameters.3 

inet
The interface IPv4 address and subnet, for example: "inet 10.1.2.100/24". 

You may use one of the following keywords in place of the IPv4 address: 

"inet driver" 
The stack should read the interface IP address and mask from the "inet on 
ethernet" entry in the boot parameters. This is the default setting for the 
inet keyword, but only one interface should use this setting.

"inet dhcp" 
The interface should retrieve its address and mask from a DHCP server. 
Depending on the DHCP server configuration, the interface might also 
retrieve its gateway from the server.

"inet rarp" 
The interface should retrieve its address and mask from a RARP server.

gateway
The default IPv4 gateway, for example: "gateway 10.1.2.1". You may specify 
the default gateway for only one of the statically configured interfaces. If you 
specify "gateway driver", the stack uses the gateway from the "gateway inet" 
address in the boot parameters.

3. At most one of the statically configured interfaces should use this default.
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inet6
The interface IPv6 address and subnet, for example: "inet6 3ffe:1:2:3::4/64". 
You can insert the tentative keyword before the address to instruct the stack to 
check for address duplication before it assigns the address to the interface, for 
example: "inet6 tentative 3ffe:1:2:3::4/64". 

gateway6
The default IPv6 gateway. You may specify only one default gateway.

3.3.2  Configuring a Network Interface with an Address

When a network service attaches to an interface, packets addressed to that 
interface can flow up to the service. You must assign an address to the interface to 
route packets to it. When you assign an address to an interface, you also need to 
assign a netmask (IPv4) or prefix (IPv6) that determines whether the interface can 
access a particular network. 

You can call ifconfig( ) to do either of the following tasks:

■ Retrieve configuration information on an interface.

■ Assign an address and a netmask or prefix to a network interface.

You can call the ifconfig( ) routine in the C-interpreter and in the 
command-interpreter. Examples of calls in the C-interpreter are prefaced with ->. 
Examples in the command-interpreter are prefaced with #. To use ifconfig, include 
the INCLUDE_IFCONFIG configuration component in your build. For a detailed 
description of all possible flags and parameter values, see ifconfig, p.173. 

Retrieving Interface Information 

Use the following ifconfig( ) syntax to retrieve information about a network 
interface:

-> ifconfig "[flags] [interfaceName] [command]" 
# ifconfig [flags] [interfaceName] [command] 

For the interfaceName parameter, the generic format of a network interface name is 
nameNumber—for example: fei0. The format of a logical interface name is 
typeUserDefinedName. For example, a PPPoE interface name would be 
pppoeUserDefinedName; a VLAN interface name would be vlanUserDefinedName. 
UserDefinedName can be any string that does not exceed IFNAMSIZ (16 characters).

For example, to retrieve information on the fei0 interface, use the following 
command:

-> ifconfig "fei0"

To retrieve information on all IPv6 interfaces, use the following command:

-> ifconfig "-a"

Configuring an Interface 

Use the following ifconfig( ) syntax to assign information to a network interface:

NOTE:  See also the ifLib and if6Lib reference entries.
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-> ifconfig "interfaceName [protocol] command"
# ifconfig interfaceName [protocol] command

For the protocol parameter, specify either inet or inet6.

inet

The inet protocol value has special syntax because you use it both as a protocol 
selector and as a command to change the primary IPv4 address. 

For example, to change the primary IPv4 address to 192.0.2.64, issue the following 
command:

-> ifconfig "fei0 inet 192.0.2.64"

To configure the fei0 network interface to add another IPv4 address, of 
172.16.0.100, use the following command:

-> ifconfig "fei0 inet add 172.16.0.100"

Because the call specifies no mask for what would have been a class B address 
pre-CIDR, the command assumes a default class B netmask value of 0xffff0000. To 
override the default netmask associated with an IPv4 address, use the CIDR slash 
notation as follows:

-> ifconfig "fei0 inet add 172.16.0.100/24"

Alternatively, you can specify the mask using the dot-notation as follows:

-> ifconfig "fei0 inet add 172.16.0.100 netmask 255.255.255.0"

These last two commands each specify a netmask of 24 bits, or 0xffffff00. The stack 
uses the netmask value when it creates an interface entry in the system route table.

inet6

To use ifconfig( ) to configure IPv6 addresses, use the inet6 protocol value. For 
example:

-> ifconfig "fei0 inet6 add 2002:C000:0240::66/16"

The ifconfig( ) call above configures the fei0 network interface to have an IPv6 
address of 2002:C000:240::66. 

In the command above, the string /16 indicates a prefix length of 16. If you do not 
specify a prefix length, ifconfig( ) assumes a default prefix of 64 bits. Alternatively, 
you can use the prefixlen option as follows:

-> ifconfig "fei0 inet6 add 2002:C000:0240::66 prefixlen 16"

This example address is a 6to4 IPv6 address with a local IPv4 tunnel address of 
192.0.2.64. The IPv4 notation uses base 10; the IPv6 notation uses base 16. Thus, 
192.0.2.64 is 0xC0000240, which is written as C000:0240 in IPv6 notation.

Creating a Pseudo-Interface 

You can call the ifconfig( ) routine to create pseudo-interfaces (also called logical 
interfaces) such as VLAN interfaces and tunnels. 

NOTE:  As there is no concept of a primary IPv6 address, you only use inet6 as a 
protocol selector.
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For example, to create a VLAN interface that puts the VLAN tag 1234 on all traffic 
sent to the 10.0.0.0/8 network, that is assigned the address 10.1.2.3, and that uses 
fei0 as the underlying physical interface, issue the following series of commands:

-> ifconfig "vlan10 create"
-> ifconfig "vlan10 vlan 1234 vlanif fei0"
-> ifconfig "vlan10 inet 10.1.2.3"
-> ifconfig "vlan10 up"

You can also chain these commands together:

-> ifconfig "vlan10 create vlan 1234 vlanif fei0 inet 10.1.2.3 up"

Creating Unnumbered Interfaces

While most stacks restrict unnumbered interfaces to point-to-point interface types, 
the Wind River Network Stack allows you to turn any type of interface into an 
unnumbered interface simply by assigning it the same IP address as another 
interface (for example, the main interface). 

As an example, suppose Ethernet interface gei0 is assigned the address 1.2.3.4. You 
can turn interface ppp0 into an unnumbered interface by assigning the same 
address to it as follows:

-> ifconfig ppp0 inet 1.2.3.4

Note that this is exactly the same command you use to assign an address to an 
interface; the only difference is that, in this case, it is the same as the Ethernet 
interface, which thus turns ppp0 into an unnumbered interface. 

3.3.3  Fixing Interfaces That Have Erroneous Addresses 

When you call ifconfig( ), you create a local entry in the route table. Local entries 
in the route table identify network interfaces on the local host. 

To reconfigure a network interface using ifconfig( ), issue one of the following 
commands: 

-> ifconfig "interfaceName inet delete oldIPv4address add newIPv4address"
-> ifconfig "interfaceName inet6 delete oldIPv6address add newIPv6address"

If you are changing the primary IPv4 address, issue the following command:

-> ifconfig "interfaceName inet newIPv4address"

To restore all the local network route entries to the route table, issue the following 
command:

-> ifconfig "interfaceName down up"

For more information, see 3.3.2 Configuring a Network Interface with an Address, p.29.

3.3.4  Assigning a Host Name to an Address 

It is often easier to refer to hosts and interfaces by names instead of by IP addresses. 
To add host names to the local host table, call hostAdd( ). For example:

-> hostAdd "myIPv4Interface", "192.0.2.64"
-> hostAdd "myIPv6Interface", "2002:C000:240::66"
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The host table stores one entry per Internet address, but you can associate multiple 
names with an address, as aliases. 

When specifying IPv6 link or site local addresses, you must supply a scope 
delimiter, %, and corresponding interface ID. For more information, see the 
hostAdd( ) reference entry. 

3.3.5  Bringing the Device Up for Protocol Communication

To start and enable a network interface, call ifconfig( ) to bring up the protocol 
state of the device. You can start or stop transmission by bringing this state up or 
down. To bring up IPv4 and IPv6 functionality, use the up modifier. For example: 

-> ifconfig "fei0 up"

Similarly, to bring down IPv4 and IPv6 functionality, use the down modifier. For 
example: 

-> ifconfig "fei0 down"

3.3.6  Determining the Device Link Status

The network stack’s IFF_RUNNING and IFF_UP flags indicate the current status of 
a link. For example, an Ethernet network interface sets the IFF_RUNNING flag as 
long as one end of a network cable is plugged into the device and the other end is 
plugged into another device (using a cross-cable) or into a hub or switch. Use the 
SIOCGIFFLAGS ioctl( ) call to determine the state of this flag, as follows:

struct ifreq ifp;
int fd = socket descriptor for the link ;
ioctl (fd, SIOCGIFFLAGS, &ifp);
if (ifp.ifr_flags & IFF_RUNNING)

{
// interface is running
}

if (ifp.ifr_flags & IFF_UP)
{
// interface is UP
}
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4.1  Introduction

This chapter describes tunneling and shared-memory.

In this document, tunneling through an IPv4 Internet refers to the encapsulation of 
data (such as an IPv4 or an IPv6 packet for a VPN connection) in an IPv4 packet 
that is then transmitted to an IPv4-addressed destination. At the destination, the 
data is retrieved from the IPv4 packet and processed. If the data retrieved is an 
IPv6 packet, and the receiving stack is a dual IPv4/IPv6 stack, the stack can 
forward the IPv6 packet out onto the IPv6 Internet. 

By using a shared-memory network driver, multiple processors can communicate 
over their common backplane as if they were communicating over a network, 
through a MUX-capable network driver. The second half of this chapter covers 
shared memory.

4.2  Working with IPv4 and IPv6 Tunneling

A tunnel attaches to the stack as a network interface. Create tunneling interfaces 
with the ifconfig command.

NOTE:  The tunneling feature is available only in the Wind River Platforms builds 
of the network stack. The Wind River General Purpose Platform, VxWorks Edition, 
does not support tunneling.
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Tunnels can be either configured or automatic. A configured tunnel determines the 
endpoint addresses by configuration information on the encapsulating node. An 
automatic tunnel determines the IPv4 endpoints from the addresses of the 
embedded IPv6 datagram.

IPv4 multicast tunneling determines the endpoints through Neighbor Discovery. 
See the Wind River Network Stack Programmer’s Guide, Volume 1 for more on 
Neighbor Discovery. 

4.2.1  Configuring VxWorks for Tunneling

The Wind River Network Stack includes the following tunneling components:

■ 6over4 Tunnel Interface Driver (RFC 2529)

■ 6to4 Tunnel Interface Driver (RFC 3056)

■ GIF Tunnel Interface Driver (RFC 1853, RFC 2473)

■ GRE Tunnel Interface Driver (RFC 2002, RFC 2784)

■ SIT Tunnel Interface Driver 

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component 
enables these.

GIF Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls 
in modules that implement the gif tunneling pseudo-device for IPv4 and IPv6. GIF 
can tunnel IPv4 and IPv6 over IPv4 or IPv6. GIF tunneling is configured, not 
automatic, which means you must specify the endpoints when the tunnel is 
created, rather than relying on the endpoints being extracted from the addresses of 
the protocol being tunneled; you can configure endpoints per route entry.1

The GIF component has no configuration parameters and is automatically 
included when you enable tunneling support. 

Use ifconfig to create GIF tunnel interfaces. Interfaces for GIF tunnels must begin 
with "gif". For example:

_-> ifconfig "gif0 create" 

To set tunnel endpoints on a GIF tunnel, use ifconfig. For details, see ifconfig, p.173. 
For example, to set the endpoints on a GIF tunnel over IPv4:

-> ifconfig "gif0 inet tunnel 192.168.0.10 10.1.2.3" 

NOTE:  IPsec does its own IP tunneling for associations running in tunneling mode; 
therefore, an IPsec tunnel will not show up as a regular network interface.

NOTE:  Although this chapter focuses on host-to-host tunnels, you can also set up 
host-to-router tunnels, router-to-router tunnels, and other permutations. 

1. Meaning, after having created the tunnel network interface you can route commands to 
direct traffic to any number of various destination hosts or subnets to use the tunnel 
interface.
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To set the endpoints on a GIF tunnel over IPv6:

-> ifconfig "gif0 inet6 tunnel 2001:10::10 2001:20::1" 

GRE Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls 
in support for the gre tunneling pseudo-devices for IPv4 and IPv6. GRE can tunnel 
IPv4 and IPv6 over IPv4 or IPv6. Like GIF tunneling, GRE tunnels are configured as 
opposed to automatic (which is to say that you must specify the endpoints when the 
tunnel is created, rather than relying on the endpoints being extracted from the 
addresses of the protocol being tunneled; you can configure endpoints per route 
entry. GRE has a version field set to 0 and provides an optional payload checksum. 

GRE can be run in "minimal encapsulation" when tunneling IPv4 over IPv4 
(described in RFC 2002). 

Use ifconfig to create tunnel interfaces. Interfaces for GRE tunnels must begin with 
"gre". For example:

-> ifconfig "greTunnel create" 

To set tunnel endpoints on a GRE tunnel, use ifconfig:

ifconfig "interfaceName [inet | inet6] tunnel localAddress remoteAddress"

For example:

-> ifconfig "greTunnel inet6 tunnel 2001:10::10 2001:20::1" 

6over4 Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls 
in support for the 6over4 tunneling pseudo-device for IPv6.

A 6over4 tunnel is an IPv4 multicast tunnel that requires a fully functional IPv4 
multicast infrastructure.

6over4 requires the INCLUDE_IPCOM_USE_INET6 component and has no 
configuration parameters.

Use ifconfig to create tunnel interfaces. Interfaces for 6over4 tunnels must begin 
with "6over4". For example:

-> ifconfig "6over4Lan create" 

To set a local IPv4 address for a 6over4 tunnel, use ifconfig:

-> ifconfig "interfaceName inet tunnel localAddress remoteAddress" 

As shown above, ifconfig requires a peer address, even though it does not use it in 
this case; provide a dummy peer address, such as the following:

-> ifconfig "6over4Lan inet tunnel 192.168.0.10 0.0.0.0" 

6to4 Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls 
in support for the 6to4 tunneling pseudo-device for IPv6. Unlike GIF and GRE, 
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6to4 is an automatic tunnel: tunnel endpoints are extracted from the encapsulated 
IPv6 datagram, and so you do not need to configure them manually. 

6to4 tunnels use a prefix of the form "2002:tunnelIPv4address::/48" (for instance, 
"2002:a01:203::1") to tunnel IPv6 traffic over IPv4 (see RFC 3056). Routers advertise 
a prefix of the form "2002:[IPv4]:xxxx/64" to IPv6 clients.

This component requires the INCLUDE_IPCOM_USE_INET6 component and has 
no configuration parameters.

Use ifconfig to create tunnel interfaces. Interfaces for 6to4 tunnels must begin with 
"6to4". For example:

-> ifconfig "6to4tun create" 

SIT Tunnel Interface Driver

Like 6to4, the SIT (Simple Inter-site Tunnel) tunneling device for IPv6 is an 
automatic tunnel; tunnel endpoints are extracted from the encapsulated IPv6 
datagram. 

SIT uses IPv4-compatible IPv6 addresses (for instance, "::10.1.2.3") to tunnel IPv6 
traffic over IPv4. The IPv4 address is in the 32 least-significant bits in the IPv6 
address. Such an address uses the prefix "::/96". 

Use ifconfig to create tunnel interfaces. Interfaces for SIT tunnels must begin with 
"sit". For example:

-> ifconfig "sit0 create" 

4.2.2  Creating 6to4 Tunnels for IPv6 Packets

In the Wind River Network Stack, a 6to4 pseudo-device is an automatic tunnel and 
one of the many IPv6 transition mechanisms.

Consider the following setup code for automatic tunneling on a Wind River 
Network Stack dual stack.

/* code for 6to4 tunnel setup */
#include "vxWorks.h"
#include "net/utils/ifconfig.h"
#include "net/utils/routeCmd.h"

void tunnel6to4Test ( )
{
/* Create and attach the tunnel */
ifconfig ("6to4tun create");
/* Add IPv6 address to the tunnel */
ifconfig ("6to4tun inet6 add 6to4AddressForLocalInterface prefixlen 128");
/* Bring up the tunnel */
ifconfig ("6to4tun up");

NOTE:  The IETF has deprecated the use of this tunnel type.

Figure 4-1 6to4 Addresses 
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/* Route all packets to the 2002::/16 network through 
* the "6to4tun" tunnel */
routec ("add -inet6 -net -dev 6to4tun -prefixlen 16 2002::");
}

The second ifconfig( ) call creates a route table entry that catches packets with IPv6 
destinations that match the first 128 bits of the 6to4AddressForLocalInterface. This is 
the IPv4 address of the local network interface prefixed with an IPv6 6to4 prefix. 
This 6to4 IPv6 address implies a local IPv6 address space of 80 bits.

By convention, the 16 bits just after the IPv4 segment of the address are interpreted 
as a Site-Level Aggregation (SLA) ID, which you can set to any value. You may use 
this to organize the local space into several (up to 65,536) subnets. Because the site 
as a whole is identified to other sites by the first 48 bits of the address, you can use 
the remaining bits at your convenience without affecting the ability of remote 
machines to communicate with the site.

If you intend the systems at the tunnel ends to function as routers, make sure that 
the network stacks at those tunnel ends are configured to forward IPv6 packets. In 
the Wind River Network Stack, call sysctl( ) for this purpose: 

-> sysctl "net.inet6.ip6.forwarding=1" 

For more information on sysctl, see sysctl, p.187.

4.2.3  Creating RFC 2893-Style Configured Tunnels

The RFC 2893-style configured tunnels based on gif devices are point-to-point 
links. They are similar to point-to-point links over a serial cable except that the 
transmission medium is the Internet. Through the mediation of a gif device 
instance, you can use a configured tunnel as a direct connection to an endpoint in 
the IPv6 address space. Unlike with stf-based tunnels, you do not need to define 
the tunnel endpoints in terms of 6to4 IP addresses. Both endpoints need to support 
dual IPv4/IPv6 stacks, and both tunnel endpoints need an IPv4 address in 
addition to whatever IPv6 addresses you associate with the tunnel endpoints. 

You set a gif-based configured tunnel in much the same way as you set up an 
stf-based automatic tunnel. To create a gif device instance and bind it to the IPv6 
stack, use code modeled after the following:

/* code for gif tunnel-over-IPv4 setup. The tunnel will be 
* configured with an IPv6 address, but it is possible to add an IPv4 * address 
as well */
#include "vxWorks.h"
#include "net/utils/ifconfig.h"

void tunnelGifTest ( )
{
/* Create and attach the tunnel */
ifconfig ("gif0 create");
/* Configure the tunnel to tunnel over IPv4 */
ifconfig ("gif0 inet tunnel localIPv4Address remoteIPv4Address");
/* Add IPv6 address to the tunnel */
ifconfig ("gif0 inet6 add IPv6AddressForTunnel");
/* Bring up the tunnel */
ifconfig ("gif0 up");
}

Packets sent to this gif device are always transmitted from the specified local 
interface to the specified remote interface.
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Note that the IPv6 addresses you supply in the code, like the example above, need 
not be 6to4 addresses. They can be any valid IPv6 addresses (of proper scope) 
validly associated with the tunnel endpoints. 

To direct IPv6 packets to this device by default, add an IPv6 default entry to the 
route table. For example:

-> route "add -inet6 default tunnelEndpointIPv6Address" 

Alternatively, you can direct only some IPv6 packets to the interface. For example, 
the following entry captures traffic destined for 2001:DB8:1::/64:

-> route "add -inet6 2001:DB8:1:: tunnelEndpointIPv6Address -prefixlen 64" 

Example 4-1 Configuration Example

In this example, assume the following:

■ you own the IPv4 address 10.1.0.1 and the IPv6 address 2001:DB8:1234::1

■ the owner of IPv4 address 10.2.0.1 has agreed to route your IPv6 traffic for 
2001:DB8:3333::/32 

■ the IPv4 node at 10.2.0.1 is a dual IPv4/IPv6 stack with an IPv6 address of 
2001:DB8:5678::1

Create a GIF tunnel between 10.1.0.1 and 10.2.0.1 as follows:

-> ifconfig "gif0 create up" 
-> ifconfig "gif0 inet tunnel 10.1.0.1 10.2.0.1" 

Then configure the interfaces and route table as follows:

-> ifconfig "fei0 inet6 2001:DB8:1234::1" 
-> ifconfig "gif0 inet6 2001:DB8:1234::1 2001:DB8:5678::1 prefixlen 128" 
-> route "add -inet6 2001:DB8:3333:: 2001:DB8:5678::1 -prefixlen 48" 

Your local node now supports the following devices and route table entries:

If you negotiate for routing services from more than one remote IPv6 router that 
supports a dual IPv4/IPv6 stack, you can create additional gif devices to manage 
configured tunnels through those routers. You would also want to set up your 
route table to control which IPv6 packets go to which router. 

For example, if the second remote dual IPv4/IPv6 stack is at 10.3.0.1 IPv4 and 
2001:DB8:9999::1 IPv6, use the following setup code:

Table 4-1 Devices and Route Table Entries

Addresses Configured

fei0 10.1.0.1

fei0 2001:DB8:1234::1

gif0 2001:DB8:1234::1 -> 2001:DB8:5678::1 10.1.0.1 ->10.2.0.1

Routes

10.1.0.1/8 fei0 

2001:DB8:1234::/64 fei0 

2001:DB8:3333::/32 gif0 
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-> ifconfig "gif0 create up" 
-> ifconfig "gif1 create up" 
-> ifconfig "gif0 inet tunnel 10.1.0.1 10.2.0.1" 
-> ifconfig "gif1 inet tunnel 10.1.0.1 10.3.0.1" 
-> ifconfig "fei0 inet6 add 2001:DB8:1234::1" 
-> ifconfig "gif0 inet6 add 2001:DB8:1234::1 prefixlen 128" 
-> ifconfig "gif1 inet6 add 2001:DB8:1234::1 prefixlen 128" 

This sets up the following devices:

To add a route over gif0 use 5678::1 in a route command. For example:

-> route "add -inet6 2001:DB8:1:: 2001:DB8:5678::1 -prefixlen 64" 

To add a route over gif1 use 2001:DB8:9999::1 in a route command. For example:

-> route "add -inet6 2001:DB8:4444 2001:DB8:9999::1 -prefixlen 48" 

Thus, the route table would include the following entries:

4.2.4  Tunnel Example

This example shows how to establish a GIF tunnel to tunnel IPv6 traffic over an 
IPv4 connection. In this example, there are two targets, connected as shown in 
Figure 4-2.

Step 1: Establish the Network

To create this topology, do the following:

Table 4-2 Addresses

Devices Addresses Configured

gif0 2001:DB8:1234::1 -> 2001:DB8:5678::1 10.1.0.1 -> 10.2.0.1

gif1 2001:DB8:1234::1 -> 2001:DB8:9999::1 10.1.0.1 -> 10.3.0.1

Table 4-3 Route Entries

Routes Device

2001:DB8:9999:1::/64 gif0

2001:DB8:4444::/48 gif1

Figure 4-2 Two Targets Establish a GIF Tunnel

target1

192.168.200.1/24

Loopback1
2::1/64

1::1

target2

192.168.200.2/24

Loopback1
3::1/64

1::2
gif0 interface

v6 over v4 tunnel

net0



Wind River Network Stack
Programmer's Guide, 6.8 

40

1. On target1, issue the following command:

# ifconfig gif0 create inet tunnel 192.168.200.1 192.168.200.2 inet6 add 
1::1 up 

2. On target2, issue the following command:

# ifconfig gif0 create inet tunnel 192.168.200.2 192.168.200.1 inet6 add 
1::2 up 

This creates a new interface called gif0: a virtual interface that connects endpoint 
192.168.200.1 to 192.168.200.2 on target1 and 192.168.200.2 to 192.168.200.1 on 
target2.

You can verify that the tunnel’s endpoints are IPv4 by looking at the interface type 
in the output from the ifconfig gif0 command:

# ifconfig gif0 
gif0    Link type:Tunnel  Queue:none  IPv[4|6]-over-IPv4 192.168.200.2 --> 
192.168.200.1  ttl:64
        inet 224.0.0.1  mask 240.0.0.0
        inet6 unicast FE80::C0A8:C802%gif0  prefixlen 64  automatic
        inet6 unicast 1::2  prefixlen 64
        inet6 unicast FE80::%gif0  prefixlen 64  anycast
        inet6 unicast 1::  prefixlen 64  anycast
        inet6 multicast FF02::1:FF00:2%gif0  prefixlen 16
        inet6 multicast FF02::1:FF00:0%gif0  prefixlen 16
        inet6 multicast FF02::1%gif0  prefixlen 16  automatic
        inet6 multicast FF02::1:FFA8:C802%gif0  prefixlen 16
        UP RUNNING SIMPLEX POINTOPOINT MULTICAST NOARP 
        MTU:1480  metric:1  VR:0
        RX packets:0 mcast:0 errors:0 dropped:0
        TX packets:10 mcast:10 errors:0
        collisions:0 unsupported proto:0
        RX bytes:0  TX bytes:688

Notice that the inet6 address of gif0 is 1::2 (inet6 unicast), which means that the 
tunnel will forward all packets destined to network 1::/64.

From target2, ping the IPv6 address of the target1 interface (1::1):

# ping6 ::1 

Pinging ::1 (::1) with 64 bytes of data:
Reply from ::1 bytes=64 time=0ms hlim=64 
Reply from ::1 bytes=64 time=0ms hlim=64 
Reply from ::1 bytes=64 time=0ms hlim=64 
Reply from ::1 bytes=64 time=0ms hlim=64 

--- ::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4080 ms rtt 
min/avg/max = 0/0/0 ms

Step 2: Add Loopback Interfaces and Default Routes. 

Since the default loopback interface (lo0) is used by many system calls and socket 
applications you will add a new loopback interface (lo1). This interface represents 
a different network.

In most cases a tunnel is used to connect networks that cannot be directly 
connected. This example shows how to add a loopback interface on each target and 
apply an IPv6 address to each interface. Then it shows how to use the route 
command to tell the network device about remote networks and how to reach 
those networks using a default gateway.

On target1, issue the following command to add a loopback interface:

# ifconfig lo1 create inet6 add 2::1 up 
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Verify the new interface:

# ifconfig lo1 
lo1     Link type:Local loopback  Queue:none
        inet 224.0.0.1  mask 240.0.0.0
        inet6 unicast FE80::1%lo1  prefixlen 64  automatic
        inet6 unicast 2::1  prefixlen 64
        inet6 multicast FF02::1:FF00:1%lo1  prefixlen 16
        inet6 multicast FF02::1%lo1  prefixlen 16  automatic
        UP RUNNING LOOPBACK MULTICAST 
        MTU:1500  metric:1  VR:0
        RX packets:3 mcast:0 errors:0 dropped:3
        TX packets:3 mcast:3 errors:0
        collisions:0 unsupported proto:0
        RX bytes:168  TX bytes:168

On target2, issue the following command to add a loopback interface:

# ifconfig lo1 create inet6 add 3::1 up 

Verify the new interface:

# ifconfig lo1 
lo1     Link type:Local loopback  Queue:none
        inet 224.0.0.1  mask 240.0.0.0
        inet6 unicast FE80::1%lo1  prefixlen 64  automatic
        inet6 unicast 3::1  prefixlen 64
        inet6 multicast FF02::1:FF00:1%lo1  prefixlen 16
        inet6 multicast FF02::1%lo1  prefixlen 16  automatic
        UP RUNNING LOOPBACK MULTICAST 
        MTU:1500  metric:1  VR:0
        RX packets:3 mcast:0 errors:0 dropped:3
        TX packets:3 mcast:3 errors:0
        collisions:0 unsupported proto:0
        RX bytes:168  TX bytes:168

From target2, ping the loopback interface of target1 (2::1/64):

# ping6 2::1 
Pinging 2::1 (2::1) with 64 bytes of data:
Echo request operation failed: Network is unreachable (51)

You cannot ping interfaces on the network 2::/64 since you do not have a route to 
that network. Look at the routing table of target2 by issuing the route show 
command:

# route show 

INET route table - vr: 0, table: 254
Destination  Gateway  Flags Use  If  Metric
0.0.0.0/0  192.168.200.254  UGS  0  net0  0
127.0.0.0/8  localhost  UR  0  lo0  0
localhost  localhost  UH  12  lo0  0
192.168.200.0/24 link#2  UC  1  net0  0
192.168.200.1  7a:7a:c0:a8:c8:01 UHL  10  net0  1
target2  link#1  UH  10  lo0  0

INET6 route table - vr: 0, table: 254
Destination  Gateway  Flags Use  If  Metric
::  link#1  UHRS  0  lo0  0
::1  ::1  UH  48  lo0  0
1::/64  link#4  U  0  gif0  0
1::2  link#1  UH  0  lo0  0
3FFE:1:2:3::/64 link#2  UC  0  net0  0
3FFE:1:2:3::4  link#1  UH  0  lo0  0
FE80::%lo0/64  link#1  UC  0  lo0  0
FE80::%net0/64  link#2  UC  0  net0  0
FE80::%gif0/64  link#4  U  0  gif0  0
FE80::1%lo0  link#1  UH  0  lo0  0
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Or you can use the –inet6 flag to view only IPv6 route configuration: 

# route show -inet6 

INET6 route table - vr: 0, table: 254
Destination  Gateway  Flags Use  If  Metric
::  link#1  UHRS  0  lo0  0
::1  ::1  UH  48  lo0  0
1::/64  link#4  U  0  gif0  0
1::2  link#1  UH  0  lo0  0
3FFE:1:2:3::/64 link#2  UC  0  net0  0
3FFE:1:2:3::4  link#1  UH  0  lo0  0
FE80::%lo0/64  link#1  UC  0  lo0  0
FE80::%net0/64  link#2  UC  0  net0  0
FE80::%gif0/64  link#4  U  0  gif0  0
FE80::1%lo0  link#1  UH  0  lo0  0

Step 3: Add a Default Gateway

Notice that IPv6 does not have a default gateway (a default gateway is notated by 
the letter "G" in the flags field). Since we have only one exit point from the device, 
we can configure the tunnel as a default gateway for any unknown IPv6 
destination.

Issue the following command to add a default gateway to target2:

# route add -inet6 default 1::1 
    add net ::: netmask ::: gateway 1::1

Now, look at the route table again:

# route show -inet6 

INET6 route table - vr: 0, table: 254
Destination  Gateway  Flags Use  If  Metric
::  link#1  UHRS  0  lo0  0
::/0  1::1  UGS  0  gif0  0
::1  ::1  UH  48  lo0  0
1::/64  link#4  U  0  gif0  0
1::2  link#1  UH  0  lo0  0
3FFE:1:2:3::/64 link#2  UC  0  net0  0
3FFE:1:2:3::4  link#1  UH  0  lo0  0
FE80::%lo0/64  link#1  UC  0  lo0  0
FE80::%net0/64  link#2  UC  0  net0  0

Add a default gateway to target1:

#  route add -inet6 default 1::2 
    add net ::: netmask ::: gateway 1::2

Step 4: Test the Tunnel

With a default gateway and a v6-over-v4 tunnel you can ping the loopback 
interfaces. From target1:

# ping6 3::1 
Pinging 3::1 (3::1) with 64 bytes of data:
Reply from 3::1 bytes=64 time=0ms hlim=64 
Reply from 3::1 bytes=64 time=0ms hlim=64 
Reply from 3::1 bytes=64 time=0ms hlim=64 
Reply from 3::1 bytes=64 time=0ms hlim=64 

--- 3::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4080 ms rtt 
min/avg/max = 0/0/0 ms

This shows ping-v6 packets encapsulated in IPv4 packets and carried from target1 
to target2 over an IPv4 link.
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4.3  Using the Shared-Memory Network

The smEnd shared-memory network driver allows multiple processors to 
communicate over their common backplane as if they were communicating over a 
network, through a MUX-capable network driver.

A multiprocessor backplane bus is an Internet network with its own network / 
subnet number. Each processor that is a host on this network has its own unique 
IP address. In the example shown in Figure 4-3, two processors are on a backplane. 
The Internet address for the shared-memory network is 161.27.0.0. Each processor 
on the shared-memory network has a unique Internet address, 161.27.0.1 for vx1 
and 161.27.0.2 for vx2.

Processors can communicate with other processors on the same backplane by 
means of an instance of the smEnd driver. This driver behaves as any other 
network driver, and so a variety of network services may communicate through it.

4.3.1  Backplane Shared-Memory Region

This simulation of driver communication takes place in a contiguous memory 
region that all processors on the backplane can access through instantiations of the 
smEnd driver.2 

Backplane Processor Numbers

Assign each processor on the backplane a unique backplane processor number 
starting with 0. With the exception of processor #0, which by convention and by 
default is the shared-memory network master (described below), these numbers 
are arbitrary and you may set them to whatever you find convenient.

Set the processor numbers in the boot-line parameters that you pass to the boot 
image. You can burn these parameters into ROM, set them in the processor’s 
NVRAM (if available), or enter them manually.

Figure 4-3 Shared-Memory Network

Backplane

161.27.0.1 161.27.0.2

161.27.0.0

vx1 vx2

2. The backplane is a type of bus. In this document, the terms "backplane" and "bus" are used 
interchangeably. 
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Shared-Memory Network Master

One processor on the backplane is the shared-memory network master. The 
shared-memory network master has the following responsibilities:

■ Initialize the shared-memory region and the shared-memory anchor. 

■ Maintain the shared-memory heartbeat. 

■ Function (usually) as the gateway to the external network.

■ Allocate the shared-memory region (on some boards the master statically 
reserves the shared-memory region; on others it allocates this region from the 
kernel heap). 

No processor can use the shared-memory network until the shared-memory 
network master initializes it. However, the master processor is not involved in the 
actual transmission of packets on the backplane between other processors. After 
the shared-memory network master initializes the shared-memory region, all of 
the processors, including the master, are peers.

Set the processor number of the master with the shared memory master CPU 
number (SM_MASTER) build configuration parameter. A node that knows the 
master node’s processor number can determine at run time whether it is the master 
node by comparing this processor number with the one that you assigned to the 
node in the boot parameters.

Typically, the master boots from the external network directly. The master has two 
Internet addresses in the system: its Internet address on the external network, and 
its address on the shared-memory network. (See the reference entry for 
usrConfig.)

The other processors on the backplane can boot indirectly over the shared-memory 
network, using the master as the gateway. They need only have an Internet address 
on the shared-memory network. These processors specify the shared-memory 
network interface, sm, as the boot device in the boot parameters.

For more information and an example, see 4.4 Shared-Memory Network 
Configuration, p.50.

NOTE:  You can set up two shared memory networks on a single backplane with 
the smEnd driver, with a single processor acting as a node on each of the two 
networks. However, if you use VxMP, you can set up only one shared memory 
network over the backplane. In this case, the processor number of the master node 
is zero.

NOTE:  You configure the maximum number of processors at build time with the 
max # of cpus for shared network (SM_CPUS_MAX) configuration parameter. The 
largest processor number that you can use is one less than this total maximum 
processor count.
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Shared-Memory Anchor

The location of the shared-memory region depends on the system configuration. 
All processors on the shared-memory network must be able to access the 
shared-memory region within the same bus address space as the anchor.

The shared-memory anchor serves as a common point of reference for all 
processors. You may place the anchor structure and the shared-memory region in 
the dual-ported memory of one of the participating boards (the master by default) 
or in the memory of a separate memory board.3

The anchor contains an offset to the actual shared-memory region. The master sets 
this value during initialization. The offset is relative to the anchor itself. Thus, the 
anchor and pool must be in the same address space so that the offset is valid for all 
processors.

Set the anchor bus address by setting configuration parameters or by setting boot 
parameters. For the shared-memory network master, you assign the anchor bus 
address in the master’s configuration at the time you build the system image. 

Set the shared-memory anchor bus address, as seen by the master, during 
configuration with the configuration parameter SM_ANCHOR_ADRS. 

For the other processors on the shared-memory network, you can assign a default 
anchor bus address during configuration in the same way. However, this requires 
that you burn boot ROMs with that configuration, because the other processors 
must, at first, boot from the shared-memory network. For this reason, you can 
specify the anchor bus address in the boot parameters if the shared-memory 
backplane network interface is the boot device.

The format of the boot line is bootDeviceName=localAddress. For example:

sm=0x10010000

This is the address of the anchor as seen by the processor you are booting.

Shared-Memory Heartbeat

The processors on the shared-memory network cannot communicate over that 
network until the shared-memory network master finishes initializing the 
shared-memory region. To let the other processors know when the backplane is 
"alive," the master maintains a shared-memory heartbeat. This heartbeat is a counter 
that the master increments once per second. Processors on the shared-memory 
network determine that the shared-memory network is alive by watching the 
heartbeat for a few seconds.

The shared-memory heartbeat is located in the first 4-byte word of the 
shared-memory packet header. The offset of the shared-memory packet header is 
the fifth 4-byte word in the anchor, as shown in Figure 4-4.

3. This is board-specific and handled by the board designer. For shared memory residing on 
the master, VxWorks has definitions for the anchor location. These are architecture-specific.

NOTE:  Some BSPs allow you to put the anchor and shared-memory regions on a 
participating non-master board. 
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Shared-Memory Location

The compiler puts the shared-memory region in a fixed location with a fixed size. 
You set this location (which is BSP-specific) with the SM_MEM_ADRS parameter in 
the INCLUDE_SM_COMMON component for that board.4 Because all processors 
on the backplane access the shared-memory region, you must configure that 
memory as non-cacheable or use a cache coherency mechanism.

The shared-memory region (not including the anchor) can also be allocated at run 
time if you set SM_MEM_ADRS to NONE. In this case, a region of size 
SM_MEM_SIZE is allocated and made non-cacheable. If used this way, be wary that 
shared memory is allocated from the kernel heap. Thus, the whole heap must be 
mapped on the backplane.

Shared-Memory Size

Set the size of the shared-memory network area by setting the build configuration 
parameter SM_MEM_SIZE. A related area, the shared-memory object area, used by 
VxMP, is governed by the configuration parameter SM_OBJ_MEM_SIZE.

The size you will need for the shared-memory network area depends on the 
number of processors and on how much traffic you expect. There is less than 2KB 
of overhead for data structures. After that, the shared-memory network area is 
divided into 2KB packets. Thus, the maximum number of packets available on the 
backplane network is (areaSize – 2KB) / 2KB. A reasonable minimum is 64KB. A 
configuration with a large number of processors on one backplane and many 
simultaneous connections can require as much as 512KB. Reserving a backplane 
network memory area that is too small will slow network communication.

Test-and-Set to Shared Memory

To prevent more than one processor from simultaneously accessing certain critical 
data structures of the shared-memory region, the smEnd driver uses an indivisible 
test-and-set (TAS) instruction to obtain exclusive use of a shared-memory data 
structure. This translates into a read-modify-write (RMW) cycle on the backplane 
bus.5

Figure 4-4 Shared-Memory Heartbeat

~~ ~~

1. ready value
2. .
3. .
4. .
5. Offset for smPktHeader 

heartbeat

Shared-Memory
Anchor

smPktHeader
(anchor + offset)

4. The BSP does provide default values, which are correct.
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The selected shared memory must support the RMW cycle on the bus and must 
guarantee the indivisibility of such cycles. This can be problematic if the memory 
is dual-ported (that is, it resides on the master and can be accessed there as local 
RAM, while existing also as shared memory on the bus accessible by the slave 
boards), as the memory must then lock out one port during a RMW cycle on the 
other.

Some processors do not support RMW indivisibly in hardware, but do have 
software hooks to provide the capability. For example, some processor boards have 
a flag that you can set to prevent the board from releasing the backplane bus, after 
you acquire the flag, until you clear that flag. You can implement this test-and-set 
technique for a processor in the sysBusTas( ) routine of the system-dependent 
library sysLib. The smEnd driver calls this routine to set up mutual exclusion on 
shared-memory data structures.

4.3.2  Interprocessor Interrupts

Each processor on the backplane has a single input queue for packets that it receives 
from other processors. To attend to its input queue, a processor can either poll or 
rely on interrupts (either bus interrupts or mailbox interrupts). When polling, the 
processor examines its input queue at fixed intervals. When using interrupts, the 
sending processor notifies the receiving processor that the receiving processor’s 
input queue contains packets.

Processors that communicate by means of either bus interrupts or mailbox 
interrupts are more efficient than those that use polling because they invest fewer 
cycles in communication (although at a cost of greater latency). Unfortunately, the 
bus interrupt mechanism can handle only as many processors as there are 
interrupt lines available on the backplane (for example, VMEbus has seven). In 
addition, not all processor boards are capable of generating bus interrupts.

As an alternative to bus interrupts, you can use mailbox interrupts, also called 
location monitors because they monitor the access to specific memory locations. A 
mailbox interrupt specifies a bus address that, when a processor writes to it or 
reads from it, causes a specific interrupt on the processor board. You can set 
hardware jumpers or software registers to set each board to use a different address 
for its mailbox interrupt.

To generate a mailbox interrupt, a processor accesses the specified mailbox address 
and performs a configurable read or write of a configurable size. Because each 
interrupt requires only a single address on the bus, there is effectively no limit on 
the number of processors that can use mailbox interrupts. Most modern processor 
boards include some kind of mailbox interrupt.

5. Or a close approximation to it. Some hardware cannot generate RMW cycles on the VME 
bus and the PCI bus does not support them at all.

NOTE:  The shared-memory network driver does not support the specification of 
TAS operation size. This size is architecture dependent.

! CAUTION:  Configure the shared-memory test-and-set type (configuration 
parameter: SM_TAS_TYPE) to either SM_TAS_SOFT or SM_TAS_HARD. If even one 
processor on the backplane lacks hardware test-and-set, you must configure all 
processors in the backplane to use software test-and-set (SM_TAS_SOFT).
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Each processor must tell the other processors which notification method it uses. 
Each processor enters its interrupt type and up to three related parameters in the 
shared-memory data structures. The shared-memory network drivers of the other 
processors use this information when sending packets.

Specify the interrupt type and parameters for each processor by setting the build 
configuration parameters SM_INT_TYPE and SM_INT_ARGn. The possible values 
are defined in the header file smLib.h. Table 4-4 summarizes the available 
interrupt types and parameters.

4.3.3  Sequential Addressing

Sequential addressing is a method for a target to assign its own IP address based 
on its processor number. Target processors assign their IP addresses in ascending 
order, with the master having the lowest address, as shown in Figure 4-5.

Using sequential addressing, a target on the shared-memory network can 
determine its own IP address. You need specify only the master’s IP address. All 
other processors on the backplane determine their IP address by adding their 
processor number to the master’s IP address.

Table 4-4 Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description

SM_INT_NONE - - - Polling

SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX_1 address 
space

address value 1-byte write 
mailbox

SM_INT_MAILBOX_2 address 
space

address value 2-byte write 
mailbox

SM_INT_MAILBOX_4 address 
space

address value 4-byte write 
mailbox

SM_INT_MAILBOX_R1 address 
space

address - 1-byte read mailbox

SM_INT_MAILBOX_R2 address 
space

address - 2-byte read mailbox

SM_INT_MAILBOX_R4 address 
space

address - 4-byte read mailbox

SM_INT_USER_1 user 
defined

user 
defined

user 
defined

first user-defined 
method

SM_INT_USER_2 user 
defined

user 
defined

user 
defined

second user-defined 
method
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Sequential addressing makes it easier for you to configure your network. When 
you explicitly assign an IP address to the master processor, you implicitly assign 
IP addresses to other processors. This makes it easier for you to set up the boot 
parameters. Thus, when you set up a shared-memory network with sequential 
addressing, choose a block of IP addresses and assign the lowest address in this 
block to the master.

When the master initializes the shared-memory network driver, the master passes 
in its IP address as a parameter. The shared-memory backplane network stores this 
information in the shared-memory region. If you specify any other address in the 
inet on backplane (b) boot parameter, the specified address overrides the 
sequential address.

To determine the starting IP address for an active shared-memory network, use 
smNetShow( ).

In the following example, the master’s IP address is 150.12.17.1.

[vxKernel] -> smNetShow 

The following output displays on the standard output device:

Anchor Local Addr: 0x4100, Hard TAS
Sequential addressing enabled.
Master IP address: 150.12.17.1 Local IP address: 150.12.17.2

heartbeat = 56, header at 0xe0025c, free pkts = 57.

cpu int type arg1 arg2 arg3 queued pkts
--- -------- ---------- ---------- ---------- -----------
0 mbox-1 0xd 0xfb000000 0x80 0
1 mbox-1 0xd 0xfb001000 0x80 2

PACKETS ERRORS
Unicast Brdcast

Input Output Input Output Input Output
======= ======= ======= ======= + ======= =======

26 27 2 2 | 0 1
value = 0 = 0x0
[vxKernel] ->

With sequential addressing, when booting a slave, the backplane IP address and 
gateway IP boot parameters are not necessary. The default gateway address is the 
address of the master. You may specify another address if this is not the desired 
configuration.

[vxWorks Boot] : p
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/bspName/vxWorks
host inet (h) : 150.12.1.159

Figure 4-5 Sequential Addressing

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Backplane Network)
sm0

CPU 0 CPU 1 CPU 2
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user (u) : moose
flags (f) : 0x0
[vxWorks Boot] : @ 

boot device : sm
unit number : 0
processor number : 1
host name : host
file name :/folk/fred/wind/target/config/bspName/vxWorks
inet on backplane (b): 150.12.17.2:ffffff00
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
target name (tn) : t207-2

Attaching to SM net with memory anchor at 0x10004100...
SM address: 150.12.17.2
Attached TCP/IP interface to esm0.
Gateway inet address: 150.12.17.1
Attaching interface lo0...done
Loading /folk/fred/wind/target/config/bspName/vxWorks/boot.txt

sdm0=/folk/fred/wind/target/config/bspName/vxWorks/vxKernel.sdm
0x000d8ae0 + 0x00018cf0 + 0x00011f70 + (0x0000ccec) + 0x00000078 + 0x0000015c

You enable sequential addressing during configuration. The relevant component 
is INCLUDE_SM_SEQ_ADDR.

4.4  Shared-Memory Network Configuration

For UNIX, configure the host to support a shared-memory network with the same 
process outlined elsewhere for other types of networks. In particular, a 
shared-memory backplane network requires the following:

■ That you have put all shared-memory network host names and addresses in 
/etc/hosts.

■ That you have put all shared-memory network host names in .rhosts in your 
home directory or in /etc/hosts.equiv if you are using RSH.

■ That you have put an entry in the host’s routing table that specifies the 
master’s Internet address on the external network as the gateway to the 
shared-memory backplane network.

■ If you use proxy arp, the master masquerades as the other boards on the SM 
network, on the ethernet network. That way, there is no need for an entry on 
the host’s routing table that tell to go through the master to reach the slaves. If 
you do not use proxy arp, the master must act as a gateway. In order for that 
to work, the host’s routing table requires an entry telling the host that to reach 
the slaves it has to go through the master. 

■ That you have turned on the IP forwarding parameter on the node functioning 
as gateway.

For Windows hosts, the steps required to configure the host are determined by 
your version of Windows and the networking software you are using. See that 
documentation for details.
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4.4.1  Configuration Example

This section presents an example of a simple shared-memory network. The 
network contains a single host and two target processors on a single backplane. In 
addition to the target processors, the backplane includes a separate memory board 
for the shared-memory region, and an Ethernet controller board. The additional 
memory board is not essential, but provides a configuration that is easier to 
describe.

Figure 4-6 illustrates the overall configuration. The Ethernet network is assigned 
network number 150, subnet 12.0, and the shared-memory backplane network is 
assigned network number 161, subnet 27.0. The host h1 is assigned the Internet 
address 150.12.0.1.

The shared-memory master is vx1, and functions as the gateway between the 
Ethernet and shared-memory networks. It therefore has two Internet addresses: 
150.12.0.2 on the Ethernet network and 161.27.0.1 on the shared-memory network.

The other backplane processor is vx2; it has the shared-memory network address 
161.27.0.2. It has no address on the Ethernet because it is not directly connected to 
that network. However, it can communicate with h1 over the shared-memory 
network, using vx1 as a gateway. All gateway use is handled by the IP layer and is 
completely transparent to the user. Table 4-5 shows the example address 
assignments.

Figure 4-6 Example Shared-Memory Network

Ethernet

h1

vx1vx2

host

sm master
& gateway

150.12.0.0

150.12.0.1

150.12.0.2

161.27.0.1161.27.0.2

161.27.0.0Shared-Memory
Network

Table 4-5 Network Address Assignments

Name inet on Ethernet inet on Backplane

h1 150.12.0.1 —

vx1 150.12.0.2 161.27.0.1

vx2 — 161.27.0.2
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To configure the UNIX system for our example, you must add the Internet address 
and name of each system to the /etc/hosts file. Note that the backplane master has 
two entries. The second entry, vx1.sm, is not actually necessary because the host 
system never accesses that system with that address, but you should include it in 
the file to ensure that some other device does not use the address.6

The entries in /etc/hosts are as follows:

150.12.0.1 h1
150.12.0.2 vx1
161.27.0.1 vx1.sm
161.27.0.2 vx2

To allow remote access from the target systems to the UNIX host, add the names of 
the target systems to the .rhosts file in your home directory (or to the file 
/etc/hosts.equiv):

vx1
vx2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory 
network gateway, add the following line to the file /etc/gateways before you start 
the route daemon routed.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Alternatively, you can add the route manually (effective until the next reboot) with 
the following UNIX command:

% route add net 161.27.0.0 150.12.0.2 1

To prepare a run-time image for vx1, the backplane master shown in Figure 4-6, 
include the following configuration components:

■ INCLUDE_SM_NET – includes the shared memory network 

■ INCLUDE_SM_COMMON – includes configuration parameters common to 
memory sharing utilities

■ INCLUDE_SM_NET_SHOW – includes the smNetShow( ) routine

Within these components, you can set the parameters as shown in Table 4-6.

6. For user configuration on UNIX, the file to be modified must be located in the user’s home 
directory or the user must have administrator (root) privileges.

Table 4-6 Shared-Memory Build Parameters

Workbench Description and Parameter Name
Default Value
& Data Type

is the shared memory off board?
SM_OFF_BOARD

Shared memory is on a separate board.

FALSE 

BOOL

shared memory anchor offset from start of phys 
memory 
SM_ANCHOR_OFFSET 

You may define the shared-memory anchor 
address may relative to this value.

0x600 

uint
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shared memory anchor address
SM_ANCHOR_ADRS

Address of anchor as seen by local CPU.

((int)sysSmAnchorAdrs) 

uint

shared memory address, NONE = allocate local 
memory 
SM_MEM_ADRS 

SM_ANCHOR_ADRS + 
SM_ANCHOR_SIZE

shared memory size
SM_MEM_SIZE

Size of the shared-memory network area, in 
bytes.

0x00020000 - 
SM_ANCHOR_SIZE

uint

shared memory object pool size
SM_OBJ_MEM_SIZE

Size of the shared-memory object area, in bytes.

0x00010000 

uint

shared memory interrupt type 
SM_INT_TYPE

Interrupt targets with 1-byte write mailbox, see 
Table 4-4.

SM_INT_BUS 

uint

shared memory interrupt type – argument 1 
SM_INT_ARG1

Mailbox in short I/O space, see Table 4-4.

sysSmLevel

uint

shared memory interrupt type – argument 2
SM_INT_ARG2

Mailbox at: 0xc000 for vx1, 0xc002 for vx2 (see 
Table 4-4).

(int) BUS_INT 

uint

shared memory interrupt type – argument 3
SM_INT_ARG3

Write 0 value to mailbox, see Table 4-4.

0 

uint

Shared memory packet size 
SM_PKTS_SIZE

Shared-memory packet size.

0 

uint

max period in ticks to wait for master to boot 
SM_MAX_WAIT 

Slave nodes wait this long for the master to boot 
and establish shared memory before trying to 
use this memory.

3000 

uint

shared memory master CPU number 
SM_MASTER 

The address of the master board on the 
backplane (this will always be 0 unless you are 
using two smEnd devices).

0 

uint

Table 4-6 Shared-Memory Build Parameters (cont’d)

Workbench Description and Parameter Name
Default Value
& Data Type
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When booting the backplane master, vx1, specify boot line parameters such as the 
following:

boot device : gn
processor number : 0
host name : h1
file name : /usr/wind/target/config/bspName/vxWorks
inet on ethernet (e) : 150.12.0.2
inet on backplane (b) : 161.27.0.1:ffffff00
host inet (h) : 150.12.0.1
gateway inet (g) :
user (u) : thoreau
ftp password (pw) (blank=use rsh) :
flags (f) : 0

The other target, vx2, would use the following boot parameters:7

boot device : sm
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspName/vxWorks
inet on ethernet (e) :
inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : thoreau
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

4.4.2  Troubleshooting

Getting a shared-memory network configured for the first time can be tricky. If you 
have trouble, use the following troubleshooting procedures—taking one step at a 
time:

max # of cpus for shared network 
SM_CPUS_MAX

Maximum number of CPUs for the shared 
network.

DEFAULT_CPUS_MAX 

uint

shared memory test-and-set type 
SM_TAS_TYPE 

Either SM_TAS_SOFT or SM_TAS_HARD. If even 
one processor on the backplane lacks hardware 
test-and-set, all processors in the backplane 
must use the software test-and-set 
(SM_TAS_SOFT).

SM_TAS_HARD 

Table 4-6 Shared-Memory Build Parameters (cont’d)

Workbench Description and Parameter Name
Default Value
& Data Type

NOTE:  To determine which boot device to use, see the BSP documentation.

7. You do not need to set the parameters inet on backplane (b) and gateway inet (g) if you 
have configured your target to use sequential addressing (because the values for these 
parameters will be established automatically), but you can use these parameters to override 
the values established automatically through sequential addressing.
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1. Boot a single processor in the backplane without any additional memory or 
processor cards.

2. Power off and add the memory board, if you are using one. Power on and boot 
the system again. Using the boot ROM commands for display memory (d) and 
modify memory (m), verify that you can access the shared memory at the 
address you expect, with the size you expect.

3. Rebuild the system and manually fill in the inet on backplane boot parameter 
(do not rely on sequential addressing). This initializes the shared-memory 
network. The following message appears during the reboot:

Backplane anchor at anchorAddress...Attaching network interface sm...done.

4. After the system boots, display the state of the shared-memory network with 
the smNetShow( ) routine, as follows:

-> smNetShow ["interfaceName"] [, 1]
value = 0 = 0x0

The interface parameter is sm by default. Normally, smNetShow( ) displays 
cumulative activity statistics to the standard output device; specifying 1 (one) 
as the second argument resets the totals to zero.

5. Test the host connection to the shared-memory master by pinging both of its 
IP addresses from the host. On the host console, type:

ping 150.12.0.2 

This should succeed and produce a message something like:

150.12.0.2 is alive 

Then type:

ping 161.27.0.1 

This should also succeed. If either ping fails, the host is not configured 
properly, or the shared-memory master has incorrect boot parameters.

6. Power off and add the second processor board. Do not configure the second 
processor as the system controller board. Power on and stop the second 
processor from booting by typing any key to the boot ROM program. Boot the 
first processor as you did before.

7. If you have trouble booting the first processor with the second processor 
plugged in, you have some hardware conflict. Check that only the first 
processor board is the system controller. Check that there are no conflicts 
between the memory addresses of the various boards.

8. On the second processor’s console, use the d and m boot ROM commands to 
verify that you can see the shared memory from the second processor. This is 
either the memory of the separate memory board (if you are using the 
off-board configuration) or the dual-ported memory of the first processor (if 
you are using the on-board configuration).

9. Use the d command on the second processor to look for the two-part 
shared-memory anchor (bus address space and anchor location within that 
space). You can also look for the shared-memory heartbeat; see Shared-Memory 
Heartbeat, p.45.

10. After you have found the anchor from the second processor, enter the boot 
parameter for the boot device with that two-part anchor bus address:

boot device: sm=0x10010000
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Enter the other boot parameters and try booting the second processor.

11. If the second processor does not boot, you can use smNetShow( ) on the first 
processor to see if the second processor is correctly attaching to the 
shared-memory network. If not, then you have probably specified the anchor 
bus address incorrectly on the second processor or have a mapping error 
between the local and backplane buses. If the second processor is attached, 
then the problem is more likely to be with the gateway or with the host system 
configuration.

12. You can use host system utilities, such as arp, netstat, and ping, to study the 
state of the network from the host side.

13. If all else fails, call your technical support organization.
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5.1  Introduction 

As described in 3.2 Overview of the MUX, p.23, the MUX interface insulates 
network services from the particulars of network interface drivers, and vice versa. 
The MUX provides the following support to the VxWorks system:

■ The MUX maintains and manages a collection of network device instances.  
The MUX provides routines to load a device into the MUX, to unload it from 
the MUX, to show the currently loaded devices, or to obtain a list of the loaded 
devices programmatically.1 

■ For each network device that the MUX knows about, the MUX maintains a list 
of network services (frequently also called 'protocols') bound to the device.  
These are the services to which the MUX may deliver packets received by the 
network device, according to the network type of the received packet and the 
manner and order in which each service bound to the device.

1. VxBus MAC drivers take responsibility for loading and their device instances into the MUX, 
and unloading the devices when the driver is unregistered or the device instance is released 
by the driver.
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■ The MUX also maintains a chain of services bound as 'output protocols' to each 
device; such services may receive (and possibly filter) packets sent to the 
device for transmission. Use of such output protocols is not common.

■ The MUX notifies the services bound to a device of certain events relating to 
that device.  The device driver often initiates these notifications when it detects 
an event of interest for one of its device instances, but in some other cases the 
notifications result from an action of one of the bound services, or of a system 
administrator.

■ The MUX provides APIs for managing and sending packets to its individual 
network devices.  Usually these APIs are called by protocols bound to the 
device, but in some cases they may be called by other software.  The MUX 
implements these routines with help from the network driver managing the 
device instance.

■ The MUX provides some routines called by network device drivers for devices 
loaded in the MUX. These include routines to deliver received packets to the 
appropriate bound services, to notify such services of various events, to 
request restart of packet transmission after a transmit stall, as well as various 
utility functions.

This chapter provides an overview of the programming interfaces supported by 
(and required by) the MUX, for network device drivers, network services, and 
other software. It does not describe, in any detail, how to write either network 
services or network device drivers, apart from their interaction with the MUX. The 
VxWorks Device Driver Developer's Guide provides the most complete available 
documentation on writing VxBus network device drivers for VxWorks.

5.1.1  MUX Network Driver and Network Service Styles

The Wind River Network Stack supports several driver styles and several 
protocols styles (or services).

Driver Styles

The Wind River Network Stack supports three types of drivers:

■ IPNET-native drivers are those that use the Ipcom_pkt packet format, native 
to the current IPNET network stack. IPNET-native drivers are VxBus-enabled 
drivers2. Wind River recommends that you write new network drivers 
according to this model.

■ M_BLK-oriented VxBus drivers. These drivers support VxBus and use the 
M_BLK tuple packet format native to the coreip network stack of VxWorks 6.4 
and earlier.

■ M_BLK-oriented legacy drivers. These drivers also use the M_BLK tuple packet 
format, but do not support VxBus. Support for these drivers is provided for the 
maintenance of existing legacy drivers only. This driver style should not be 
used for new development.

2. Although there is no reason why a non-VxBus driver could not be converted to be 
IPNET-native without also converting it to a VxBus-enabled driver, Wind River strongly 
recommends that the VxBus driver model be followed for all new drivers.
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From the point of view of the MUX, there are only two relevant driver styles (really 
device styles): IPNET-native and M_BLK (whether VxBus or legacy). The MUX 
determines the style of the driver by calling the EIOCGSTYLE END ioctl

– An IPNET-native device driver supports this ioctl and returns 
END_STYLE_END2 via the ioctl argument.

– An M_BLK-oriented driver usually does not support EIOCGSTYLE, but if 
it supports it, the ioctl returns END_STYLE_END. 

Note that in many places in the source code and in APIs, end2 or END2 is a 
synonym for IPNET-native, while 'END-style' refers to M_BLK-oriented drivers.  
However, both types of devices are generically referred to as END devices, and are 
represented in the MUX by an END_OBJ structure.

Previous versions of the MUX supported a variant of the M_BLK-oriented driver, 
called an NPT driver, with a different interface to the MUX than the original 
END-style driver. VxWorks 6.7 and later versions of VxWorks do not support the 
NPT driver style.

The VxWorks Device Driver Developer's Guide explains how to structure and write 
VxBus network drivers, using either the IPNET-native or the M_BLK-oriented 
style. It also discusses how to integrate such drivers into VxWorks images.

Protocol Styles

The Wind River Network Stack also supports three styles of network services.  
These styles are identified by the function that the service (protocol) uses to bind 
to a network device:

■ Protocols that bind with mux2Bind( ). These protocols use Ipcom_pkt packet 
format; they send packets using mux2Send( ). The INCLUDE_MUX2 
component contains support for this style. The protocols of the IPNET stack 
are of this style.

■ Protocols that bind with muxBind( ). These protocols use the M_BLK packet 
format, and generally send packets using muxSend( ). The INCLUDE_MUX 
component supports this protocol style.

■ Protocols that bind with muxTkBind( ). These protocols use the M_BLK packet 
format, and generally send packets using muxTkSend( ). The 
INCLUDE_MUXTK component supports this style.

The interface between the MUX and the protocol differs for each style.  For 
instance, the signatures of the callback functions that the protocol registers with 
the MUX when it binds to a device differ between the styles.

The mux2Bind( ) protocols work natively with IPNET-native network drivers; the 
muxBind( ) protocols work natively with M_BLK-oriented network drivers; and 
the muxTkBind( ) protocols work natively only with the no-longer supported NPT 
style drivers. However, wrapper code handles conversions between the differing 
APIs and packet formats when necessary so that all three styles of protocol binding 
work with both IPNET-style and M_BLK-oriented devices. For more information, 
see 5.1.3 Wrapper Conversion Components, p.61.
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5.1.2  Components of the MUX

Table 5-1 lists the components used to support the three protocol styles, and the 
IPNET-native and M_BLK-oriented drivers.

In most cases, these components are included or excluded from your VxWorks 
image automatically, based on the network drivers and protocols that you include 
in your image. However, if you create a new network driver, you may need to 
record an explicit dependency upon INCLUDE_END2 (for IPNET-native drivers) or 
INCLUDE_END (for M_BLK drivers) using a REQUIRES line in the driver's 
component description (.cdf file).

Table 5-1 Basic MUX and END Components

Component Description

INCLUDE_MUX_COMMON The MUX common support component pulls 
in the muxCommon module that contains 
MUX code common to all network service and 
device styles.

INCLUDE_MUX2 The MUX mux2Bind() service component 
pulls in the vxmux_mux2 module that 
provides mux2Bind( ) and other support for 
protocols using Ipcom_pkt packets.

 INCLUDE_MUX The MUX muxBind() service component 
pulls in muxLib and provides support for 
muxBind( ) protocols and their APIs.

INCLUDE_MUXTK The MUX muxTkBind() service component 
pulls in muxTkLib and provides support for 
muxTkBind( ) protocols and their APIs.

INCLUDE_END_COMMON The common Enhanced Network Device 
support component pulls the endCommon 
module, which contains support routines that 
are common to both IPNET-native and 
M_BLK-oriented network devices..

INCLUDE_END2 The END2-style interface support 
component pulls in the vxmux_end2 module 
that supports for IPNET-style network drivers 
and devices..

 INCLUDE_END The END-style interface support component 
pulls in endLib, which provides support 
routines used by all M_BLK-oriented network 
devices and drivers. 
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5.1.3  Wrapper Conversion Components

Table 5-2 lists the components that provide support for conversion between 
Ipcom_pkt and M_BLK packets, and certain other API translations used with 
different combinations of network protocol and driver styles.

For the most part, these components are included in the VxWorks image 
automatically, based upon which network drivers and network services are 
included. However, for VIP builds, the dependencies bringing the wrapper 
components into the image are implemented using INCLUDE_WHEN directives; 
for example, INCLUDE_MUX2_OVER_END declares:

INCLUDE_WHEN INCLUDE_MUX2 INCLUDE_END 

Such INCLUDE_WHEN directives can be overridden by manual exclusion of the 
component. For the MUX wrapper code, such a manual exclusion would usually 
be a mistake; if done, the component would need to be manually included again to 
make the stack function correctly for the relevant combination of protocol and 
driver style.

INCLUDE_END_ETHER_HDR The M_BLK ethernet/802.3 component 
provides routines registered by END-style 
ethernet device drivers and used by some 
M_BLK-oriented MUX code to parse or build 
Ethernet II and 802.3 headers.

INCLUDE_END_POLLED_STATS The END driver polled statistics support 
component enables polled mode statistics 
collection for devices managed by network 
drivers that support it. Note that most gigabit 
device drivers and IPNET-native drivers fall 
into this category.

Table 5-1 Basic MUX and END Components (cont’d)

Component Description

Table 5-2 Conversion Components

Component Description

INCLUDE_MUX2_OVER_END Provides support for Ipcom_pkt-oriented 
protocols that bind to M_BLK-oriented devices 
using mux2Bind( ).

This component is automatically included 
when the INCLUDE_MUX2 and 
INCLUDE_END components are included.

INCLUDE_MUX_OVER_END2 Provides support for M_BLK-oriented 
protocols that bind to IPNET-native devices 
using muxBind( ).

This component is automatically included 
when the INCLUDE_MUX and 
INCLUDE_END2 components are included.
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The modules that contain the wrapper code are listed below:

■ The module vxmux_mux2_over_end.c contains wrapper code needed for 
protocols bound to M_BLK-oriented devices using mux2Bind( ).

■ The module vxmux_mux_over_end2.c contains wrapper code needed for 
protocols bound to IPNET-native devices using muxBind( ).

■ The module muxTkOverEnd.c contains wrapper code needed for protocols 
bound to M_BLK-oriented devices using muxTkBind( ).

■ The module vxmux_muxtk_over_end2.c contains wrapper code needed for 
protocols bound to IPNET-native devices using muxTkBind( ).

Only the initialization routines in these modules are globally visible. The 
initialization routines install pointers to the other wrapper functions needed by the 
MUX. Since the MUX does not access the functions directly; image size can be 
decreased when not all the wrapper routines are needed in the image. For example, 
if a production image includes an IPNET-native driver and the IPNET stack, but 
no M_BLK-oriented drivers or services (such as the WDB agent), then all of the 
wrapper functions, as well as all support for M_BLK-oriented drivers and 
protocols, may be omitted from the image.

INCLUDE_MUXTK_OVER_END Provides support for M_BLK-oriented 
protocols that bind to END-style devices using 
muxTkBind( ).

This component is automatically included 
when the INCLUDE_MUXTK and 
INCLUDE_END components are included.

INCLUDE_MUXTK_OVER_END2 Provides support for M_BLK-oriented 
protocols that bind to IPNET-native devices 
using muxTkBind( ).

This component is automatically included 
when the INCLUDE_MUXTK and 
INCLUDE_END2 components are included.

INCLUDE_VXMUX_MBLK Provides some underlying routines used by 
the various INCLUDE_x_OVER_y components 
listed in this table to convert between M_BLK 
and Ipcom_pkt packets.

Table 5-2 Conversion Components (cont’d)

Component Description

NOTE:  One limitation applies in the current release; a polled mode send and 
receive by an Ipcom_pkt protocol over an END-style device is not implemented. 
Polled-mode send and receive are intended to support the WDB agent, which is at 
present M_BLK-oriented, and so does not need the polled Ipcom_pkt-oriented 
routines.
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5.2  MUX Programming Interface with Network Drivers

The programming interface between the MUX and network drivers consists of 
several parts:

■ Every network driver provides a “load” function that either the driver itself 
(for a VxBus driver) or the stack startup code (for a legacy driver) passes as an 
argument to the muxDevLoad( ) routine, once for each device instance.  
muxDevLoad( ) calls the driver's load function twice for each instance, once to 
obtain the driver name root and once to obtain the END_OBJ that represents 
the device instance to the MUX. muxDevLoad( ) completes initialization of the 
END_OBJ structure and loads the device into the MUX.

■ The END_OBJ representing a device contains a pointer to a table of functions 
that the driver provides for use by the MUX.  For an M_BLK-oriented driver, 
this table is a NET_FUNCS structure. For an IPNET-native driver, it is a slightly 
larger END2_NET_FUNCS structure containing a NET_FUNCS substructure as 
its first member. The END_OBJ, NET_FUNCS, and END2_NET_FUNCS 
structures are declared in the header file:

installDir/vxworks-6.x/target/h/end.h.

For some of these function pointers, the actual function calling signature 
depends upon the driver style.

■ muxDevLoad( ) installs certain other function pointers directly in the 
END_OBJ structure. The most visible of these is the receiveRtn member; the 
driver calls this function pointer (using the macro END_RCV_RTN_CALL( ) or 
END2_RCV_RTN_CALL( ) provided by endLib.h) in order to deliver a received 
packet to the MUX, to be ultimately passed to the appropriate protocol bound 
to the device instance that received the packet. The receive routine must be 
called only in the context of the device instance's job queue task. The calling 
signature of the receive routine depends on the driver style.

■ The MUX provides a few functions specifically for use by network drivers.  
These include muxTxRestart( ), muxError( ), and the utility routines 
muxLinkUpNotify( ) and muxLinkDownNotify( ).

■ The MUX provides additional functions that while not reserved only to device 
drivers, may in some cases be called by device drivers.  For instance, VxBus 
network drivers call muxDevLoad( ) and muxDevUnload( ) for their own 
device instances.3 VxBus network drivers also call muxDevStart( ) and 

NOTE:  The module muxTkLib.c contains code to support protocols that bind 
using muxTkBind( ) and related APIs that such protocols use. The NPT-driver 
style was native for muxTkBind( ) protocols, and is no longer supported. Protocols 
that call muxTkBind( ) to bind to M_BLK-oriented or IPNET-native devices require 
additional wrapper support, from muxTkOverEnd.c or 
ipcom_muxtk_over_end2.c, respectively.

3. Only the VxBus driver should call muxDevLoad( ) or muxDevUnload( ) for a VxBus 
network device instance.
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muxDevStop( ) to start and stop device instances (enabling or disabling 
reception and transmission). It is also possible for management code to call 
muxDevStart( ) or muxDevStop( ) for a network device.

■ Various libraries (endCommon, endLib, vxmux_end2, endEtherHdr, 
etherMultiLib, and so on) provide APIs used by network drivers to help them 
implement the functionality required by the MUX.

■ The jobQueueLib APIs provide a high-performance mechanism for 'posting' 
work to a specific job queue, to be executed by a specific task.  While not 
strictly part of the MUX, these APIs are often associated with the MUX.  They 
are used by the network stack, by the MUX, and by network drivers, and are 
available to other software as well.  In particular, network driver interrupt 
service routines post jobs to the network device's job queue in order to defer 
all time consuming work to task level and keep the ISR's execution time as 
short as possible.

■ The MUX provides other functions that are intended primarily for network 
services, such as mux2Send( ), muxIoctl( ), and so on. A driver is not 
forbidden from calling these, but it would rarely need to.

Of the MUX routines that are expected to be called by network drivers, those that 
access the list of protocols bound to a device instance must be called only as a job 
on the network job queue associated with the network device instance. Due to the 
mutual exclusion architecture of the IPNET stack in this release, this job queue 
must be the one executed by the tNet0 task, if IPNET is bound to the network 
device.4 The functions that must execute as network jobs on the device job queue 
include the MUX-installed receive routine, muxTxRestart( ), muxError( ), 
muxLinkUpNotify( ), and muxLinkDownNotify( ).

5.3  Loading and Unloading Device Instances

The routine muxDevLoad( ) adds a network device instance to the MUX.

IMPORT DEV_COOKIE muxDevLoad
(
int unit, 
END_OBJ* (*endLoad) (char *, void*),
char *initString,
BOOL loaning,
void* pBSP
);

The unit parameter is the unit number of the device instance; for example, the 
second device instance managed by the gei driver would be unit number 2, also 
known as gei2.  The endLoad parameter points to a function provided by the device 
driver. The muxDevLoad( ) routine calls this function twice during the execution 
of muxDevLoad( ).  The first call obtains the driver name (for example, gei) from 
the driver. On this call, the first argument to endLoad points to a buffer of length 
END_NAME_MAX whose first byte is zero; the driver's endLoad( ) routine copies 
the driver name into the buffer, and returns NULL.

4. Then network job queue executed by tNet0 has job queue identifier netJobQueueId; this 
should be the default network job queue chosen by any network driver.
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The muxDevLoad( ) routine calls  endLoad( ) a second time with its second 
argument equal to the pBSP argument to muxDevLoad( ), and its first argument 
pointing to a non-empty string that starts with the decimal representation of the 
unit number, followed by a colon, followed by a copy of the initString string passed 
to muxDevLoad( ). The initString copy, prefixed with the unit number string and 
colon, must fit in a buffer of size END_INIT_STR_MAX (255). This second call is 
where the driver does most of the work to allocate (for non-VxBus drivers) and 
partially initialize an END_OBJ structure, which invariably occurs as the first 
member of the driver-specific control structure for the device instance. The return 
value from the second endLoad( ) call is a pointer to the partially initialized 
END_OBJ structure. The muxDevLoad( ) routine returns this pointer as a “device 
cookie” after it completes initializing the END_OBJ. As part of the initialization 
process, muxDevLoad( ) calls the EIOCGSTYLE END ioctl function to determine 
the driver style (M_BLK-oriented or IPNET-native). It sets various function 
pointers in the END_OBJ, notably the receiveRtn member, but also others used 
internally by the MUX, according to the results.

5.3.1  VxBus vs. Non-VxBus Drivers

The muxDevLoad( ) routine is called by different code for VxBus network drivers 
than for non-VxBus drivers. A VxBus driver allocates the control structure for one 
of its device instances in its devInstanceInit2 function. The VxBus system code 
calls that routine for each of the driver's device instances discovered dynamically 
by the VxBus system, or configured explicitly in the BSP's hwconf.c file.  The 
control structure contains the END_OBJ structure, so far uninitialized. Later, the 
stack startup code executes the muxDevConnect method (for M_BLK-oriented 
drivers) or mux2DevConnect method (for IPNET-native drivers) for all device 
instances for which the driver provide one of these methods. Either of these 
methods will call muxDevLoad( ), followed by muxDevStart( ) if the 
muxDevLoad( ) call was successful. VxBus drivers typically pass NULL as the 
initString argument to muxDevLoad( ), and pass the VxBus device ID for the 
instance as the pBSP argument. That gives the driver all the information it needs to 
identify the device instance and find its control structure.

A legacy (non-VxBus) driver does not call muxDevLoad( ) itself. Instead, it 
provides its load routine as a global symbol. Entries for each device instance are 
added to the endDevTbl[] array in the BSP's configNet.h file, either statically at 
build time by the system designer, or dynamically at run time by BSP-specific 
bus-scanning code. Each of these entries includes the device unit number, a pointer 
to the driver's load routine (or sometimes, to a BSP-specific wrapper function for 
the driver load routine), a device initialization string to be passed as the initString 
argument to muxDevLoad( ), a BSP-specific value to be passed as the pBSP 
argument, an (unused) flag indicating whether the device 'loans' packets to the 
MUX, and a flag to indicate whether the entry has already been processed. The 
network start-up code iterates through the endDevTbl[] array and calls the 
muxDevLoad( ) function for each element in the array that has not already been 
processed, and marks the element as done as it processes it.

A VxBus network driver divides its instance initialization work between its 
devInstanceInit2( ) routine and its xLoad( ) routine. The division is somewhat 
arbitrary, but basically anything that depends upon endLib or the MUX may be 
held off to the xLoad( ) routine. A non-VxBus driver has no devInstanceInit2( ) 
routine, and so all the work needs to be done in its xLoad( ) routine. The following 
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work is done in either the devInstanceInit2( ) routine, or in the xLoad( ) routine’s 
second pass:

1. Allocate, zero out, and then populate the drivers’s control structure for the 
device instance.

2. For IPNET-native ethernet compatible drivers only, initialize the formAddress, 
packetDataGet, and addrGet NET_FUNCS members with the values of 
_func_endEtherAddressForm, _func_endEtherPacketDataGet, and 
_func_endEtherPacketAddrGet( ).5

3. For IPNET-native drivers only, initialize the hdrParse and formLinkHdr 
members of the END_OBJ structure. IPNET-native ethernet compatible drivers 
may set these members to the end2EtherHdrParse( ) and 
end2EtherIIFormLinkHdr( ) functions.

4. Call END_OBJ_INIT( ) to initialize the END_OBJ core. Among other things, this 
sets the driver description, and the pointer to the driver’s NET_FUNCS table.

5. Parse and process the initialization string (non-VxBus drivers only).

6. Identify and reset the device, putting it into a quiescent state.

7. Initialize any necessary private structures.

8. Determine the device’s MAC address. This is done in a driver-specific way, 
and sometimes in a BSP-specific way.

9. Allocate memory for transmit and receive descriptors. Generic VxBus drivers 
may call vxbDmaBufLib support routines to create the necessary tags and 
maps.

10. For M_BLK-oriented drivers only, allocate a network buffer tuple pool. The 
pool has tuples large enough to hold the maximum size frame the driver 
supports, and the driver uses it primarily for receiving frames, but may also 
use it to coalesce fragmented transmits. The best way to create such a pool is 
to call the endLib utilities endPoolCreate( ) or endPoolJumboCreate( ) (for 
jumbo frames). These in turn call netPoolCreate( ) using the linkBufPool back 
end. IPNET-native drivers should merely set the pNetPool member of the 
END_OBJ structure to the value _end2_linkBufPool.

11. Call endM2Init( ) to initialize MIB interface statistics structures.

12. Initialize the driver’s hardware offload capabilities structure (if the driver and 
hardware support such capabilities).

13. Initialize polled statistics structures (if the driver supports this). IPNET-native 
drivers should support polled-mode statistics collection.

5.3.2  Unloading a Device from the MUX

While it is not common to do so, it is sometimes possible to unload a network 
device from the MUX using the muxDevUnload( ) routine:

STATUS muxDevUnload
(

5. IPNET-native drivers do not refer to the etherAddressForm( ), endEtherPacketDataGet( ), 
or endEtherPacketAddrGet( ) functions directly, to avoid requiring these functions when 
no M_BLK-oriented protocols that need them are included in the image.
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char* pName,
int unit
);

When muxDevUnload( ) is called, it checks if the specified device is still up. If so, 
muxDevUnload( ) calls the driver’s stop( ) routine for the device. Next, it calls the 
shutdown routines for each service that bound to the device; the service shutdown 
routine must in turn call muxUnbind( ) to unbind itself from the device. 
muxDevUnload( ) pends until all services bound to the device have unbound from 
it, and any further references to the device acquired using the muxDevAcquire( ) 
have also been released. After all references to the device have been released, 
muxDevUnload( ) continues and calls the driver's unload( ) routine.

The MUX calls your driver’s xUnload( ) when a system application calls 
muxDevUnload( ). A VxBus network driver may itself call muxDevUnload( ) in 
response to a call to its vxbDrvUnlink( ) method, asking it to unlink an instance.

When muxDevUnload( ) is called, it checks if the specified device is still up. If so, 
muxDevUnload( ) calls the driver’s xStop( ) routine for the device. Next, it calls 
the shutdown routines for each service that bound to the device; the service 
shutdown routine must in turn call muxUnbind( ) to unbind itself from the device. 
Finally, muxDevUnload( ) calls the xUnload( ) routine for the device. (See 
Figure 5-4.)

The driver's unload( ) routine has the signature:

LOCAL STATUS xUnload
(
END_OBJ * pEnd
)

(x indicates is a driver-specific name prefix).

In its unload( ) routine, your driver is responsible for doing whatever it takes to 
release all resources associated with the device that were created or allocated 
during the driver's xLoad( ) routine. (For non-VxBus network drivers, this would 
include all resources associated with the device. For VxBus network drivers, 
resources allocated in the devInstanceInit2( ) routine, before the xLoad( ) routine 
is called, do not need to be freed yet.) These resources may include memory; the 
device network pool and all its buffers for M_BLK drivers; kernel objects such a as 
semaphores associated with the device, and so on.

The driver control structure for the device, which starts with an embedded 
END_OBJ, is a special case:

■ If the driver’s xUnload( ) routine returns OK, muxDevUnload( ) will itself 
free:

pEnd->devObject.pDevice

which normally points at the END_OBJ (*pEnd) itself. This frees the whole 
driver control structure, unless the devObject.pDevice value has been 
changed.

■ If the driver’s xUnload( ) routine returns any other value, muxDevUnload( ) 
does not attempt to free the END_OBJ; that becomes the driver’s responsibility. 
If there is no error condition, but the driver wishes to free the END_OBJ itself, 
the unload( ) routine should return EALREADY. Any return value other than 
OK or EALREADY indicates an error condition, and an error message will be 
logged.
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■ Generally, VxBus network driver unload( ) routines should return EALREADY, 
since the driver control structure is typically needed in the driver’s 
vxbDrvUnlink( ) method after the call to muxDevUnload( ). 

For M_BLK-oriented drivers, the unload( ) routine must free the device network 
buffer pool:

■ For pools created with endPoolCreate( ) or endPoolJumboCreate( ), this is 
done by calling endPoolDestroy( ). 

■ Pools created using netPoolCreate( ) may be freed by calling 
netPoolRelease( ). Calling netPoolRelease( ) causes the system to free a pool 
after the stack releases all network pool resources that it is holding from that 
pool.

■ For any pools that the driver created using netPoolInit( ), there is no such safe 
pool release routine, and the driver must ensure that all tuples have been 
returned to the driver pool before it returns successfully from unload( ). If it 
cannot do so, the driver does not properly support unloading the device. 

■ Wind River recommends that drivers use endPoolCreate( ), 
endPoolJumboCreate( ), or netPoolCreate( ), instead of netPoolInit( ), to 
create driver memory pools.

The driver's unload( ) function is a device-specific call. If the driver has any 
resources that it shares among all of its device instances, it must not free these 
shared resources until the MUX calls the driver’s unload( ) routine for each of 
these devices.

Note that VxBus drivers expect muxDevUnload( ) to be called for any of the 
driver's device instances only from the driver's {vxbDrvUnlink} method. 
muxDevUnload( ) should not be called from other code for a VxBus network 
device, or instability may result.

For muxDevUnload( ) to work as expected, any network services bound to the 
device in the MUX must either have registered a working shutdown routine, or 
must be manually unbound from the device before calling muxDevUnload( ). In 
particular, since the WDB agent does not currently support unbinding from an 
END device, it is not possible to unload a device to which the WDB agent is bound.

5.4  Driver Implementations of the NET_FUNCS Interface 

Table 5-3 lists the entry points of the NET_FUNCS interface that drivers implement 
and expose to the MUX. These routines are driver-specific and are prefixed with an 
driver identifier, such as “ln7990” for the Lance Ethernet driver.

NOTE:  IPNET-native drivers allocate their network buffers out of a shared global 
pool, usually the IPNET packet pool. The stop( ) routine for such a driver has 
already freed any packet resources that the driver held, so there is no additional 
work to do in this regard in the unload routine.
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IPNET-native drivers use a slightly larger function table, an END2_NET_FUNCS 
structure that contains an END2_NET_FUNCS structure as its first element. 
However, the MUX calls the send( ), pollSend( ), and pollRecv( ) functions that an 
IPNET-native driver stores in its END_FUNCS substructure with different 
arguments than suggested by the explicit type of these members in the 
NET_FUNCS structure, passing Ipcom_pkt* arguments instead of M_BLK_ID 
arguments.  END2_NET_FUNCS provides also (at present) one additional member 
after the END_FUNCS substructure, shown in Table 5-4. 

Table 5-3 NET_FUNCS Interface Routines

Routine Description

xStart( ) Enable reception and transmission for the device.

xStop( ) Deactivate the network device.

xUnload( ) Release a device, or a port on a device, from the MUX. For 
information on unload( ), see 5.3 Loading and Unloading 
Device Instances, p.64.

xIoctl( ) Support various ioctl commands.

xSend( ) Accept data from the MUX and send it on to the physical 
layer.

xMCastAddrAdd( ) Add a multicast address to the list of those registered for the 
device.

xMCastAddrDel( ) Remove a multicast address from those registered for the 
device.

xMCastAddrGet( ) Retrieve a list of multicast addresses registered for a device.

xPollSend( ) Send frames in polled mode rather than interrupt-driven 
mode. (Poll mode should only be used for debugging.) 

xPollRcv( ) Receive frames in polled mode rather than interrupt-driven 
mode. Poll mode should only be used for debugging. For 
details, see 5.6.3 Polled Mode—for Debugging Only, p.96.

xFormAddress( ) Add addressing information to a packet.

xPacketDataGet( ) Separate the addressing information and data in a packet.

xAddrGet( ) Extract the addressing information from a packet.

xEndBind( ) Exchange data with the network service at bind time. 
(Optional)

Table 5-4 Additional functions for IPNET-native drivers

Routine Description

 llhiComplete Parse a link header in an Ipcom_pkt packet into an 
LL_HDR_INFO structure for benefit of network services that 
bind using muxBind( ). May be NULL for ethernet drivers.
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5.4.1  xStart( )

The driver’s Start( ) routine is called by muxDevStart( ). It does whatever is 
necessary to make the device instance active and available.

1. Register your device driver’s ISR by calling sysIntConnect( ), if this has not 
been done earlier in the load routine or in devInstanceInit2( ).

2. VxBus network drivers should reread parameters that might be expected to 
change between device stops and starts, for instance the parameter specifying 
the network job queue to which the driver posts work for the device.

3. Configure the device for packet reception and transmission. 

4. Populate the receive DMA descriptor ring and the parallel ring of buffer 
pointers (which might be M_BLK_IDs or Ipcom_pkt pointers or raw buffer 
pointers, depending on the driver).

5. Initialize the transmit ring.

6. Enable device interrupts at the board/interrupt controller level as well as at 
the device-specific level.

7. Appropriately set the device registers that finally enable reception and 
transmission.

8. Set the PHY to the desired mode.

9. IPNET-native drivers must allocate an Ipcom_pkt with attached buffer for use 
in polled-mode sends, and store a pointer to the Ipcom_pkt in the pollPkt 
member of the END_OBJ structure.

For VxBus network drivers, the driver’s muxDevConnect( ) method calls 
muxDevStart( ) after calling muxDevLoad( ); for other network drivers, the 
start-up code calls muxDevStart( ) after muxDevLoad( ). In either case, 
muxDevStart( ) passes xStart( ) the unique interface identifier that the driver’s 
xLoad( ) routine returned.

As with xLoad( ), the MUX makes this call for each port that it activates within the 
driver.

An example template for the xStart( ) routine follows:

STATUS xStart
(
END_OBJ * pEND, /* END object */
)
{
x_DRV_CTRL * pDrvCtrl = (x_DRV_CTRL *) pEnd;
/* 
 * Some drivers may require additional mutual exclusion beyond the
 * transmit semaphore. If so, be sure to observe proper mutex ordering.
*/

END_TX_SEM_TAKE (&pDrvCtrl->end, WAIT_FOREVER);

if ((pDrvCtrl->end.flags & IFF_UP) == 0)
{
/*
 * - Reread selected device parameters, such as the job queue ID.
 * - Connect the driver's ISRs, if not already done.
 * - Initialize RX descriptor ring; set each descriptor to point to
 *   a buffer from a tuple from the device network buffer pool.
 * - Initialize TX ring as needed.
 * - Configure the device according to current settings.
 * - Endable device interrupts.
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 * - Enable transmission and reception.
 * - Set desired PHY mode.
*/
pDrvCtrl->end.flags |= (IP_IFF_UP | IP_IFF_RUNNING); 
}

END_TX_SEM_GIVE (&pDrvCtrl->end);
return (OK);
}

Write this routine to return OK, or ERROR in which case it should set errno 
appropriately.

5.4.2  xStop( )

The driver’s Stop( ) routine is called by muxDevStop( ) or muxDevStopAll( ). 
This routine halts a network device, putting it into a quiescent state in which it 
does not generate interrupts. It also does the following:

1. Waits for any network jobs which may be outstanding for the device to 
complete, and arranges that more network jobs will not be posted nor will 
device interrupts be reenabled.

2. Disconnects any driver ISRs that the xStart( ) routine connected.

3. Frees outstanding transmitted packets that have not been returned to the stack, 
and returns tuples associated with the device’s receive ring to the device 
network buffer pool. For IPNET-native drivers in particular, all buffers 
allocated for the device from the shared global packet pool (the IPNET stack 
packet pool, usually) should be returned to the pool, so that they can be used 
by the stack as well as other IPNET-native devices while the current device is 
stopped. (This is done so that if the buffer pool is shared between multiple 
devices, the other devices have access to the buffers while the current device is 
stopped.) Otherwise, the xStop( ) routine does not release data structures that 
were allocated in the xLoad( ) routine or in devInstanceInit2( ).

4. IPNET-native drivers must free the Ipcom_pkt pointed to by the pollPkt 
member of the END_OBJ structure.  This packet was allocated in the driver's 
start( ) routine, and is used for polled-mode sends.

The MUX passes xStop( ) the END_OBJ pointer returned by the driver’s xLoad( ) 
routine. xStop( ) is considered a synchronous routine, that is, it should not return 
until the device has been fully quiesced.

An xStop( ) template follows:

STATUS xStop
(
END_OBJ * pEND, /* END object */
)
{
x_DRV_CTRL * pDrvCtrl = (x_DRV_CTRL *) pEnd;

END_TX_SEM_TAKE (&pDrvCtrl->end, WAIT_FOREVER);
if (pDrvCtrl->end.flags & IFF_UP)

{
pEND->flags &= ~(IFF_UP | IFF_RUNNING); 
/*
 * - Prevent any jobs in progress from reenabling interrupts
 * - Disable device interrupts
 * - Wait for any outstanding jobs to complete; ensure no others are
 *   posted.
 * - Disable packet reception and transmission.
 * - Clean the transmit ring, freeing any packets to the stack.
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 * - Clean RX tuple ring, returning tuples to network buffer pool.
 * - If using the recycle cache, call endMCacheFlush().
 * - If the driver ISRs were connected in xStart(), disconnect them
*/
}

END_TX_SEM_GIVE (&pDrvCtrl->end);
return (OK); 
}

Write this routine to return OK. 

5.4.3  xIoctl( )

Network drivers are not installed into the VxWorks I/O system using 
iosDrvInstall( ), and so they do not directly support the ioctl( ) function, which 
passes an integer “file descriptor” as its first argument. However, the MUX 
supports an ioctl-like interface, muxIoctl( ), that a caller can use to request 
miscellaneous device-specific services from network drivers. The ioctl command 
codes in this interface begin with “EIOC” and are listed in the file 
target/h/endCommon.h.

Some protocol stacks may translate certain socket ioctl commands into other 
“EIOC” ioctl codes that they then pass to the MUX. However, the translation need 
not be one-to-one, and there is not any protocol stack-independent way to call 
MUX ioctl commands using a socket file descriptor. Applications that need to call 
MUX ioctls should bind as a service to a network driver, and pass the binding 
cookie as the first argument to muxIoctl( ); or failing that, you may use the device 
cookie returned by muxDevLoad( ) or by endFindByName( ) as a fake binding 
cookie when calling muxIoctl( ). Some MUX ioctl calls are handled by the MUX 
itself, but most are passed down by muxIoctl( ) to the network driver’s xIoctl( ) 
routine.

Any variety of network driver may need to support MUX ioctl commands, 
particularly if it is to interface with the existing IP network service sublayer. See 
Table 5-5 for a list of commonly used ioctl commands.

The MUX no longer supports the NPT driver model.  A network driver must return 
EINVAL if it receives the EIOCGNPT ioctl command (as any driver should do when 
it receives a MUX ioctl that it does not understand).

An IPNET-native driver ioctl routine must support the EIOCGSTYLE ioctl function, 
and must store the value END_STYLE_END2 as an int value at the address pointed 
to by the data argument. An M_BLK oriented driver may simply omit to support 
the EIOCGSTYLE ioctl, although it could alternatively support it and store the 
value END_STYLE_END.

NOTE:  Wind River assigns MUX ioctl command codes according to the scheme 
defined in target/h/sys/ioctl.h, using the macros _IOR( ), _IOW( ), _IORW( ). The n 
argument to these macros becomes the low-order byte of the command code. 
Low-order byte values in the range 0-127 are reserved for Wind River use. Choose 
n values in the range 128-255 to avoid possible conflict with internal codes.
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Arguments to xIoctl( )

The MUX passes the xIoctl( ) routine three arguments: 

■ the END_OBJ pointer that the driver returned from xLoad( ) 

■ the ioctl command being issued (for instance, one from Table 5-5)

■ an additional argument, often a pointer to a data buffer for additional data 
given in the command or for data to be returned on completion of the 
command

While this argument is prototyped as a caddr_t (the equivalent of a char *), the 
actual type passed depends upon the particular MUX ioctl command. For the 
commands EIOCSADDR, EIOCGADDR, EIOCMULTIADD, and 
EIOCMULTIDEL that pass link-layer addresses, the lengths of these addresses 
must be implicitly known to the driver and to the attached services that call 
muxIoctl( ). For Ethernet drivers, the addresses are 6 bytes long.

Example 5-1 Template Example

The following xIoctl( ) template example is modeled after the geiEndIoctl( ) 
routine of the gei825xxVxbEnd.c driver:

LOCAL int xIoctl
(
END_OBJ * pEND, /* END Object */
int command, /* ioctl command */
caddr_t data /* holds response from command */
)
{
MY_DRV_CTRL *  pDrvCtrl;
END_MEDIALIST *  mediaList;
END_CAPABILITIES * hwCaps;
END_MEDIA *  pMedia;
INT32  value;
int  error = OK

pDrvCtrl = (MY_DRV_CTRL *) pEnd;
if (command != EIOCPOLLSTART && command != EIOCPOLLSTOP)

semTake (pDrvCtrl->xDevSem, WAIT_FOREVER);

switch (command)
{

/*****
/* IPNET-native drivers must support EIOCGSTYLE */

case EIOCGSTYLE:
    if (data == NULL)

error = EINVAL;
    else

*(int *)data = END_STYLE_END2;
    break;

*
*****/

case EIOCSADDR:
if (data == NULL)

! WARNING:  The muxIoctl( ) routine handles the multicast address add, delete, and 
list-get ioctl commands (EIOCMULTIADD, EIOCMULTIDEL, EIOCMULTIGET) by 
calling the corresponding mCastAddrAdd( ), mCastAddrDel( ), or 
mCastAddrGet( ) functions from the driver NET_FUNCS structure. Do not be 
tempted to support only the multicast table management ioctls and not the 
corresponding NET_FUNCS functions.
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error = EINVAL;
else

bcopy ((char *)data, (char *)pDrvCtrl->ethAddr,
ETHER_ADDR_LEN);

/* Set the receive configuration so that device receives
packets destined for the new station address, rather than
the old one. */

xEndRxConfig (pDrvCtrl);
break;

case EIOCGADDR:
if (data == NULL)

error = EINVAL;
else

bcopy ((char *)pDrvCtrl->ethAddr, (char *)data,
ETHER_ADDR_LEN);

break;

case EIOCSFLAGS:
value = (INT32) data;
if (value < 0)

{
value = ~value;
END_FLAGS_CLR (pEnd, value);
}

else
END_FLAGS_SET (pEnd, value);

/* Set receive configuration according to new flags */
xEndRxConfig (pDrvCtrl);
break;

case EIOCGFLAGS:
if (data == NULL)

error = EINVAL;
else

*(long *)data = END_FLAGS_GET(pEnd);
break;

case EIOCMULTIADD:
error = xMCastAddrAdd (pEnd, (char *) data);
break;

case EIOCMULTIDEL:
error = xMCastAddrDel (pEnd, (char *) data);
break;

case EIOCMULTIGET:
error = xMCastAddrGet (pEnd, (MULTI_TABLE *) data);
break;

case EIOCPOLLSTART:
pDrvCtrl->polling = TRUE;
/* 
* Note that this command is called with interrupts locked.
*
* - Save the current interrupt mask to be restored when exiting
* polled mode.
* - Disable device interrupts
* - Empty and clean the transmit ring buffer; either return all
* TX packet resources, or save them to be returned when polled
* mode is exited. The latter avoids the possibility that
* cluster free routines will call functions that shouldn't be
* called with interrupts locked.
*/
break;

case EIOCPOLLSTOP:
pDrvCtrl->polling = FALSE;

/*
* - Reenable device interrupts as they were when polled mode was
 * entered.
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*/

break;

case EIOCGMIB2233:
case EIOCGMIB2:

error = endM2Ioctl (&pDrvCtrl->xEndObj, cmd, data);
break;

case EIOCGPOLLCONF:
if (data == NULL)

error = EINVAL;
else

*((END_IFDRVCONF **)data) = &pDrvCtrl->xEndStatsConf;
break;

case EIOCGPOLLSTATS:
if (data == NULL)

error = EINVAL;
else

{
/* Retrieve current statistics from the hardware: */
error = xEndStatsDump(pDrvCtrl);
if (error == OK)
*((END_IFCOUNTERS **)data) = &pDrvCtrl->xEndStatsCounters;
}

break;

case EIOCGMEDIALIST:
if (data == NULL)

{
error = EINVAL;
break;
}

if (pDrvCtrl->xMediaList->endMediaListLen == 0)
{
error = ENOTSUP;
break;
}

mediaList = (END_MEDIALIST *)data;
if (mediaList->endMediaListLen

< pDrvCtrl->xMediaList->endMediaListLen)
{
mediaList->endMediaListLen =

pDrvCtrl->xMediaList->endMediaListLen;
error = ENOSPC;
break;
}

bcopy((char *)pDrvCtrl->xMediaList, (char *)mediaList,
sizeof(END_MEDIALIST) + (sizeof(UINT32) *
pDrvCtrl->xMediaList->endMediaListLen));

break;

case EIOCGIFMEDIA:
if (data == NULL)

error = EINVAL;
else

{
pMedia = (END_MEDIA *)data;
pMedia->endMediaActive = pDrvCtrl->xCurMedia;
pMedia->endMediaStatus = pDrvCtrl->xCurStatus;
}

break;

case EIOCSIFMEDIA:
if (data == NULL)

error = EINVAL;
else

{
pMedia = (END_MEDIA *)data;
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/* Assumes a VxBus driver using miiBus : */
miiBusModeSet (pDrvCtrl->xMiiBus, pMedia->endMediaActive);
/* Read new link state, update MAC and MIB state accordingly,
 * send END_ERR_LINKUP or END_ERR_LINKDOWN muxError( ) events
 * if needed; if link comes up, call muxTxRestart( ) : */
xLinkUpdate (pDrvCtrl->xDev);
error = OK;
}

break;

case EIOCGIFCAP:
hwCaps = (END_CAPABILITIES *)data;
if (hwCaps == NULL)

{
error = EINVAL;
break;
}

hwCaps->csum_flags_tx = pDrvCtrl->xCaps.csum_flags_tx;
hwCaps->csum_flags_rx = pDrvCtrl->xCaps.csum_flags_rx;
hwCaps->cap_available = pDrvCtrl->xCaps.cap_available;
hwCaps->cap_enabled = pDrvCtrl->xCaps.cap_enabled;
break;

case EIOCSIFCAP:
hwCaps = (END_CAPABILITIES *)data;
if (hwCaps == NULL)

{
error = EINVAL;
break;
}
pDrvCtrl->xCaps.cap_enabled = hwCaps->cap_enabled;
break;

case EIOCGIFMTU:
if (data == NULL)

error = EINVAL;
else

*(INT32 *)data = pEnd->mib2Tbl.ifMtu;
break;

case EIOCSIFMTU:
value = (INT32)data;
if (value <= 0 || value > pDrvCtrl->xMaxMtu)

{
error = EINVAL;
break;
}

pEnd->mib2Tbl.ifMtu = value;
if (pEnd->pMib2Tbl != NULL)

pEnd->pMib2Tbl->m2Data.mibIfTbl.ifMtu = value;
break;

case EIOCGRCVJOBQ:
if (data == NULL)

{
error = EINVAL;
break;

}

qinfo = (END_RCVJOBQ_INFO *)data;
nQs = qinfo->numRcvJobQs;
qinfo->numRcvJobQs = 1;
if (nQs < 1)

error = ENOSPC;
else

qinfo->qIds[0] = pDrvCtrl->xJobQueue;
break;

default:
error = EINVAL;
break;

}
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if (cmd != EIOCPOLLSTART && cmd != EIOCPOLLSTOP)
semGive (pDrvCtrl->xDevSem);

return (error);
}

xIoctl( ) should return OK if successful, and an errno.h-style error code in case of 
failure. The routine generally returns EINVAL both for unsupported ioctl codes as 
well as for invalid arguments to a supported ioctl. The routine may occasionally 
return other particular codes such as EIO, ENOSPC, ENOTSUP, or ENOBUFS.

Ioctl Commands 

Table 5-5 lists the muxIoctl( ) commands and associated data types:

Table 5-5 MUX ioctl Commands and Data Types

Command Purpose Data Type

EIOCGFLAGS Get device flags. int *

EIOCSFLAGS Set device flags. See EIOCSFLAGS, 
p.78.

int 

EIOCGIFCAP /
EIOCSIFCAP 

Get/set device capabilities. END_CAPABILITIES *

EIOCGIFMEDIA Get current PHY “media.” Return 
the active media mode and link 
status into the data structure.

END_MEDIA * 

EIOCGMEDIALIST Get supported media list. Return the 
device’s supported PHY media list 
into the data structure.

END_MEDIALIST *

EIOCGADDR /
EIOCSADDR

Get/set device address. data points 
to a buffer for the link-layer station 
address.

char *

EIOCMULTIADD Add multicast address. data points 
to a multicast address to add to the 
multicast list (and enable reception 
for).

char *

EIOCMULTIDEL Delete multicast address. data points 
to a multicast address to remove 
from the multicast list (and no longer 
receive).

char *

EIOCMULTIGET Get multicast list. data is a pointer to 
a table that the driver fills with the 
multicast addresses in its multicast 
reception list.

MULTI_TABLE *

EIOCPOLLSTART Put device in polled mode. NULL
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EIOCSFLAGS

The EIOCSFLAGS MUX ioctl is called by upper layers of the stack to set a small 
number of device flags (values defined in 
)installDir/components/ip_net2-6.x/vxcoreip/include/net/if.h, such as 
IFF_PROMISC or IFF_ALLMULTI, that may be administratively controllable. 
(IFF_UP is not directly administratively controllable; a network device should be 
brought up or down by calling muxDevStart( ) or muxDevStop( ). Other flags like 
IFF_BROADCAST, IFF_SIMPLEX, IFF_MULTICAST that refer to general 
characteristics of the device are likewise not administratively controllable.)

The caller may use the EIOCSFLAGS ioctl either to clear or to set bit flags. If the 
most significant bit of the integer argument to the ioctl is clear, so that the argument 
appears non-negative as a signed integer, the intent is to set any of the other bits 
that are on. On the other hand, if the most significant bit in the argument is set, so 
that the argument appears negative, the intent is to clear bits: specifically, to clear 

EIOCPOLLSTOP Put device in interrupt mode (exit 
polled mode).

NULL

EIOCGMTU Get the link MTU. INT32 * 

EIOCSIFMTU Set the link MTU. INT32 

EIOCGRCVJOBQ Get the queue ID of the job queue the 
device uses to post work. 

END_RCVJOBQ_INFO *

EIOCQUERY Retrieve the bind routine (see 
EIOCQUERY, p.79).

END_QUERY *

EIOCGHDRLEN Get the size of the datalink header (if 
this is not supported, you can 
assume a 14-byte header).

int *

EIOCGMIB2 Get RFC 1213 MIB information from 
the driver. muxIoctl( ) calls the 
driver’s registered END ioctl 
function to handle this command. 
The driver’s ioctl function in turn 
calls endM2Ioctl( ).

M2_INTERFACETBL * 

EIOCGMIB2233 Get RFC 2233 MIB information from 
the driver. muxIoctl( ) calls the 
driver’s registered END ioctl 
function to handle this command. 
The driver’s ioctl function in turn 
calls endM2Ioctl( ).

M2_ID **

EIOCGPOLLCONF Get statistics polling configuration. END_IFDRVCONF **

EIOCGPOLLSTATS Get the current poll statistics counts. END_IFCOUNTERS **

EIOCGSTYLE Get driver style. Only IPNET-native 
drivers need support this command.

int * 

Table 5-5 MUX ioctl Commands and Data Types (cont’d)

Command Purpose Data Type
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the bits that are set in the ones-complement of the argument. For example, to clear 
IFF_PROMISC, the argument would be ~IFF_PROMISC, while to set IFF_PROMISC 
and IFF_ALLMULTI, the argument would just be (IFF_PROMISC | IFF_ALLMULTI). 
The use of the most significant bit to determine whether to set or clear means that 
you cannot define this bit as a flag with a different purpose.

EIOCQUERY

In the case where command is EIOCQUERY, data points to an END_QUERY 
structure. The caller sets the query field of this structure to the type of query (for 
instance, END_BIND_QUERY), and the queryLen field to the size of the queryData 
buffer. Upon receipt of an EIOCQUERY command, your xIoctl( ) routine should 
either copy data into this queryData buffer, or return an error value such as 
EINVAL.

Your driver is not required to support EIOCQUERY queries.

5.4.4  xSend( )

The MUX calls the driver's send( ) routine when a network service issues a send 
request, by calling muxSend( ), muxTkSend( ), or mux2Send( ). The effective 
signature with which this routine is called differs depending upon the driver style.  
For M_BLK style drivers, the routine has prototype:

LOCAL int xSend (END_OBJ * pEnd, M_BLK_ID pMblk);

whereas for IPNET-native drivers, the routine has prototype

LOCAL int xSend (END_OBJ * pEnd, Ipcom_pkt * pkt);

The pMblk (pkt) argument points at the lead M_BLK (Ipcom_pkt) of a chain of one 
or more M_BLKs (Ipcom_pkt's) describing a complete single packet. The send( ) 
routine is responsible for sending this data over the device. For detailed 
information on how to write a driver send( ) routine, see the VxWorks Device Driver 
Developer's Guide.

The return values from this routine also differ between driver styles.  The 
following are the valid return codes:

OK (M_BLK-oriented or IPNET-native)
The normal return when the send succeeds.  The driver takes ownership of the 
packet and arranges to free it when the transmit completes.

END_ERR_BLOCK (M_BLK-oriented)

-IP_ERRNO_EWOULDBLOCK (IPNET-native) 
The normal return when the send cannot proceed due to lack of resources 
(usually lack of space in the TX DMA ring).  For this return value only, the 
caller maintains ownership of the packet.  The driver considers the device 
to have entered a 'TX stalled' state, and arranges to call muxTxRestart( ) at 

NOTE:  The current release of the Wind River Network Stack’s IP stack normally 
passes only packets consisting of a single M_BLK tuple or Ipcom_pkt, that is, a 
single contiguous segment, to the MUX for transmission. However, when zbufs 
sockets are enabled, the IP stack may pass multi-segment packets to the driver 
send routine; and other M_BLK oriented services may also pass multi-segment 
packets. So, network drivers must continue to support transmission of packets 
described by a chain of more than one M_BLK tuple or Ipcom_pkt.
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a later time when more TX resources are available, for instance after 
transmits in progress complete and space opens up in the TX ring.  
Currently, drivers should also return this value when the device's link to 
the media is inactive.

-IP_ERRNO_ENETDOWN (IPNET-native only)
The packet cannot be sent because the device's link to the transmission 
media is inactive.  At present, this return value should not be used; 
IPNET-native drivers should return -IP_ERRNO_EWOULDBLOCK instead.

ERROR (M_BLK-oriented)
Negative error code other than the two listed above (IPNET-native) The packet 
could not be sent for some other reason. This case should be exceedingly rare; 
it probably indicates a bug in the driver or the sending protocol.  The driver 
must free the packet in this case if it can.

For END drivers, the data in pPkt is a link-level frame; the needed link header is 
already present. 

The prototype of the xSend( ) routine in an END is:

STATUS xSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt /* M_BLK chain containing the frame */
)

Figure 5-1 Implementing Flow Control

Service MUX Driver

mux[Tk]Send( )
xSend( )

END_ERR_BLOCK

END_ERR_BLOCK

muxTxRestart( )
xStackRestartRtn( )

mux[Tk]Send( )
xSend( )

OK
OK
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5.4.5  xMCastAddrAdd( )

muxMCastAddrAdd( ) calls this routine to tell the driver to configure the device 
so that it will receive packets destined for a particular link-layer multicast address. 
The driver must also maintain a full list of the multicast addresses so added; 
Ethernet devices may use the etherMultiLib library APIs to do so.

A typical Ethernet xMCastAddrAdd( ) routine looks like this:

STATUS xMCastAddrAdd
(
END_OBJ * pEND, /* driver's control structure */
char * pAddress /* buffer containing multicast address */
)
int retVal;
x_DRV_CTRL * pDrvCtrl;

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiAdd (&pEnd->multiList, pAddr);

if (retVal == ENETRESET)
{
pEnd->nMulti++;
if (pEnd->flags & IFF_UP)

xEndHashTblPopulate (pDrvCtrl);
retVal = OK;
}

if (retVal != OK)
{
errnoSet (retVal);
retVal = ERROR;
}

semGive (pDrvCtrl->devSem);
return (retVal);
}

The etherMultiAdd( ) routine does the following:

1. checks that the specified address in the buffer at pAddr is in fact a valid 
Ethernet multicast address

– if not, returns EINVAL

2. checks whether the address already belongs to the specified list 
pEnd->multiList

– if so, increments a reference count associated with the address, and returns 
0 (zero)

3. attempts to allocate a buffer for the new address

– if unsuccessful, returns ENOBUFS

– if successful, adds the new address is added to the list with reference count 
1 and returns ENETRESET, which lets the driver know that it should 
increment the multicast address count and reconfigure the hardware to 
receive packets destined to the new multicast address

In this example code, the driver does this by calling its routine 
xEndHashTblPopulate( ).6 Different devices have different multicast filtering 

6. This routine is very device-specific.
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capabilities, but generally you should program your device to receive packets for 
every multicast address in pEnd->multiList, and for as few others as possible. (An 
exception is that if the IFF_ALLMULTI flag has been set, the device should receive 
packets destined to any multicast address.)

A driver for a device that is not multicast capable should clear IFF_MULTICAST in 
its flags, and should also provide dummy mCastAddrAdd( ), mCastAddrDel( ), 
and mCastAddrGet( ) routines in its NET_FUNCS interface that simply set errno to 
ENOTSUP and return ERROR.

Drivers for multicast-capable devices using non-Ethernet MAC addresses cannot 
use etherMultiLib, and will have to implement their own methods to manage 
multicast address lists.

5.4.6  xMCastAddrDel( )

This routine removes a previously registered multicast address from the list that 
the driver maintains. It does the reverse of xMCastAddrAdd( ).

A typical Ethernet xMCastAddrDel( ) implementation looks like this:

STATUS xMCastAddrDel
(
END_OBJ * pEND, /* END object */
char * pAddress /* buffer with the multicast address to be removed */
)
{
int retVal;
x_DRV_CTRL * pDrvCtrl;

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiDel (&pEnd->multiList, pAddr);

if (retVal == ENETRESET)
{
pEnd->nMulti--;
if (pEnd->flags & IFF_UP)

xEndHashTblPopulate (pDrvCtrl);
retVal = OK;
}

if (retVal != OK)
{
errnoSet (retVal);
retVal = ERROR;
}

semGive (pDrvCtrl->devSem);
return (retVal);
}

The routine is very similar to xMCastAddrAdd( ), except that it calls 
etherMultiDel( ) instead of etherMultiAdd( ), and decrements pEnd->nMulti 
rather than incrementing it, if etherMultiDel( ) returns ENETRESET.

etherMultiDel( ) checks the specified list pEnd->multiList for the specified 
link-layer address at pAddr. If the address is not present in the list, 
etherMultiDel( ) returns ENXIO. Otherwise, etherMultiDel( ) decrements the 
reference count associated with the address.
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If the reference count is still nonzero, etherMultiDel( ) simply returns OK. 
Otherwise, it removes the address from the list and frees the buffer that 
etherMultiAdd( ) allocated to hold it, and returns ENETRESET. An ENETRESET 
return value indicates to the driver that the address list has changed, and the 
device must be reconfigured to receive the new, smaller set of multicast addresses. 
The driver typically does this using the same routine xEndHashTblPopulate( ) 
that it provides and calls from xMCastAddrAdd( ).

5.4.7  xMCastAddrGet( )

This routine retrieves a list of all multicast addresses that are currently active for 
reception on the device. It does not need to touch the device hardware at all.

It takes as arguments a pointer to the END_OBJ returned by xLoad( ), and a pointer 
to a MULTI_TABLE structure into which the list will be put. 

An Ethernet xMCastAddrGet( ) routine can use etherMultiLib and looks like this 
template: 

STATUS xMCastAddrGet
(
END_OBJ * pEND, /* END object */
MULTI_TABLE * pMultiTable /* container for address list */
)
{
int retVal;
x_DRV_CTRL * pDrvCtrl;

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiGet (&pEnd->multiList, pMultiTable);

semGive (pDrvCtrl->devSem);
return (retVal);
}

The MULTI_TABLE structure specifies the address and length of a buffer, into 
which the driver should write (in any convenient order) as many of the addresses 
in its multicast reception list as will fit. Although conventions for non-Ethernet 
addresses have not been well established, for Ethernet the addresses are written 
with no padding or separators, so addresses are effectively assumed to be of fixed 
length known to the driver and the caller. After the addresses have been written to 
the buffer, the driver should rewrite the len member of the MULTI_TABLE with the 
actual number of bytes taken up by the addresses written.

Write this routine to return OK. It should always be successful, unless the driver 
does not support multicast, in which case the routine should return ERROR and set 
errno to ENOTSUP.

5.4.8  xPollSend( )

When using the WDB_COMM_END communications type, the external WDB 
debug agent calls muxTkPollSend( ) with interrupts locked when it wants to send 
a packet during system mode debugging. muxTkPollSend( ) in turn calls the 
network device’s xPollSend( ) routine.



Wind River Network Stack
Programmer's Guide, 6.8 

84

Packets may also be sent over an interface in polled mode using the 
muxPollSend( ) or mux2PollSend( ) APIs.

The effective prototype of the driver's pollSend( ) routine depends upon the driver 
style.  For M_BLK-oriented drivers, it is

LOCAL int xPollSend (END_OBJ * pEnd, M_BLK_ID pMblk);

    whereas for IPNET-native drivers, it is:

LOCAL int xPollSend (END_OBJ * pEnd, Ipcom_pkt * pkt);

An IPNET-native driver (but not an M_BLK oriented driver) may assume that the 
packet passed is nonsegmented, described by a single Ipcom_pkt rather than 
possibly a chain.  The MUX wrapper code that handles muxPollSend( ) or 
muxTkPollSend( ) calls to an IPNET-native device takes care of coalescing the 
(possibly multi-segment) M_BLK chain passed to one of these routines into the 
single Ipcom_pkt buffer allocated in the IPNET-native driver's start( ) routine and 
stored in the pollPkt member in the device's END_OBJ. Any calls to 
mux2PollSend( ) are required to pass only a single-segment packet.

This routine may be called only after the device has been put in to polled mode 
using the EIOCPOLLSTART ioctl. The xPollSend( ) routine should immediately 
return ERROR if the device is not in polled mode when it is called. Otherwise, it 
must either transfer a packet to the device for transmission, or return EAGAIN if 
not ready to do so.

Since the device is in polled mode, it may not rely upon the transmit interrupt 
(which is disabled) to schedule clean-up of the transmit ring. Further, the caller 
maintains ownership of the M_BLK chain or (single) Ipcom_pkt, which implies 
that either the routine itself must wait until the transmit completes before 
returning, or that it must make a copy of the data to be transmitted.

Typically, an M_BLK-oriented driver maintains a single tuple used for polled-mode 
sends on the device, and copies data from the provided M_BLK chain to the tuple’s 
cluster buffer using netMblkToBufCopy( ). This avoids the complications of 
dealing with multisegment M_BLKs, and avoids also requiring much additional 
memory to support the low-performance polled mode. An IPNET-native driver 
normally does not need to copy data in this way since any packet passed to its 
pollSend( ) routine is guaranteed to be single-segment.  But if the device has 
transmit data alignment restrictions not met by a packet passed via a 
mux2PollSend( ) call, the IPNET-native driver may copy that packet's data into the 
pollPkt packet, which is always available, being allocated and set with proper 
alignment in the driver's start( ) routine.7 The xPollSend( ) routine may use the 

NOTE:  Polled mode transmission is a low-performance interface intended to 
support debugging. For details, see 5.6.3 Polled Mode—for Debugging Only, p.96.

! WARNING:  When the MUX calls your driver’s xPollSend( ) routine, the system is 
probably in a mode that cannot service kernel calls. Therefore, this routine must 
not perform any kernel operations, such as taking a semaphore or allocating 
memory. Likewise, this routine must not block or delay because the entire system 
might halt.

7. Note that all drivers assume that any calls to the pollSend() routine are externally serialized.  
Usually the WDB agent is the only client of the polled send and polled receive routines, so 
that this is automatic.
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driver’s ordinary transmit encapsulation routine to queue the single copy tuple to 
its transmit ring and enable transmission, but then should busy-wait for 
transmission to complete and must re-clean the transmit ring before returning, to 
avoid reusing the copy tuple too soon. When transmit is complete, the routine 
returns OK.

The xPollSend( ) routine and the xSend( ) routine share the same transmit 
descriptors and the same transmit queue. Therefore, xPollSend( ) should treat the 
transmit queue and descriptors in the same manner as the xSend( ) routine.

Wind River recommends that your EIOCPOLLSTART ioctl-handling code clean the 
transmit ring before returning, so that polled-mode sends start with an empty 
transmit ring. In principle, it is possible that the xPollSend( ) routine interrupts the 
normal xSend( ) routine, for instance if the naive user sets a system-level 
breakpoint within the driver xSend( ) code. This can potentially corrupt the 
transmit ring. There is not much that can be done about this, other than using 
non-END WDB communication type when debugging network drivers.

Write xPollSend( ) to return OK, EAGAIN, or ERROR (it should not set errno under 
any circumstances):

OK 
Indicates that the packet is successfully sent.

EAGAIN 
Indicates that the driver or device is not ready to transmit a frame, and the 
caller should try again in a little while. The xPollSend( ) routine may wait for 
short periods of time for the hardware to reach a state where another 
transmission is possible, although it is preferable to return EAGAIN and let the 
caller drive the polling.

ERROR 
Indicates an argument error by the caller or a fatal condition which prevents 
the provided packet from ever being sent. (Note that the WDB agent, typically 
the only user of the polled-mode routines, may treat any nonzero return, 
including ERROR, as equivalent to EAGAIN, causing the error to repeat.) 

The xPollSend( ) routine has the same prototype as the xSend( ) routine. See 
5.4.4 xSend( ), p.79 for additional discussion of the parameters.

5.4.9  xPollRcv( )

The external WDB agent, when using the WDB_COMM_END communications 
type, calls muxTkPollReceive( ) with interrupts locked during system mode 
debugging, to poll for availability of a received packet, retrieving the packet if one 
is available. muxTkPollReceive( ) in turn calls the driver’s xPollRcv( ) routine.

The driver's pollRcv( ) routine may in principle also be called by the 
muxPollReceive( ) or mux2PollReceive( ) routines, although since normally the 
WDB agent is the only client of polled mode receives, this is uncommon.

The effective prototype of the driver's pollRcv( ) routine depends upon the driver 
style. For M_BLK-oriented drivers, it is:

LOCAL int xPollRcv (END_OBJ * pEnd, M_BLK_ID pMblk);

whereas for IPNET-native drivers, it is 

LOCAL int xPollRcv (END_OBJ * pEnd, Ipcom_pkt * pkt);
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In both cases, the caller passes in a single-segment packet buffer into which the 
routine copies a received packet, if one is available.

This routine receives frames using polling instead of an interrupt-driven model. 
The MUX passes this routine a pointer to the device’s END_OBJ, and a pointer to 
an M_BLK tuple (or Ipcom_pkt with buffer) in which to place the frame. The 
routine checks the next descriptor in its receive ring, and if a frame has been 
received, retrieves the frame and copies it into the packet buffer, adjusting the 
M_BLK or Ipcom_pkt to specify the packet length.  Since the WDB agent currently 
assumes 4-byte alignment for IP headers, a driver that may execute on 
architectures with alignment restrictions may need to make small adjustments 
upwards to the starting address (pMblk->mBlkHdr.mData or 
&pkt->data[pkt->start]) at which it copies the data, to ensure that any IP header 
starts at an address that is a multiple of 4.  For instance, ethernet drivers should 
align the start of the ethernet header on an address congruent to 2 modulo 4.  The 
adjustment is done by modifying pMblk->mBlkHdr.mData or pkt->start, if 
necessary. If no frame is immediately available, it returns EAGAIN.

It is an error to call muxTkPollReceive( ) when the network device is not in polled 
mode. It is also an error to call those routines specifying an M_BLK which is not 
attached to a cluster. The xPollRcv( ) routine is encouraged to check for these error 
conditions, although they are not expected to occur.

For an M_BLK-oriented driver, the available space in the provided packet buffer for 
packet data is pMblk->mBlkHdr.mLen bytes starting at address 
pMblk->mBlkHdr.mData.  For an IPNET-native driver, the available space is 
pkt->maxlen - pkt->start bytes starting at address pkt->data + pkt->start. It is not 
necessarily an error if the provided packet buffer is not large enough to hold the 
frame received from the wire, as the caller may be only interested in frames that it 
knows will be short. If a frame is received that is too large to fit in the provided 
buffer (adjusting for any required alignment padding),  the driver simply drops it 
and returns EAGAIN, as though the frame had not been received at all. (During 
system mode debugging, when the system is suspended and the WDB agent is in 
control running with interrupts locked out in polled mode, any packets that are 
received that are not for the WDB agent itself, apart from certain ARP requests, are 
dropped.)

5.4.10  xFormAddress( )

The formAddress( ) routine is an intrinsically M_BLK oriented routine, and all 
M_BLK-oriented drivers must provide it. Its support by IPNET-native drivers is 
optional. However, in order to support non-IPNET, M_BLK oriented protocols that 
send datagrams (without pre-constructed link headers) over an IPNET-native 
device using muxTkSend( ), or protocols that call the muxAddressForm( ) or 
muxLinkHeaderCreate( ) APIs to construct link headers, an IPNET-native driver 

NOTE:  Polled mode reception is a low-performance interface intended to support 
debugging. For details, see 5.6.3 Polled Mode—for Debugging Only, p.96.

! WARNING:  When the system calls your xPollRcv( ) routine, it is probably in a 
mode that cannot service kernel calls. Therefore, this routine must not perform any 
kernel operations, such as taking a semaphore or allocating memory. Likewise, this 
routine must not block or delay because the entire system might halt.
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must provide a formAddress( ) routine.  An IPNET-native ethernet driver (or such 
a driver for any device using ethernet headers) should in its xLoad( ) routine set 
the funcs.formAddress member in its END2_NET_FUNCS table to the value of 
_func_endEtherAddressForm, or to _func_end8023AddressForm if IEEE 802.3 
headers are desired. Note that the IPNET stack does not ordinarily make use of the 
formAddress( ) functionality for ethernet drivers, since it constructs ethernet 
headers itself.

The xFormAddress( ) routine generates a link-level header, prepends it to the 
M_BLK chain containing outgoing data, and adjusts the mBlk.mBlkHdr.mLen and 
mBlk.mBlkHdr.mData members accordingly.

If the incoming M_BLK’s cluster does not have enough available leading space to 
contain the added header information, the routine creates an additional 
M_BLK/CL_BLK/cluster tuple for this purpose and inserts it at the beginning of 
the M_BLK chain.

The xFormAddress( ) routine provides support for the muxFormAddress( ) and 
muxLinkHeaderCreate( ) functions. The current version of the IP network stack 
does not call either function to create link headers; instead, it creates them 
internally for supported link types. Other protocols and services may still rely 
upon the xFormAddress( ) routine, however, so ENDs still need to provide it. 
Ethernet or similar IEEE 802.3 drivers may use one of the implementations in 
endLib, endEtherAddressForm( ) or end8023AddressForm( ).

The xFormAddress( ) prototype is:

M_BLK_ID xFormAddress
(
M_BLK_ID pData /* M_BLK chain containing outgoing data */
M_BLK_ID pSrc, /* source address, in an M_BLK */
M_BLK_ID pDst, /* destination address, in an M_BLK */
BOOL bcastFlag /* use link-level broadcast ? */
)

The source and destination link-level addresses are present in memory at the 
locations specified by pSrc->mBlkHdr.mData and pDst->mBlkHdr.mData, 
respectively. The caller also provides the network service type (in network byte 
order) in the pDst->mBlkHdr.reserved field.

If bcastFlag is TRUE, the driver should construct a link-level broadcast header. 
That is, it should ignore the destination address at pDst->mBlkHdr.mData, 
substituting the link-level broadcast address.

All the M_BLK_ID arguments correspond to M_BLKs owned by the caller; the 
routine should not attempt to free them.

The xFormAddress( ) routine returns a pointer to the first M_BLK of the resulting 
chain; this would be the original M_BLK if it was not necessary to prefix a new one.

5.4.11  xPacketDataGet( )

Various M_BLK-oriented MUX routines call xPacketDataGet( ) to parse the 
link-level header in a frame represented by an M_BLK chain. The primary use is in 
the receive routine (muxReceive( )) installed for M_BLK-oriented END drivers, so 
all M_BLK-oriented drivers must provide a packetDataGet( ) function.  However, 
there are other uses such as output filter protocols and the muxPacketDataGet( ) 
API that require the driver's packetDataGet( ) function.  Some of these uses apply 
to M_BLK-oriented protocols that may be bound over IPNET-native drivers. Thus, 
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IPNET-native drivers also are encouraged to provide a packetDataGet( ) function.  
The xLoad( ) routine of an IPNET-native driver for a device that uses ethernet or 
IEEE 802.3 link headers should set the funcs.packetDataGet member of its 
END2_NET_FUNCS structure to the value of the _func_endEtherPacketDataGet 
variable.

Besides the M_BLK_ID specifying the frame, the MUX passes this routine a pointer 
to an LL_HDR_INFO structure that the routine must fill out.

The xPacketDataGet( ) routine sets the members of the structure specifying the 
byte offset and byte size of both the destination and source addresses within the 
link header; as well as the network service type of the packet, and the byte offset 
to the network-level header (the same as the link header size). The ctrlAddrOffset 
and ctrlSize members are currently unused. The link header is not guaranteed to 
be contained all in the first M_BLK tuple of the chain, although in practice it almost 
always is. The M_BLK chain should not be modified.

The routine should return OK unless there is an error in the packet which prevents 
parsing the link header (for instance, if the packet is too short to contain a full link 
header), in which case it should return ERROR. It should not free the packet.

Drivers for devices using ethernet or IEEE 802.3 MAC headers may use the 
endEtherPacketDataGet( ) implementation in endLib rather than implementing 
their own version of this routine.

The xPacketDataGet( ) prototype is:

STATUS xPacketDataGet
(
M_BLK_ID pPkt, /* M_BLK chain containing packet */
LL_HDR_INFO * pLHInfo /* structure to hold header info */
)

5.4.12  xAddrGet( )

This routine is called only by the rarely used (and somewhat ill-defined) function 
muxPacketAddrGet( ). The routine is expected to extract up to four link-level 
addresses from the link header of a frame specified as an M_BLK chain. The four 
addresses are identified as “local” or “immediate” source and destination 
addresses, and “ultimate” or “end” or “remote” source and destination addresses. 
endLib implements a version for ethernet, called endEtherPacketAddrGet( ); this 
version treats the local/immediate and remote/end/ultimate addresses 
identically.

The xAddrGet( ) prototype is:

STATUS xAddrGet
(
M_BLK_ID pPkt, /* M_BLK chain containing frame */
M_BLK_ID pSrc, /* local source address, in an M_BLK */
M_BLK_ID pDest, /* local destination address, in an M_BLK */
M_BLK_ID pESrc, /* end source address, in an M_BLK */
M_BLK_ID pEDest /* end destination address, in an M_BLK */
)

This routine retrieves the address values for an incoming frame that the MUX 
provides in the M_BLK chain pPkt. The link header may be assumed to be present 
entirely in the first tuple of the chain.

For each of the additional M_BLK parameters that are not NULL, this routine calls 
netMblkDup( ) to duplicate the pPkt M_BLK to this other M_BLK parameter; it 
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then adjusts the other M_BLK’s mBlkHdr.mData and mBlkHdr.mLen fields to 
indicate the location and size of the desired address within the header. In the case 
of endEtherPacketAddrGet( ), the mBlkHdr.mLen fields would all be set to 6, and 
the mBlkHdr.mData members for pSrc and pESrc would be adjusted 6 bytes into 
the header, while those of pDest and pEDest would be left equal to 
pPkt->mBlkHdr.mData.

This routine should return a status of OK, or ERROR in which case errno should be 
set appropriately.

An ethernet-compatible IPNET-native driver should, in its load routine, set the 
funcs.addrGet member of its END2_NET_FUNCS structure to the value of the 
_func_endEtherPacketAddrGet variable.

5.4.13  xEndBind( )

The xEndBind( ) routine is an optional driver routine that gives your driver the 
ability to respond to service bind events. In xEndBind( ), your driver can support 
the exchange of information between a service and a driver whenever the service 
binds to a device managed by that driver (provided the binding service also 
supports this exchange, and the service and the driver agree on the format of the 
information exchanged).

The MUX calls your driver’s xEndBind( ) routine (if any), when a service binds to 
your driver. To get a reference to a driver’s xEndBind( ) routine, the MUX first 
sends an EIOCQUERY ioctl message with the END_BIND_QUERY type to the 
driver’s xIoctl( ) routine, and that routine must respond appropriately with a 
pointer to its xEndBind( ) routine in the structure it returns or the MUX will not 
invoke that routine. The MUX does not use the endBind function pointer in the 
NET_FUNCS interface for this purpose.

The xEndBind( ) prototype is:

STATUS xEndBind
(
END_OBJ * pEND, /* END object */
void * pNetSvcInfo, /* info provided by the network service */
void * pNetDrvInfo, /* template for network driver info */
long type /* network service type of binding service */
)

The pNetSvcInfo and pNetDrvInfo arguments are the same as the last two 
arguments provided in the call to muxTkBind( ); if muxBind( ) was used to bind 
the protocol, NULL is passed for both arguments. Wind River has established no 
convention for the use of these arguments; its protocols (when they call 
muxTkBind( )) pass NULL for both. The xEndBind( ) routine is therefore likely 
useful only when a custom driver and a custom network service are developed 
together with knowledge of each other. 

Write the xEndBind( ) routine to return OK, or else return ERROR and set errno. If 
it returns ERROR, the MUX denies the attempt to bind the network service.
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5.5  Driver Implementation

This section covers drive implementation of both IPNET-native and 
M_BLK-oriented devices.

5.5.1  IPNET-Native Style Driver Implementation 

The module vxmux_mux2.c contains code necessary for protocols binding with 
mux2Bind( ), and some MUX APIs that such protocols use. These APIs describe 
packets using Ipcom_pkt structures, rather than the M_BLK structures.  

For mux2Bind( ) protocols to work with IPNET-native devices, only the 
muxCommon and ipcom_mux2 modules are needed.

For mux2Bind( ) protocols to work with END-style devices, additional wrapper 
routine modules are needed. 

mux2Lib contains the following public functions, all new:

void mux2LibInit (void);

void * mux2Bind
    (
    char * pName,
    int    unit,
    BOOL   (*stackRcvRtn) (void * callbackArg, Ipcom_pkt * pkt),
    STATUS (*stackShutdownRtn) (PROTO_COOKIE cookie, void * callbackArg),
    STATUS (*stackTxRestartRtn) (void * callbackArg),
    void   (*stackErrorRtn) 

(void * callbackArg, END_ERR * err), 
unsigned short type,

    char * pProtoName,
    void * callbackArg
    );

int mux2Send (END_OBJ * pEnd, Ipcom_pkt * pkt);
int mux2PollSend (END_OBJ * pEnd, Ipcom_pkt * pkt);
int mux2PollReceive (END_OBJ * pEnd, Ipcom_pkt * pkt);

The mux2Bind( ) routine creates a binding between a network service and a 
network device. Network service uses this routine to bind to a network device 
specified by the pName and unit arguments.

This routine can be used to bind to either IPNET-native style or M_BLK-oriented 
devices. Optimal performance is obtained when this routine binds to IPNET-native 
style devices. However, if the device is M_BLK-oriented, wrapper routines are 
inserted by mux2Bind( ) to convert between the M_BLK-oriented packet model 
(which uses M_BLK tuples) and the network service packet model, which uses 
Ipnet_pkt structures. Translation wrappers can decrease performance.

5.5.2  M_BLK-Oriented Devices 

The module muxLib.c contains code that is needed by protocols bound using 
muxBind( ), and some MUX APIs that such protocols use.  Only the muxCommon  
and muxLib modules are needed for muxBind( ) protocols to work with 
M_BLK-oriented devices. To run muxBind( ) protocols over IPNET-native style 
devices, additional wrapper routines from muxOverEnd2.c  are needed.
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5.5.3  M_BLK-Oriented Driver Implementation

An M_BLK-oriented driver is frame-oriented. It is organized around the END_OBJ 
and the NET_FUNCS structures. The entry points for the NET_FUNCS interface of 
and END are:

■ start( ) – enable device interrupts and activate the interface

■ stop( ) – stop or deactivate a network device or interface

■ unload( ) – release a device, or a port on a device, from the MUX

■ ioctl( ) – support various ioctl commands

■ send( ) – accept data from the MUX and send it on towards the physical layer

■ mCastAddrAdd( ) – add a multicast address to those registered for a device

■ mCastAddrDel( ) – delete a multicast address registered for a device

■ mCastAddrGet( ) – get a list of multicast addresses registered for a device

■ pollSend( ) – send packets in polled mode rather than interrupt-driven mode

■ pollRcv( ) – receive frames in polled rather than interrupt-driven mode

■ formAddress( ) – add addressing information to a packet

■ packetDataGet( ) – separate the addressing information and data in a packet

■ addrGet( ) – extract the addressing information from a packet

If you write an M_BLK-oriented driver that does not run over Ethernet, you need 
to implement these entry points explicitly. These drivers running over Ethernet 
(using either 802.3 or DIX header formats) can set these interface members to the 
endLib implementations of these routines: endEtherAddressForm( ) 
(end8023AddressForm( ) to construct 802.3-style headers), 
endEtherPacketDataGet( ), and endEtherPacketAddrGet( ).

5.5.4  MUX Receive Routine

During the muxDevLoad( ) call, the MUX sets the receiveRtn member of the 
device’s END_OBJ-derived DRV_CTRL structure to point to the routine that the 
device should call to pass received data up the stack. An END calls this routine 
with two parameters, as follows:

device->receiveRtn ( device, packet );

device 
The END_OBJ pointer that describes the device that is calling the routine.

packet 
An M_BLK pointer that describes the packet being received.

The header file endLib.h has a macro, END_RCV_RTN_CALL( ), that the driver can 
use to call the MUX receive routine.
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5.6  How VxWorks Launches and Uses Your Driver

The task tUsrRoot is the first task started during system boot. It initializes all 
portions of the operating system, including the network stack. Part of network 
stack initialization consists of initializing at least one network job queue, and 
spawning a task (such as tNet0) to process items on each network job queue.

To load your network device into the MUX, tUsrRoot calls muxDevLoad( ). As 
input to the call, tUsrRoot specifies your driver’s xLoad( ) entry point, and the 
muxDevLoad( ) routine calls this entry point.

The xLoad( ) routine handles any device-specific initialization and returns an 
object that derives from the END_OBJ class (see Driver Implementations of the 
xLoad( ) Routine, p.97). The xLoad( ) routine does not enable the device to transmit 
and receive data (the xStart( ) routine does this when it is called by 
muxDevStart( )).

After control returns from xLoad( ) to muxDevLoad( ), the MUX completes the 
END_OBJ object by adding to it a pointer to a routine your driver can call to pass 
packets up to the MUX. The MUX then adds this returned END_OBJ to a list of 
END_OBJ structures. This list maintains the state of all currently active network 
devices on the system. After control returns from muxDevLoad( ), your driver is 
loaded and ready to use.

5.6.1  Service-to-MUX Interface

To attach to a previously loaded network device, a service calls 
muxBindCommon( ). The network service supplies pointers to routines that the 
MUX can call to:

■ shut down the service

■ pass an error message to the service

■ pass a packet to the service

■ restart transmission by the service

The prototypes of these callback routines differ depending on whether you used 
mux2Bind( ), muxBind( ), or muxTkBind( ). 

If you call muxTkBind( ) to bind to an M_BLK-oriented device, this imposes an 
additional layer of translation. It might be better to provide muxBind( )-style 
callbacks and use muxBind( ) to bind to END devices and avoid the performance 
impact of this additional translation work.

The muxBindCommon( ) routine returns a cookie that identifies the binding of the 
service to the specified device. The service uses this cookie in several other MUX 
calls to refer to this binding instance.

After the service binds itself to a driver through the MUX, it can then call 
MUX-supplied routines, such as mux[Tk]Send( ), to transmit a packet or request 
other MUX services.
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The Wind River Network Stack attaches its protocols to the network boot interface 
and to network interfaces corresponding to any INCLUDE_IPNET_IFCONFIG_n 
components you have enabled. If there are additional network interfaces to which 
the stack should be attached (perhaps interfaces that your application discovers 
dynamically), your application code must do this attachment itself by calling 
either ipcom_drv_eth_init( ) or the legacy function ipAttach( ). The ipAttach( ) 
routine calls mux[Tk]Bind( ) (see Figure 5-2)

A protocol that binds itself to a loaded device using mux[Tk]Bind( ) may unbind 
itself using muxUnbind( ). To cause the Wind River Network Stack to unbind all 
of its protocols from an interface to which it is attached, use the command-line tool 
ifconfig to first bring the interface down, then detach it. For example:

-> ifconfig motetsec1 down 
-> ifconfig motetsec1 detach 

ifconfig can be accessed programmatically as the function ipnet_cmd_ifconfig( ).

NOTE:  You may find that you need to call a device-specific MUX routine such as 
muxTkSend( ) or muxIoctl( ) without first binding to the device. To do this, you 
must obtain a cookie that describes the device. Call muxTkCookieGet( ) to obtain 
such a cookie for a specified device name and unit number. This routine allocates 
no memory, and the value it returns does not describe a real binding, so do not call 
muxUnbind( ) with this cookie. Also, note that the cookie is valid only while the 
network device remains loaded in the MUX.

Figure 5-2 Binding and Unbinding a Stack and an Interface
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5.6.2  Data-Link-to-MUX Interface

VxBus network drivers typically initialize and load to the MUX all of the devices 
they manage that are discovered dynamically by the VxBus system, or that are 
listed explicitly in the BSP’s hwconf.c file. For legacy network drivers on the other 
hand, a device must have an entry in the endDevTbl[ ] array in the BSP’s 
configNet.h file. (Particular BSPs may be able to add dynamically discovered 
devices to available empty slots in this array.) Stack initialization code causes the 
{muxDevConnect}( ) method of all VxBus network drivers to run, then iterates 
through the endDevTbl[ ] array, loading and starting any legacy devices with 
entries there. For both sorts of devices, muxDevLoad( ) is called first, then 
muxDevStart( ) (see Figure 5-3).

The value returned by muxDevLoad( ) identifies the device. You can use this 
identifier in a subsequent call to muxDevStart( ), muxDevStop( ), or 
muxDevUnload( ). In some previous versions of the stack, this value could also be 
passed as an argument to muxIoctl( ) or muxTkSend( ), but that no longer 
works—these routines expect an interface binding cookie of the sort that is 
returned from mux[Tk]Bind( ), or a pseudo-bind cookie of the sort returned by 
muxTkCookieGet( ) (see the discussion of muxTkCookieGet( ) in 
5.6.1 Service-to-MUX Interface, p.92).

Your driver’s load routine creates a DRV_CTRL structure, derived from an 
END_OBJ structure, and its NET_FUNCS interface. The END_OBJ structure 
provides the MUX with a description of the device, and the NET_FUNCS interface 
provides the MUX with pointers to the driver’s implementations of the standard 
MUX routines: start( ), stop( ), receive( ), ioctl( ), and so on. 

Figure 5-3 Loading and Starting a VxBus Network Device
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NOTE:  The {muxDevConnect}( ) method that gets called is the driver’s 
corresponding method handler routine.
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The muxDevStart( ) call enables transmission and reception over an END device. 
After a device starts, it can pass packets up to the MUX by calling the receiveRtn 
function pointer that the MUX set in the driver’s END_OBJ structure. The MUX 
delivers these packets to the appropriate bound services. If no bound services 
match the packet type, the MUX discards the packet.

When the driver passes the MUX receive routine a packet with a network service 
type that matches a service bound to the device, the MUX calls the service’s receive 
routine that the service registered when it called mux[Tk]Bind( ). If the service 
receive routine returns TRUE (or any nonzero value), the service consumed the 
packet. Otherwise, the MUX checks if any other bound service can accept the 
packet, and if not, discards it, freeing the associated M_BLK tuple. When a service 
consumes a packet, the service is responsible for freeing the packet.

To disable transmission and reception on a device, call muxDevStop( ). Call 
muxDevUnload( ) to remove the network interface from the MUX. Note that 
muxDevUnload( ) forcibly shuts down any services that are bound to the device; 

NOTE:  The Wind River Network Stack expects to borrow the buffers it receives 
and thus avoid data copying. If a device cannot transfer incoming data directly 
into clusters, the driver must explicitly copy the data from private memory into a 
cluster in sharable memory before passing it in an M_BLK up to the MUX. The 
driver must describe a packet destined for the stack as a single 
M_BLK/CL_BLK/cluster tuple (see Tuples, p.11).

Figure 5-4 Stopping and Unloading a Device  
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the service’s shutdown routine must in turn call muxUnbind( ) to unbind the 
service from the device. 

5.6.3  Polled Mode—for Debugging Only

Drivers ordinarily operate in an interrupt-driven mode. During debugging, it can 
be convenient to have a driver operate in polled mode.

This section discusses routines that drivers implement to support polled-mode, 
and MUX routines that applications or services can call to transfer packets in 
polled mode.

The network stack itself does not use polled mode. Currently, only the WDB agent 
COMM_END back end in system mode uses polled mode. During system mode 
debugging, the WDB agent calls muxPollSend( ) directly in order to pass packets 
to the driver in polled mode. 

While it is possible for an application to use a driver that has implemented the 
necessary APIs, and call muxPollSend( )—just as the WDB agent does—the 
network stack itself does not support sending data, such as IP traffic, in polled 
mode. The stack will not detect that a driver is in polled mode and, consequently, 
will not call muxPollSend( ).

Also, the polled mode interface copies whole packets for both transmission and 
reception.

Thus, you cannot use polled mode routines as a high-performance polling 
mechanism for increasing forwarding network performance. Wind River 
recommends that you use polled mode only for system mode debugging over 
WDB.

5.7  Driver Interface with the MUX

This subsection describes the driver entry points and the shared data structures 
that comprise an driver’s interface with the MUX.

Data Structures Shared by the Driver and the MUX

The core data class for an END driver is the END object, or END_OBJ. This 
structure is defined in target/h/end.h. The driver’s xLoad( ) routine returns a 
pointer to an object derived from the END_OBJ that it allocates and partially 
populates. This object supplies the MUX with information that describes the driver 
as well as a pointer to a NET_FUNCS interface that the driver implements.

Although the driver’s xLoad( ) routine populates much of the END_OBJ object, the 
MUX sets some of this object’s members when a service binds to the device. 
Specifically, the MUX maintains the array of services bound to the END_OBJ. When 
the driver calls the receive routine that the MUX registered by setting the 
receiveRtn member of the driver’s END_OBJ object, this routine in turn calls the 
bound service receive routines appropriate for the received packet.
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Driver Implementations of the xLoad( ) Routine

A driver must implement an xLoad( ) routine. In a VxBus network driver, since the 
driver itself passes the address of this routine to muxDevLoad( ), the xLoad( ) 
routine need not be public; however, for a legacy END driver, the MUX accesses 
the xLoad( ) routine directly, outside of the driver, and it must be globally visible. 
It is usually the only globally visible routine for such a driver.

Before the stack can use a network interface to send and receive frames, it must 
load the appropriate network device into the MUX, attach services to the network 
driver, and configure the interface at the service level (for example, by assigning IP 
addresses). The tUsrRoot task loads network devices into the MUX by calling the 
muxDevConnect( ) method for any VxBus network drivers or muxDevLoad( ) for 
all the (non-VxBus) network drivers that are in endDevTbl[ ]. The entries in this 
table provide all the information needed to call muxDevLoad( ). This includes a 
reference to the driver’s xLoad( ) routine (or in some cases, a wrapper that the BSP 
provides that in turn calls the driver’s xLoad( ) routine).

As input, the xLoad( ) routine takes an initialization string, as well as an optional 
argument provided by the BSP or VxBus driver.

Write your driver’s xLoad( ) routine as a two-pass algorithm. The MUX calls it 
twice during the load procedure. In the first pass, the initialization string argument 
points to a buffer starting with a zero byte. The xLoad( ) routine is expected to 
check for this empty string and overwrite it with a string containing the prefix 
name of the device (such as “fei” or “emac”). This informs muxDevLoad( ) about 
the driver-specific interface name prefix. 

The MUX then calls your xLoad( ) routine a second time. This time the 
initialization string starts with a decimal unit number string, followed by a colon, 
followed by the contents of the initialization string from the endDevTbl[ ] that 
tUsrRoot passed to muxDevLoad( ). Your xLoad( ) routine must then return a 
pointer to the END_OBJ-derived DRV_CTRL object that it creates, or a NULL if the 
load fails.

VxBus network drivers typically pass NULL to muxDevLoad( ) as the initialization 
string, and pass the instance’s VXB_DEVICE_ID as the optional argument; the 
xLoad( ) routine gets all the information it needs from the device ID and the VxBus 
parameter system. Older network drivers pass an initialization string that is 
typically a driver-specific colon-separated sequence of driver configuration 
parameters, and the xLoad( ) routine must tokenize and parse this string, which 
generally contains such things as the address of memory mapped registers for the 
device, the number of receive and transmit descriptors to use, the PHY address, 
and special device flags or options.

5.8  MUX Routines for Network Drivers

The MUX provides a small number of routines intended specifically for use by 
network drivers.  This section discusses these functions. It only considers routines 
provided by the MUX proper; libraries such as netBufLib, ipnet_pkt_pool, 
jobQueueLib, etherMultiLib, endEtherHdr, and others provide many additional 
support routines usable by network drivers.
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All of the routines discussed in this section must be called only in the context of the 
network job queue used by the network device. If the IPNET stack is bound to the 
device, that network job queue must be the one with ID netJobQueueId, which is 
serviced by the tNet0 task.  Executing the routines in any other task would lead to 
mutual exclusion failure and possible instability.

5.8.1  Receive Routine

The first routine that the MUX provides is provided as the receiveRtn function 
pointer installed by muxDevLoad( ) in the device's END_OBJ structure.  The 
routine installed by the MUX is either muxReceive( ) (for M_BLK-oriented drivers) 
or mux2Receive( ) (for IPNET-native drivers); however, the driver should never 
call these routines directly, but only via the END_RCV_RTN_CALL( ) or 
END2_RCV_RTN_CALL( ) macros provided by endLib.h for M_BLK-oriented and 
IPNET-native drivers respectively. The macros make the call using the receiveRtn 
function pointer. This allows other software to replace the receiveRtn function 
pointer to intercept receive calls from a device and apply alternate processing.

An M_BLK-oriented driver calls the receive routine as:

END_RCV_RTN_CALL (pEnd, pMblk);

where pEnd is a pointer to the device's END_OBJ structure, and pMblk is an 
initialized M_BLK tuple describing the received packet; while an IPNET-native 
driver calls the receive routine as:

END2_RCV_RTN_CALL (pEnd, pkt);

Here pEnd is as above, but pkt is a pointer to an initialized Ipcom_pkt describing 
the received packet.

In either case, the IPNET stack requires that the received packet be described as a 
single contiguous data segment.  Note that IPNET requires only 2-byte alignment 
for the network-layer header. 

See the VxWorks Device Driver Developer's Guide for more detailed information on 
what M_BLK or Ipcom_pkt members need to be set to describe the received packet.

5.8.2  Transmit Restart Routine

The MUX provides the routine:

void muxTxRestart(void * pEnd);

that a driver is expected to call some time after its send routine has returned 
indicating a transmit 'stall', that is a return value of END_ERR_BLOCK for an 
M_BLK oriented driver, or of -IP_ERRNO_EWOULDBLOCK for an IPNET-native 
driver.  The driver calls this routine when it determines that a new send may 
succeed; usually when an in-progress transmit completes and space opens up after 
the driver cleans the transmit ring.  This routine informs all network services 
bound to the device (and that provided a protocol TX restart callback function) that 
they may attempt to send again.  Protocols may use this signal to implement 
transmit flow control.

A driver should call muxTxRestart( ) only from a job on the device's network job 
queue. The driver's transmit mutex should not be held across the call to 
muxTxRestart( ), to avoid possible misorderings with respect to protocol-level 
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mutual exclusion held across calls to the driver's send( ) routine.  Note that the 
driver's send( ) routine may well be called several times as part of the call to 
muxTxRestart( ).

5.8.3  Notifying the MUX of Device Events

The MUX provides several functions that let a network driver notify the MUX 
about various events affecting a device.  The MUX code notifies the protocols 
bound to the device.  The fundamental routine is:

void muxError
(
void *    pCookie,                        /* END_OBJ */
END_ERR * pError                          /* Error structure. */
)

The driver must call this routine from within a network job posted to the device's 
job queue.  The driver passes muxError( ) a pointer to the device's END_OBJ, and 
a pointer to an END_ERR structure, defined in the target/h/end.h header file:

typedef struct end_err
{
INT32 errCode;           /* Error code, see above. */
char* pMesg;             /* NULL terminated error message */
void* pSpare;            /* Pointer to user-defined data. */
} END_ERR;

The end.h header lists several 'error codes', really just event codes, that may be set 
in the first member of this structure. Not all of these error codes are used by 
network drivers.  The MUX uses the muxError( ) notification mechanism 
internally for per-END-device events that it generates, or that protocol actions 
generate. The events most commonly used by network drivers are the following:

END_ERR_LINKDOWN
the device's connection to the media has gone down

END_ERR_LINKUP 
the device's connection to the media has become active

END_ERR_NO_BUF 
the device could not deliver a received packet to the stack because it has run 
out of packet buffers

Note that the codes END_ERR_DOWN, END_ERR_UP, and END_ERR_FLAGS are 
handled internally by the MUX; drivers should not generate these events. The 
pMesg argument should point to a short, static, human readable string describing 
the error.  (This message is not automatically logged.) The pSpare argument is a 
placeholder for a pointer to additional event-specific data, but no conventions 
have been established for its use.  Protocols attached to the device generally only 
look at the errCode member,  will ignore any events with error code values that 
they do not recognize or do not care about. More convenient functions exist for the 
cases of END_ERR_LINKDOWN and END_ERR_LINKUP. 

void muxLinkUpNotify (END_OBJ * pEnd);
void muxLinkDownNotify (END_OBJ * pEnd);

These events are often generated from a VxBus driver's {miiMediaUpdate}( ) 
method (also known as the 'link update' method), which is called by the MII 
monitor task if it detects a change in link state.  The driver posts 
muxLinkUpNotify( ) as a network job to the device job queue if the link state has 
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changed from inactive to to active, or posts muxLinkDownNotify( ) if the link 
state has changed from active to inactive.

5.9  Queueing Work to the Network Job Queues

The network stack initialization code spawns (by default) a single network job 
queue to handle network-related work, primarily for network interface drivers. 
The job queue is serviced by a single VxWorks task named tNet0.  While it is 
possible to configure the network stack startup code to create multiple job queues 
and spawn a task for each job queue, in VxWorks 6.7 only one of these queues, that 
serviced by the tNet0 task, may execute IPNET stack protocol code, and so only 
that job queue is suitable for use as the job queue associated with any network 
device to which the IPNET stack will bind.  A job queue is identified by its 
JOB_QUEUE_ID, which drivers should treat as an opaque value.  The 
JOB_QUEUE_ID for the job queue serviced by the tNet0 network daemon task is 
available in the variable netJobQueueId, declared in netLib.h.

The best way to post work to a network job queue is to call the jobQueuePost( ) 
routine:

STATUS jobQueuePost
(
JOB_QUEUE_ID jobQueueId,
QJOB * pJob
)

The job to be done is represented by a QJOB object, the structure of which is 
declared in jobQueueLib.h as:

typedef struct _QJOB
{
struct _QJOB * pNext;
UINT32 priInfo; /* modify with QJOB_SET_PRI () */
QJOB_FUNC func; /* function to execute */
} QJOB;

The QJOB_FUNC is declared as:

typedef void (* QJOB_FUNC) (void *);

The members of the QJOB class are as follows:

pNext 
jobQueueLib uses the pNext member internally for queueing jobs. The driver 
may ignore this field.

priInfo 
The priInfo member records the job priority (0 through 31), as well as some 
other flags used internally by jobQueueLib. The network daemon that is 
running the job queue services queued jobs in strict priority order, treating 31 
as the highest priority. You should set the priInfo member to a priority value 
between 0 and 31; this will ensure that the bits used internally by 
jobQueueLib start out cleared. Unless the driver has a specific reason for 
doing otherwise, it should choose the default priority NET_TASK_QJOB_PRI 
(16) as defined in installDir/components/ip_net2-6.x/vxmux/include/netLib.h
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func 
The func member is the routine that is executed by the task that services the 
job queue when this job runs. That task passes this routine a single argument, 
which is a pointer to the QJOB.

A driver is responsible for allocating its own QJOBs. A driver needs one QJOB for 
each type of work it would like to post from an ISR. A driver that uses a single ISR 
to handle all device interrupts might use only a single QJOB, while another driver 
might use three separate QJOBs for receive work, transmit cleanup, and error 
handling, respectively. But your driver needs only a small, finite number of QJOBs, 
and typically embeds them in its driver control structure for the device.

A driver initializes its QJOB members at initialization time, typically in its load or 
start routine, and usually leaves them unchanged after that. The following code 
snippet shows how a hypothetical “quik” driver might initialize three QJOB 
members embedded in its driver control structure:

pDrvCtrl->quikTxJob.func = quikTxHandle;
pDrvCtrl->quikTxJob.priInfo = NET_TASK_QJOB_PRI;
pDrvCtrl->quikRxJob.func = quikRxHandle;
pDrvCtrl->quikRxJob.priInfo  = NET_TASK_QJOB_PRI;
pDrvCtrl->quikErrJob.func = quikErrHandle;
pDrvCtrl->quikErrJob.priInfo = NET_TASK_QJOB_PRI;

Here is how the receive interrupt might post the quikRxJob to execute 
quikRxHandle( ):

jobQueuePost (pDrvCtrl->jobQueueId, &pDrvCtrl->quikRxJob);

Here is how the quikRxHandle( ) job handler routine might recover the driver 
control structure from its argument, which is a pointer to pDrvCtrl->quickRxJob:

LOCAL void quikRxHandle
(
QJOB * pJob
)
{
QUIK_DRV_CTRL * pDrvCtrl = member_to_object (pJob, QUIK_DRV_CTRL,

quikRxJob);
...
/* 
* Do a bounded amount of RX work, then requeue the job if there is
* still more work to do; otherwise, reenable RX interrupts, and
* return.
*/

...
}

The member_to_object( ) macro shown above, declared in jobQueueLib.h, 
converts the address of a member of a structure to the address of the structure 
itself.

The jobQueuePost( ) routine enqueues the specified job onto the specified job 
queue, and if necessary unpends the task that services the job queue. That task 
services any queued jobs in strict priority order. As it services each queued job, it 
dequeues the job object just before calling the routine specified by the job object’s 
func member. While the job is enqueued, attempts to requeue it by calling 
jobQueuePost( ) again will have no effect, but you should avoid such calls. 
Certainly the driver should not modify a QJOB object while it is enqueued; during 
this time it is considered to be owned by the job queue itself. To avoid the ISR’s 
reposting the job when it is enqueued, it may be sufficient for the device to lock 
device interrupts, when shared interrupts are not a factor. But if other devices can 
share the interrupt line that the device uses, then it may be necessary for the device 
to maintain a separate atomic flag to indicate whether the device has already 
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posted the job. For some devices, the device interrupt mask register can play the 
role of this flag. The job handler routine must take care when it clears the flag and 
reenables interrupts, so as to avoid races that could either prevent the driver from 
receiving any further packets, or that could occasionally cause those packets that 
it receives to languish without the driver servicing them until the arrival of a 
subsequent packet.

It is possible (and convenient) for a QJOB to repost itself from the QJOB’s handler 
routine. You cannot cancel a job you have already queued. This may become 
relevant when an interface shuts down; the driver must use some other mechanism 
(such as an atomic flag) to wait until the jobs in the queue execute, and then 
prevent further queuing of the jobs.

Network job queues are usually shared by multiple network interfaces, and by 
network protocol code also. It is possible to design a driver that starves the 
network stack and other drivers. When a driver uses taskDelay( ), or any other 
delay mechanism, in code that executes in the context of a network job queue 
daemon, the delay prevents the task from processing packets from other interfaces. 
For this reason, you must carefully consider using delays in the driver. Consider 
rescheduling the job with another jobQueuePost( ) call instead of delaying. This 
allows other interfaces, as well as the network stack, to perform other work while 
the driver is waiting. 

Because interrupts are relatively costly in terms of overall system performance, 
one recommended goal of network drivers is to process many packets before 
reenabling interrupts. However, to avoid starvation of other interfaces, the driver 
should enforce a cap on the number of packets that it processes at any one time. If 
additional packets are available when the cap is reached, the driver can reschedule 
the receive routine with another call to jobQueuePost( ). 

5.10  Collecting and Reporting Packet Statistics

This section describes the interfaces by which drivers collect and report packet 
statistics to attached network services. Note that services have the option to 
maintain interface statistics on their own, ignoring the statistics that are collected 
by the driver and device. However, making use of the statistics collected by the 
driver, in particular when polled-mode statistics is used with hardware support, 
may be more efficient.

There are two interfaces which a driver can use to report packet statistics to the 
higher levels. M_BLK-oriented drivers may use the endM2Packet( ) API, which  
allows software collection of interface statistics on a per-packet basis. 
Alternatively, M_BLK-oriented or IPNET-native drivers can collect (often with 
hardware support) statistics which may be polled (at fairly low frequency) by the 
upper levels.  Enabling this polling requires including the components 
INCLUDE_END_POLLED_STATS and INCLUDE_MIB2_IF in the VxWorks image.

In the present release, statistics collected by the driver in either of these two ways 
are reported only via the m2IfLib MIB-II interface library used by the SNMP agent.  
The IPNET stack maintains separate per-device statistics in software, some of 
which may be queried using the ifconfig command.



5  Integrating a New Network Device Driver
5.10  Collecting and Reporting Packet Statistics

103

5.10.1  Calling the Driver Routines

A driver’s load routine should call endM2Init( ) to provide needed interface 
information to the stack. This includes the interface type, the MAC address and its 
length, the MTU, the interface’s data rate (that is, wire speed), and interface flags. 

The endM2Init( ) routine will initialize the MIB interface data structures and store 
this information as appropriate to either RFC 1213 or RFC 2233, whichever is 
configured into the VxWorks image. For example: 

endM2Init(&pDrvCtrl->endObj, M2_ifType_ethernet_csmacd, 
(u_char *) &pDrvCtrl->enetAddr, 6, ETHERMTU, MOT_TSEC_PHY_SPEED_1000, 
IFF_NOTRAILERS | IFF_MULTICAST | IFF_BROADCAST | IFF_SIMPLEX); 

The driver’s unload routine calls endM2Free( ) to release any MIB-related data 
structures for which memory was allocated by endM2Init( ). 

endM2Free (&pDrvCtrl->endObj); 

If a driver wishes to support the polled statistics mode, it adds two members to its 
device control structure: 

END_IFDRVCONF endStatsConf; 
END_IFCOUNTERS endStatsCounters; 

The driver load routine should initialize these members after calling endM2Init( ): 

bzero ((char *)&pDrvCtrl->endStatsCounters, sizeof(END_IFCOUNTERS)); 
pDrvCtrl->endStatsConf.ifPollInterval = sysClkRateGet(); 
pDrvCtrl->endStatsConf.ifEndObj = &pDrvCtrl->endObj; 
pDrvCtrl->endStatsConf.ifValidCounters = (END_IFINUCASTPKTS_VALID 
| END_IFINMULTICASTPKTS_VALID | END_IFINBROADCASTPKTS_VALID 
| END_IFINOCTETS_VALID | END_IFOUTOCTETS_VALID
| END_IFOUTUCASTPKTS_VALID | END_IFOUTMULTICASTPKTS_VALID
| END_IFOUTBROADCASTPKTS_VALID); 

The ifValidCounters member is a set of bit flags indicating which statistics the 
driver supports, that is: which of the END_IFCOUNTERS members the driver will 
fill in. The ifPollInterval member sets the period (in system clock ticks) at which 
the stack polls statistics. 

The ifEndObj merely points to the END_OBJ structure for the interface. 

The remaining members of the END_IFDRVCONF structure are initialized by code 
outside the driver. 

The driver’s xIoctl( ) routine should implement a few MIB-related commands. The 
following code comes from the motTsecEnd.c driver (and some additional 
comments have been added): 

/* 
* Drivers should support EIOCGMIB2233 and EIOCGMIB2 by calling endM2Ioctl().
*/ 
case EIOCGMIB2233: 
case EIOCGMIB2: 

/* These commands retrieve the interface statistical 
* data structures used for RFC 2233 or RFC 1213, respectively. 
* Note that the driver doesn't access these directly. 
*/ 
error = endM2Ioctl (&pDrvCtrl->endObj, cmd, data); 
break; 

/* 
* The EIOCGPOLLCONF and EIOCGPOLLSTATS commands are implemented 
* only if the driver wishes to support polled statistics retrieval. 
* EIOCGPOLLCONF retrieves a pointer to the polling configuration 
* structure (as initialized by the driver load routine). 
* EIOCGPOLLSTATS first collects the statistics into the 
* END_IFCOUNTERS structure, retrieving them from the hardware if 
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* necessary, and the stores a pointer to that structure at the 
* indicated address. 
*/ 
case EIOCGPOLLCONF: 

if ((data == NULL)) 
error = EINVAL; 

else 
*((END_IFDRVCONF **)data) = &pDrvCtrl->endStatsConf; 

break; 

case EIOCGPOLLSTATS: 
if ((data == NULL)) 

error = EINVAL; 
else 

{ 
/* retrieve the statistics from the hardware */ 
error = motTsecEndStatsDump(pDrvCtrl); 
if (error == OK) 

*((END_IFCOUNTERS **)data) = &pDrvCtrl->endStatsCounters; 
} 

break;

A VxBus network driver enables polled-mode statistics collection in its 
{muxDevConnect}( ) or {mux2DevConnect}( ) method by means of code like the 
following:

        if (_func_m2PollStatsIfPoll != NULL)
            endPollStatsInit (pDrvCtrl->geiMuxDevCookie,
                              _func_m2PollStatsIfPoll);

The _func_m2PollStatsIfPoll function pointer is used to avoid a direct reference 
to the m2PollStatsIfPoll( ) function, for cases when INCLUDE_MIB2_IF is not 
included in the image.  For legacy network drivers, the network stack initialization 
code takes care of calling endPollStatsInit( ) for each device in the endDevTbl 
array, if INCLUDE_END_POLLED_STATS is included in the image.

Polling takes place by calling muxIoctl( ) with the EIOCGPOLLSTATS command 
for the desired network device. The handler for that command should retrieve 
from the hardware the supported statistics and store them in the appropriate 
members of the driver’s END_IFCOUNTERS structure (endStatsCounters in the 
example above). The counts stored should be the counts accumulated since the last 
polling call, or (on the first call only) those accumulated since the interface was 
started. 

A driver which does not support the polled mode statistics collection should not 
implement the EIOCGPOLLCONF and EIOCGPOLLSTATS MUX ioctl commands. 
Instead, it accumulates statistics per packet by calling the endM2Packet( ) routine, 
as follows. 

For successfully transmitted packets, the driver calls: 

endM2Packet(&pDrvCtrl->endObj, pMblk, M2_PACKET_OUT); 

For packets which could not be transmitted due to a resource limitation (not for 
normal TX stalls), the driver should call: 

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_OUT_DISCARD); 

For packets which the driver detected a transmission error (not a resource 
limitation or a normal TX stall), the driver calls: 

endM2Packet(&pDrvCtrl->endObj, NULL, M2_PACKET_OUT_ERROR); 

For successfully received packets, the driver calls: 

endM2Packet(&pDrvCtrl->endObj, pMblk, M2_PACKET_IN); 
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For packets received with errors, the driver calls: 

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_IN_ERROR); 

(In such a case, the driver does not ordinarily deliver the packets to the stack). For 
packets which could not be received due to resource limits, the driver should call: 

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_IN_DISCARD); 

Note that collection of such failure statistics could be a best-effort activity. 
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6.1  Introduction 

This chapter describes how to integrate a new network service with the 
Wind River Network Stack. By a network service, or equivalently a network 
protocol, we mean here an implementation of the network layer (layer 3) of the OSI 
network model. The service may also implement the transport or higher levels of 
a network stack; however it is the network layer that interfaces with the MUX.

Figure 3-1 shows how network services communicate with the data link layer 
through the MUX interface. Part of porting a new network service to the network 
stack is porting its data link layer access code to use the MUX interface. Everything 
specific to the network interface is handled in the drivers of the data link layer, 
which are described in 5. Integrating a New Network Device Driver. 

6.2  Implementing the MUX/Network Service Interface

A network service sends and receives packets through the MUX interface. At 
minimum, to work with the MUX your service must implement an initialization 
routine and routines that support packet transfer and error reporting.

NOTE:  By using “network service” in this sense, we are explicitly excluding TCP 
or UDP socket applications running on top of the Wind River Network Stack. Such 
services do not interact directly with the MUX; the Wind River Network Stack's IP 
protocols (and related protocols such as ARP), are what we would consider the 
'network services' in this case.
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6.2.1  Initializing the Interface

Besides loading a network device into the MUX and starting it, you usually want 
to attach a network stack—that is, a collection of network protocols—to the device. 
A stack must provide a means of attaching itself to a network device. For example, 
you can attach the current version of the Wind River Network Stack to a network 
device by calling either of the following routines:

■ ipcom_drv_eth_init (const char * drvname, Ip_u32 drvunit,
const char * ifname) 

■ ipAttach (int drvunit, char * drvname) 

The arguments are in slightly different formats in these routines. 
ipcom_drv_eth_init( ) is the lowest-level function, and ipAttach( ) is provided for 
compatibility with previous versions of the Wind River Wind River 
Network Stack. 

The drvname and drvunit arguments are the device name and unit number, 
respectively, as seen by the MUX and the network driver. If you call 
ipcom_drv_eth_init( ), you can optionally specify an interface name, to be used by 
the network stack, that differs from the driver-level name. For example, the 
following call attaches to the fei2 network interface, but calls it eth0 at the stack 
level:

ipcom_drv_eth_init ("fei", 2, "eth0");

On the other hand, the following call (which may be less confusing) attaches the 
network stack to the interface and uses the same interface name, fei2, in the stack 
that it uses at the driver level:

ipcom_drv_eth_init ("fei", 2, IP_NULL);

An ipAttach( ) counterpart to this second call would be:

ipAttach (2, "fei")

Calling ipcom_drv_eth_init( ) or ipAttach( ) makes the stack aware of the 
interface, and causes the stack to bind its protocols to the device. For example, for 
an IPv4-capable stack, at least the IPv4 and ARP protocols would be bound to the 
device, and possibly others.

Whether you write a stack of several protocols, or simply a single network service, 
you need to provide a similar routine that informs your service (or stack) of the 
network device, and causes it to bind to that device. For convenience, assume this 
routine is called xAttach( ) and that x is replaced with your service’s name. You can 
also modify the startup code to insert calls to xAttach( ) for particular devices. 
There is no standard interface to accomplish this. However Wind River 
recommends that you create a component descriptor file (.cdf file) and a 
configlette, so that your service can be handled by the Workbench Kernel 
Configuration Editor. For more information, see the VxWorks Kernel Programmer’s 
Guide.

Although it is not required, it is recommended practice to also provide an 
xDetach( ) to unbind your service from a network device and release internal 
service resources that refer to that device.
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6.2.2  Binding to a Network Device

A network service must bind to a network device (that has been loaded into the 
MUX) before it can send and receive packets through it. A service binds to a loaded 
network device by calling one of the three routines muxBind( ), muxTkBind( ), or 
mux2Bind( ).  The first two of these routines are for M_BLK oriented protocols, 
while mux2Bind( ) is provided to bind an Ipcom_pkt-oriented protocol. 

Let us consider the (somewhat similar) arguments to muxBind( ), muxTkBind( ), 
and mux2Bind( ):

PROTO_COOKIE muxBind
(
char * pName,
int unit,
BOOL (*stackRcvRtn) (void*, long, M_BLK_ID, LL_HDR_INFO *, void*),
STATUS (*stackShutdownRtn) (void*, void*),
STATUS (*stackTxRestartRtn) (void*, void*),
void (*stackErrorRtn) (END_OBJ*, END_ERR*, void*),
long type,
char* pProtoName,
void* pSpare
);

PROTO_COOKIE muxTkBind
(
char * pName,
int unit,
FUNCPTR  stackRcvRtn,
FUNCPTR stackShutdownRtn,
FUNCPTR stackTxRestartRtn,
VOIDFUNCPTR stackErrorRtn,
long type,
char * pProtoName,
void * pNetCallbackId,
void * pNetSvcInfo,
void * pNetDrvInfo
);

void * mux2Bind 
(
char * name,
int unit,
BOOL   (*stackRcvRtn) (void * callbackArg, struct Ipcom_pkt_struct * pkt),
STATUS (*stackShutdownRtn) (PROTO_COOKIE cookie, void * callbackArg),
STATUS (*stackTxRestartRtn) (void * callbackArg),
void   (*stackErrorRtn) (void * callbackArg, END_ERR * err), 
unsigned short type,
char * pProtoName,
void * callbackArg
);

NOTE:  The IPNET portion of the Wind River Network Stack binds its protocols 
using mux2Bind( ).) M_BLK oriented protocols that bind using muxBind( ) or 
muxTkBind( ) can bind to IPNET-native network devices; and 
Ipcom_pkt-oriented prototols that bind using mux2Bind( ) can bind to 
M_BLK-oriented device. However, in both of these cases, there is some packet 
format translation overhead incurred on each send and receive.  There is also some 
minimal API translation overhead when a protocol binds using muxTkBind( ) to 
an M_BLK-oriented (END-style) device. There is no translation overhead, however, 
when a protocol binds using muxBind( ) to an M_BLK-oriented driver, or binds to 
using mux2Bind( ) to an IPNET-native driver.a

a.  The muxTkBind( ) binding method had no translation overhead with the 
no-longer-supported NPT-style drivers.
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Each binding routine takes an initial two arguments specifying the driver name 
and device unit number of the device to bind to. Each routine also takes four 
function pointers to 'callback' routines that the MUX will call. The purpose of these 
routines is to:

■ deliver packets to the protocol

■ command the protocol to detach itself from the device

■ notify the protocol that transmission may continue after a send attempt 
'stalled'

■ notify the protocol of various other events relating to the device it is bound to.

The primary differences between the binding methods is the signatures of the 
callback functions. The muxTkBind( ) prototype, unfortunately, does not indicate 
the actual effective calling signature of its callbacks, but they are as follows:

BOOL   (*stackRcvRtn) (void*, long, M_BLK_ID, void *);
STATUS (*stackShutdownRtn) (void *);
STATUS (*stackTxRestartRtn) (void *);
void   (*stackErrorRtn) (void*, END_ERR*);

Each routine also takes a type argument, which is the network service type. This is 
either an 'ethertype' value1 identifying the layer 3 protocol (such as 0x0800 for 
IPv4, 0x0806 for ARP, and so on), or one of three special service types not 
associated with a particular layer 3 protocol number. This is discussed more fully 
below.

Each bind routine is also passed a string naming the protocol, which is used in 
muxShow( ) output, and a void * argument (variously called pSpare, 
pNetCallbackId, or callbackArg) that is passed to each of the callback functions as one 
of its arguments.

A service may bind to more than one network interface; we call the pairing of a 
network interface with the service bound to it, a 'binding instance.' Each of the 
routines returns an opaque value—a protocol binding cookie—that identifies the 
binding instance to the MUX.  The return value may be used in calls to MUX 
routines that expect a protocol binding cookie argument, such as muxSend( ), 
muxTkSend( ), muxTkPollReceive( ), muxIoctl( ), muxUnbind( ), 
muxProtoInfoGet( ), and others.

The muxTkBind( ) API has two additional arguments, pNetSvcInfo and 
pNetDrvInfo, that relate to the very rarely used END_BIND_QUERY mechanism.  
This mechanism allows a driver to be notified of protocols binding to its devices, 
and to potentially exchange information between a protocol that is binding and the 
device driver.  

With regard to the network service type value, a service is called a “normal 
service” or a “typed protocol” if this value is an ethertype identifying a particular 
layer 3 protocol. Otherwise, the network service type must be one of the following 
three special values.

■ A MUX_PROTO_SNARF type service (or snarf protocol) sees all the received 
packets that are processed by any device to which it is bound, and that are not 
consumed by an earlier-bound snarf service.

1. Ethertype values are defined by RFC 1700 and other sources.
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■ A MUX_PROTO_PROMISC type service (promiscuous protocol) sees all 
received packets that are processed by any device to which it is bound, that are 
not consumed by any snarf, normal, or earlier-bound promiscuous protocol.

■ A MUX_PROTO_OUTPUT type service sees outgoing rather than incoming 
packets.

A normal service (or “typed” protocol) sees only packets received by the devices 
that it is bound to, that match its type, and that were not consumed by any snarf 
service. At most one typed protocol of a given network service type may be bound 
to a network device. For any packet received on a device, any snarf services bound 
to the device see the packet first, then the bound normal service that matches the 
packet’s service type (if any), then any promiscuous protocol bound to the device; 
always with the proviso that if an earlier service consumes the packet, it will not 
be seen by any later service.

A service consumes a packet by returning TRUE (or any nonzero value) from its 
receive routine; it is then responsible for freeing the packet. A service receive 
routine that does not consume a packet passed to its receive routine returns FALSE 
and should not modify or free the packet.

6.2.3  Using MUX/Service Interface Routines

The subsections that follow provide an overview of how a network service handles 
the following tasks:

■ sending packets

■ controlling devices

■ shutting down an interface

Sending Packets

A service sends packets over a network device by calling one of the three routines2:

int mux2Send (END_OBJ * pEnd, struct Ipcom_pkt_struct * pkt);

STATUS muxSend (PROTO_COOKIE cookie, M_BLK_ID pMblk);

STATUS muxTkSend (PROTO_COOKIE cookie, M_BLK_ID pNBuff, char * destAddr,
USHORT svcType, void * extra);

NOTE:  Since snarf services process all packets before any typed protocol sees them, 
the presence of snarf services can decrease the receive performance of all typed 
protocols bound to the same interface. The WDB agent, when running using the 
WDB_COMM_END communication type, attaches itself to a network device as a 
snarf service. When measuring network performance, either do not include the 
WDB agent, or run performance benchmarks over different interfaces than the one 
to which the WDB agent is attached (unless you really intend to measure the 
performance impact of the WDB agent). Some snarf protocols may not need to be 
permanently attached to an interface. It will help performance to detach any such 
snarf protocol from an interface when it is not needed, only reattaching it later if it 
is needed again.

2. Here we consider only normal sends, not polled mode sends.
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The first routine represents the packet as an Ipcom_pkt structure (or a chain of such 
structures), while the latter two routines represent a packet as an M_BLK tuple (or 
chain of such tuples).

First Argument

The first argument of each routine identifies the network device over which to 
send the packet.  For mux2Send( ), this argument is explicitly a pointer to an 
END_OBJ, while the latter two functions expect a protocol binding cookie. In this 
release, muxSend( ) and muxTkSend( ) will accept an END_OBJ pointer in place of 
the protocol cookie, so, in fact, all of the functions can be called with an END_OBJ 
pointer as the first argument. But mux2Send( ) may not be passed a protocol 
binding cookie as its first argument.

muxTkSend( ) Additional Arguments

The muxTkSend( ) routine differs in that it has additional arguments. When the 
destAddr argument is not NULL, the packet in the pNBuff buffer does not have a 
link header; destAddr points at a link-layer destination address (such as a 6-byte 
ethernet MAC address), and svcType contains the network service type for the 
outgoing packet, already converted to network byte order. The MUX3 is expected 
to prepend a full link-layer header to the provided packet. When destAddr is 
NULL, the packet pNBuff already contains a full link-level header.  The extra 
argument is a remnant from the no-longer-supported NPT driver style; it provided 
a way that a muxTkSend( ) could pass additional data to the NPT driver send 
routine.  However, in this release and later, this argument is unused and should be 
set to NULL.

Return Value

All three “send” routines return OK (zero) if the send succeeds; in that case, the 
driver takes ownership of the packet, and frees it when transmission completes.  

But if mux2Send( ) returns -IP_ERRNO_EWOULDBLOCK, or if either of the other 
two routines returns END_ERR_BLOCK, this indicates that the device does not 
have sufficient resources—usually, space in the TX DMA ring—to complete the 
send at present. This is called a “transmit stall.” The caller maintains ownership of 
the packet, and the driver arranges to call muxTxRestart( ) later, when the send 
might succeed if retried. The muxTxRestart( ) call by the driver results in a call to 
the transmit restart routines of all services bound to the device, as discussed below.

Any other return value is unexpected, and probably indicates a defect. The driver's 
send routine frees the packet in this case. One condition that could cause such an 
error in some drivers, and might crash others, is if the packet that the caller is 
attempting to send is longer than the maximum frame size for the device (such as 
1518 bytes for ethernet when VLAN tags are allowed and jumbo frames are not 
enabled). It is the responsibility of the caller to respect the device's MTU. 4

3. Or an NPT-style driver, no longer supported.
4. The device's current MTU may be fetched using the EIOCGIFMTU END ioctl command, or 

set (within the device limit) using the EIOCSIFMTU END ioctl.  However, coordination 
between multiple services attached to a device when one of them changes the configured 
MTU of the device is not automatic, and may be problematic. For such shared devices, it 
may be best not to change the device from its default MTU, unless some sort of out-of-band 
coordination between the bound services is arranged.
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Constructing Link Level Headers

Both mux2Send( ) and muxSend( ) require full packets with link-level headers 
included. muxTkSend( ) allows omitting the link level header, but it is more 
efficient for a service to construct the link header itself rather than to allow 
muxTkSend( ) to construct the link header. This is primarily because if 
muxTkSend( ) constructs the link header itself, and the driver send returns 
END_ERR_BLOCK, then muxTkSend( ) would have to restore the packet to its 
original state without a link header. Since the packet will either be dropped or 
queued for resending by the service, this is probably wasted effort.

If a service will add the link header to a network-layer datagram, it must first 
perform any necessary conversion from service addresses to the link-layer 
addresses appropriate to the device being used.  Knowing the destination and 
source link-layer addresses and the network service type, an M_BLK oriented 
service  may call muxAddressForm( ) or muxLinkHeaderCreate( ) to prefix a link 
header to a packet, making use of the device's xFormAddress( ) routine.  A 
mux2Bind( ) service bound to an IPNET-native device could use the analogous 
formLinkHdr function pointer member of the device's END_OBJ to do the same 
thing, using Ipcom_pkt packets.  Alternatively, if the service knows the type of the 
END interface being used, and knows the format of the link header for that specific 
interface type, the service may use its own means to construct a link header; 
however, the service might not automatically work with other types of device 
drivers that provide their own special xFormAddress( ) or formLinkHdr( ) 
routines. The IPNET protocols currently follow the latter approach, and construct 
link headers themselves.

Shutting Down an Interface

Relatively few applications need to unload a network device from the MUX, but 
for those that do, the MUX provides the function muxDevUnload( ). If your 
application calls muxDevUnload( ), the MUX calls the xStackShutdownRtn( ) 
routine registered at bind time for each network service that is still bound to the 
device (see xStackShutdownRtn( ), p.114).

Within this shutdown routine, the network service must start the process of 
detaching from the device. This process includes calling muxUnbind( ) to unbind 
the network service from the device. It is not necessary that the shutdown routine 
actually complete the detach process (that is, call muxUnbind( )) within the 
shutdown routine itself, but the shutdown routine must at least schedule this 
work. If any of the xStackShutdownRtn( ) calls returns a value other than OK, 
muxDevUnload( ) immediately returns ERROR. If all of the bound service 
xStackShutdownRtn( ) calls return OK, then when all services have completed 
unbinding from the device, and when any additional references to the device that 
were acquired using muxDevAcquire( ) are released using muxDevRelease( ), the 
device is removed from the MUX, the driver's unload routine is called.

! WARNING:  Do not call muxDevUnload( ) for a device managed by a VxBus driver.  
VxBus drivers expect to call muxDevUnload( ) themselves in their 
{vxbDrvUnlink}( ) methods, and instability may result if muxDevUnload( ) is 
called for a VxBus network device instance by other code. See the VxWorks Device 
Driver Developer's Guide for more information about unloading VxBus network 
devices.
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As it may be difficult for some services to accomplish all the work necessary to 
close and detach from a network interface entirely in the context of the 
synchronous xStackShutdownRtn( ) callback, some applications may find it more 
convenient to start the process of detaching services from a network interface first 
(using service-specific detach routines), calling muxDevUnload( ) only after all 
such problematic services have completed unbinding from the interface.

6.2.4  Service Routines Registered when Binding to a Device

When a network service binds to a network driver through the MUX, it must 
provide references to routines that the MUX can call to handle the following:

■ passing a packet into the service

■ passing exceptional event notifications to the service

■ restarting transmission by the service through the network device

■ shutting down the network service

The prototypes of the routines that you specify to handle these cases differ 
depending on which routine you call to bind the service to a network interface in 
the MUX (mux2Bind( ), muxTkBind( ), or muxBind( )). This section describes the 
four MUX interface routines that a service implements and references in a 
mux[Tk]Bind( ) call.

xStackShutdownRtn( )

If your application calls muxDevUnload( ) for a loaded network device, 
muxDevUnload( ) in turn calls the xStackShutdownRtn( ) of each service that is 
bound to that device.

Within this routine, the network service must do whatever is necessary to initiate 
the process of detaching the service from the device. This process includes 
releasing any internal references the service has to the device and calling 
muxUnbind( ) to unbind the service from the device. However, the process need 
not be completed in xStackShutdownRtn( ). The current implementation uses a 
reference count mechanism, and completes the unload process when all services 
have unbound from the device and any other references acquired using 
muxDevAcquire( ) have been released.

mux2Bind( ) Version

For a service bound with mux2Bind( ), the xStackShutdownRtn( ) prototype is:

STATUS xStackShutdownRtn 
(
PROTO_COOKIE cookie,    /* return value from mux2Bind() */
void * netCallbackId    /* identifies the device to the service */
)

! WARNING:  It is not safe to call muxDevUnload( ) for an interface unless all the 
protocols that are bound to it support a working xStackShutdownRtn callback 
routine. In particular, since the WDB agent does not currently support unbinding 
from an END device, do not attempt to unload a device to which the WDB agent 
is bound; the muxDevUnload( ) call will pend forever.
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The cookie argument is the binding instance cookie returned by mux2Bind( ). This 
is probably not useful to the routine.

The netCallbackId parameter is the “callbackArg” that is passed to mux2Bind( ). 
This value is opaque to the MUX, but the network service understands it and uses 
it to identify the particular network interface that is being shut down. It is typically 
a pointer to the service's data structure that represents that interface.

muxTkBind( ) Version

For a service bound with muxTkBind( ), the xStackShutdownRtn( ) prototype is:

STATUS xStackShutdownRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

The MUX passes this routine a single argument, which is the identifier that the 
service passed into the MUX during the muxTkBind( ) call. This value is opaque 
to the MUX, but the network service understands it and uses it to identify the 
particular network interface. It is typically a pointer to the service’s data structure 
that represents that interface.

muxBind( ) Version

For a service bound with muxBind( ), the xStackShutdownRtn( ) prototype is:

STATUS xStackShutdownRtn
(
void * pBindCookie, /* binding cookie returned from muxBind() */
void * netCallbackId /* the handle/ID installed at bind time */
)

The MUX passes this routine two arguments:

■ The binding instance cookie that was returned from muxBind( ). 

■ The identifier that the service passed into the MUX during the muxBind( ) call. 
This value is opaque to the MUX, but the network service understands it and 
uses it to identify the particular END interface. It is typically a pointer to the 
service’s data structure that represents that interface.

xStackRcvRtn( )

The MUX delivers the packets it receives from the network device to a service by 
calling the xStackRcvRtn( ) callback that the service registered when it bound to 
the device. The xStackRcvRtn( ) is called only in the context of the network job 
queue used by the network interface.

The netCallbackId parameter that the MUX passes into xStackRcvRtn( ) is the 
callback argument that the service specified at bind time. The type parameter 
specifies the network service type of the packet. The pPkt parameter points to an 
M_BLK tuple (or Ipcom_pkt) that describes the packet. Currently, drivers must 
always provide received packets in a single contiguous data segment.

If a network service accepts the packet by returning TRUE, it takes ownership of 
the packet and is responsible for freeing the given M_BLK chain when the service 
is finished with it. If it returns FALSE, it should neither free nor modify the packet.
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mux2Bind( ) Version

For a service bound with mux2Bind( ), the xStackRcvRtn( ) prototype is:

BOOL xStackRcvRtn
(
void * netCallbackId, /* identifies the device to the service */
struct Ipcom_pkt_struct * pPkt /* the packet being delivered */
)

The netCallbackId parameter passed to mux2Bind( ) identifies the device to the 
service.

The pPkt parameter is a pointer to an Ipcom_pkt describing the packet being 
delivered. The network service type of the packet is available in the VxWorks-only 
net_svc member of the Ipcom_pkt structure. For more information on how 
packets are represented by Ipcom_pkt structures, see the VxWorks Device Driver 
Developer's Guide.

muxTkBind( ) Version

For a service bound with muxTkBind( ) the xStackRcvRtn( ) prototype is:

BOOL xStackRcvRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
long type, /* network service type of the packet */
M_BLK_ID pPkt, /* the packet as an M_BLK tuple chain*/
void * pSpareData /* pointer to optional data from driver */
)

For services bound with muxTkBind( ), the link header is always present in the 
cluster in the first tuple of the chain describing the packet, but the lead M_BLK may 
be adjusted to skip over the link header:

■ For normal typed protocols, pPkt->mBlkHdr.mData is advanced by the size 
of the link header, while pPkt->mBlkHdr.mLen and pPkt->mBlkPktHdr.len 
are decreased by the size of the link header.

■ For MUX_PROTO_SNARF and MUX_PROTO_PROMISC services, the lead 
M_BLK is not adjusted, that is pPkt->mBlkHdr.mData still points to the start 
of the link header, and pPkt->mBlkHdr.mLen and pPkt->mBlkPktHdr.len 
still include the length of the link header.

■ For MUX_PROTO_OUTPUT services bound to ENDs, pPkt->mBlkHdr.mData 
is advanced by the size of the link header, while pPkt->mBlkHdr.mLen and 
pPkt->mBlkPktHdr.len are decreased by the size of the link header. A pointer 
to the destination MAC address in the header is placed in 
pPkt->mBlkPktHdr.rcvif. 

■ The size of the link header (the network service offset) is stored in 
pPkt->mBlkHdr.offset1.

muxBind( ) Versions

For a service bound with muxBind( ) the xStackRcvRtn( ) prototype is:

BOOL xStackRcvRtn
(
void * pBindCookie, /* returned by muxBind() */
long type, /* the network service type of the packet*/
M_BLK_ID pPkt, /* the packet as an M_BLK tuple chain */
LL_HDR_INFO * pLLHInfo, /* link-level header info structure */
void * pCallbackId /* the handle/ID installed at bind time */
)
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In this version of xStackRcvRtn( ), pBindCookie is the binding cookie that is 
returned by muxBind( ). As this value is opaque to the service, it is probably less 
useful than the netCallbackId value passed into the other version of 
xStackRcvRtn( ).

For all services bound with muxBind( ), the link-level header is present at the start 
of the packet, and is described in the LL_HDR_INFO structure pointed to by the 
pLLHInfo argument. The MUX calls the END device’s xPacketDataGet( ) routine to 
parse the link header and fill out this structure. The most important information in 
this structure is the size of the link header, but it also holds the offsets and sizes of 
the source and destination link-level addresses, as well as (redundantly) the 
network service type of the packet.

xStackErrorRtn( )

A device notifies the MUX of various exceptional events it encounters by calling 
muxError( ), and the MUX forwards these to the network services that are bound 
to the device by calling xStackErrorRtn( ). It is the responsibility of the network 
service to take any necessary action when it receives the event notification.

The MUX passes this routine a pointer to an END_ERR structure and the callback 
argument netCallbackId that was passed at bind time.

mux2Bind( ) Version

For a service bound with mux2Bind( ), the xStackErrorRtn( ) prototype is:

void xStackErrorRtn
(
void * netCallbackId,  /* identifies the device to the service */
END_ERR * err          /* identifies the event */
)

muxTkBind( ) Version

For a service bound with muxTkBind( ) the xStackErrorRtn( ) prototype is:

void xStackErrorRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
END_ERR * pError /* pointer to structure containing error */
)

muxBind( ) Version

For a service bound with muxBind( ) the xStackErrorRtn( ) prototype is:

void xStackErrorRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
END_ERR * pError, /* pointer to structure containing error */
void * netCallbackId /* the handle/ID installed at bind time */
)

This version of the xStackErrorRtn( ) routine takes an additional argument, pEnd, 
which describes the END device.
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xStackRestartRtn( )

The MUX calls the xStackRestartRtn( ) routine to restart transmission over a 
network device by any network services bound to the device that care to do so.

When an device’s xSend( ) routine returns END_ERR_BLOCK (for an 
M_BLK-oriented driver) or -IP_ERRNO_EWOULDBLOCK (for an IPNET-native 
driver), it is indicating that it cannot schedule the packet for transmission 
immediately (usually due to a temporary lack of space in the transmit ring). The 
sending service may choose to drop the packet, or to hold on to it for later 
retransmission. Having returned END_ERR_BLOCK (or 
-IP_ERRNO_EWOULDBLOCK), the driver guarantees that it will call 
muxTxRestart( ) when the device is again ready to accept packets for transmission. 
muxTxRestart( ) calls the xStackRestartRtn( ) routine for each service that is 
bound to the device and that provided such a routine. The xStackRestartRtn( ) 
routine may respond by sending any packets that it has queued for the device, 
until it sends them all or the send routine returns END_ERR_BLOCK (or 
-IP_ERRNO_EWOULDBLOCK) once more.

The MUX passes this routine the callback argument value that the service passed 
to the bind routine.

mux2Bind( ) Version

For a service bound with mux2Bind( ), the xStackRestartRtn( ) prototype is

STATUS xStackRestartRtn
(
void * netCallbackId    /* identifies the device to the service */
s)

muxTkBind( ) Version

For a service bound with muxTkBind( ) the xStackRestartRtn( ) prototype is:

STATUS xStackRestartRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

muxBind( ) Version

For a service bound with muxBind( ) the xStackRestartRtn( ) prototype is:

STATUS xStackRestartRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
void * netCallbackId /* the handle/ID installed at bind time */
)

This version of the xStackRestartRtn( ) routine takes an additional argument, 
pEnd, which describes the END device.

6.3  Adding a Socket Interface to Your Service

One way to allow applications to access your network service is to add sockets 
support to the service. In order to make it easier for you to write a network service 
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that includes sockets support, the Wind River Network Stack includes a standard 
sockets interface.

With the standard socket interface, you can add new socket back ends to access 
your network service, and through it, the network. This allows developers who are 
already familiar with the standard sockets API to more easily use your service.

With the standard sockets interface, an application can create and use sockets of 
different address families, which may be managed by different back end service 
implementations. A layered architecture makes this possible. The Wind River 
standard sockets interface, implemented by sockLib, is a layer above your back 
end socket layer, as shown in Figure 6-1.

This section shows you how to implement a sockets back end.

6.3.1  Process Overview

To create a socket, an application calls the standard function socket( ), and receives 
a socket descriptor in return. The socket( ) routine looks up the correct back end 
implementation to use based upon the specified domain (address family) 
argument. If it finds a registered back end that handles that address family, 
socket( ) calls the back end’s socket creation function, obtaining back a data 
structure that represents the socket. The socket( ) routine then completes the data 
structure by allocating a descriptor from the I/O system and associating it with the 
socket data structure, and returns the descriptor to the caller.

Figure 6-1 The Standard Socket Interface
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The socket data structure contains a pointer to a table of pointers to functions that 
the back end provides to implement all the various socket operations (see 
6.3.3 Socket Functional Interface, p.121). You implicitly specify this table when you 
register the socket back end by calling sockLibAdd( ), as discussed in 
6.3.2 Registering a Socket Back End, p.120. When an application makes sockets API 
calls other than socket( ), the socket descriptor returned by socket( ) is one of the 
arguments. The sockLib implementation for each such sockets API call converts 
the socket descriptor to the underlying socket data structure using I/O system 
descriptor look-up facilities, fetches the pointer to the back end’s function table, 
and calls the appropriate back-end function to complete the call.

The I/O system functions read( ), write( ), ioctl( ), and close( ) may also be used on 
socket descriptors. In this case, the I/O system converts the descriptor to the 
underlying socket data structure, calls the registered sockLib read, write, ioctl, or 
close function, which in turn calls the back end’s read, write, ioctl, or close handler 
via the back end function table. sockLib registers a single I/O system driver to 
handle all socket descriptors.

6.3.2  Registering a Socket Back End

You can register a socket back end implementation by calling sockLibAdd( ) some 
time during system start-up after sockLib is itself initialized by a call to 
sockLibInit( ).

The sockLibAdd( ) routine has the following prototype:

STATUS sockLibAdd
(
FUNCPTR sockLibInitRtn, /* back end's initialization routine */
int domainMap, /* unused */
int domainReal, /* address family */
)

! WARNING:  In the present release, the socket data structure used by sockLib is in 
fact a struct socket, declared in 
installDir/components/ip_net2-6.x/vxcoreip/include/net/socketvar.h. This is 
primarily for historical reasons. The struct socket structure contains many 
members, only a few of which are needed by sockLib itself; and some socket back 
ends will prefer not to use the other members of struct socket. It is very likely that 
a future release will replace (or modify) struct socket with a much smaller 
structure (which would be embeddable in a back end’s private data structure 
representing a socket). The following members from struct socket are likely to 
remain in the new, smaller structure:

struct sockFunc * pSockFuncTbl; /* socket back-end function table */
int so_fd; /* the socket file descriptor */
void * so_bkendaux; /* socket back-end auxiliary data */

If your back end uses other members of struct socket, then after the change to the 
smaller structure, you may have to move these members to your back end’s own 
private socket data structure.

Generally, the interface between sockLib and socket back ends, as well as the 
interface for registering socket back ends, although described here as it presently 
exists, should be considered somewhat fluid. Wind River may modify these 
interfaces as it sees fit in future releases.
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The routine returns OK, or ERROR if the routine could not add the socket back end. 
The routine takes three parameters:

sockLibInitRtn 
A pointer to your xSockLibInit( ) routine that sockLibAdd( ) invokes. 
sockLibAdd( ) calls this routine as if it had the following prototype:

SOCK_FUNC * xSockLibInit (void);

That is, it is passed no arguments, and it is expected to return a pointer to an 
initialized SOCK_FUNC structure, which is the table of function pointers for 
the back end (see 6.3.3 Socket Functional Interface, p.121).

domainMap 
sockLibAdd( ) ignores this parameter. 

domainReal 
This parameter specifies the address family that this back end implements. A 
back end may support more than one address family, but in such a case you 
must call sockLibAdd( ) multiple times, once per address family. Allowed 
address families are in the range from 1 to AF_MAX-1, and the AF_ constants 
that identify these address families (AF_INET, and so forth) are declared in 
installDir/components/ip_net2-6.x/vxcoreip/include/sys/socket.h.

At most one back end will handle sockets of any given address family. For 
example, the native Wind River Network Stack normally handles sockets of 
the AF_INET, AF_INET6, AF_ROUTE, and AF_PACKET families. A socket back 
end of your own implementation may not handle one of these address families 
without disabling handling of that family by the native stack.

6.3.3  Socket Functional Interface

The socket functional interface is the set of implementations of standard socket 
routines that a particular socket back end supports. SOCK_FUNC is declared in 
installDir/components/ip_net2-6.x/vxcoreip/include/sockFunc.h as follows:

typedef struct sockFunc /* SOCK_FUNC */
{
FUNCPTR libInitRtn; /* unused */
FUNCPTR acceptRtn; /* accept() */
FUNCPTR bindRtn; /* bind() */
FUNCPTR connectRtn; /* connect() */
FUNCPTR connectWithTimeoutRtn; /* connectWithTimeout() */
FUNCPTR getpeernameRtn; /* getpeername() */
FUNCPTR getsocknameRtn; /* getsockname() */
FUNCPTR listenRtn; /* listen() */
FUNCPTR recvRtn; /* recv() */
FUNCPTR recvfromRtn; /* recvfrom() */
FUNCPTR recvmsgRtn; /* recvmsg() */
FUNCPTR sendRtn; /* send() */
FUNCPTR sendtoRtn; /* sendto() */
FUNCPTR sendmsgRtn; /* sendmsg() */
FUNCPTR shutdownRtn; /* shutdown() */
FUNCPTR socketRtn; /* socket() */
FUNCPTR getsockoptRtn; /* getsockopt() */
FUNCPTR setsockoptRtn; /* setsockopt() */
FUNCPTR zbufRtn; /* not supported */

/* The following IO-system handlers are called via wrappers */
/* in sockLib.c. */

FUNCPTR closeRtn; /* close() */
FUNCPTR readRtn; /* read() */
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FUNCPTR writeRtn; /* write() */
FUNCPTR ioctlRtn; /* ioctl() */
} SOCK_FUNC;

The use of the FUNCPTR type is unfortunate, as it provides neither type checking, 
nor any guide to those who implement back-ends of the arguments passed to the 
functions, nor the return values expected of them. With few exceptions, you can get 
the pseudo-prototype for one of these routines, which indicates how it is actually 
called, by considering the corresponding standard sockets API function prototype 
in sockLib.h, or the corresponding I/O system function prototype in ioLib.h 
(replacing the integer socket descriptor argument with a struct socket * argument). 
For instance, the connect API is prototyped in sockLib.h as the following:

extern STATUS connect (int s, struct sockaddr * name, int namelen);

So, the back end function called through the connectRtn function pointer is called 
as if it had the following prototype:

STATUS xConnectRtn (struct socket * so, struct sockaddr * name, int namelen);

sockLib’s connect( ) implementation converts the integer socket descriptor passed 
as its first argument s, to the struct socket pointer so, and calls the back end’s 
xConnectRtn( ) routine, replacing s with so and passing the name and namelen 
arguments unchanged. From the so argument, the socket back end can find its own 
private data for the socket; the so_bkendaux member of struct socket is intended 
as a pointer to such private data. (Alternatively, since the back end’s socketRtn( ) 
is responsible for allocating the struct socket, the back end may choose to embed 
the struct socket in a larger structure containing also the private data.)

The return value from the back end xConnectRtn( ) is same as the return value 
from connect( ).

Consult the sockLib reference pages for additional information on the intended 
behavior of the sockets API functions. External sockets API information is also 
very useful; for instance IEEE Std 1003.1 contains the official Posix descriptions of 
sockets API functions and data structures. (For various historical reasons, the 
VxWorks sockets API prototypes do not always match exactly those defined by 
IEEE 1003.1.) For general background on sockets programming, see W. Richard 
Stevens, Unix Network Programming - Networking APIs: Sockets and XTI, Volume 1.

There are exceptions to the above rule-of-thumb. These are socketRtn, acceptRtn, 
and ioctlRtn:

xSocketRtn( )

The xSocketRtn( ) routine has the following prototype: 

int xSocketRtn
(
int domain, /* socket domain or address family number */
int type, /* socket's nature, e.g. SOCK_DGRAM */
int protocol, /* the protocol variety of the socket */
struct socket ** ppSo /* the socket structure */
)

The back end’s xSocketRtn( ) is responsible for allocating and initializing a struct 
socket and any other structures that the back end needs to represent a socket of the 
specified domain, type, and protocol (these are passed directly from the 
corresponding arguments to the socket( ) routine). The allocation may be done 
using the kernel heap, a netBufLib pool, or a back-end specific method. If the 
xSocketRtn( ) cannot allocate and initialize a socket of the specified kind, 
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xSocketRtn( ) must free any partial allocations, set errno to the appropriate value 
(such as ENOMEM, ENOBUFS, EAFNOSUPPORT, EPROTONOSUPPORT, 
EPROTOTYPE), and return ERROR.

Otherwise, xSocketRtn( ) stores a pointer to the allocated struct socket at the 
address specified by ppSo, and returns OK. The socket( ) code will then itself store 
a pointer to the back end’s SOCK_FUNC table in the returned struct socket’s 
pSockFuncTbl member, then attempt to allocate a file descriptor from the I/O 
system, associating it with the socket. The socket( ) call may still fail if the calling 
RTP (possibly the kernel) is out of file descriptors. In this case, the socket( ) code 
will immediately call the back end’s xCloseRtn( ) function, to destroy the socket, 
and return ERROR. On the other hand, if a file descriptor is successfully allocated, 
the socket( ) code stores that file descriptor in the so_fd member, and return the file 
descriptor as its result.

sockLib( ) itself has no requirements as to how the back end initializes the struct 
socket structure that it allocates; however, the back end will probably want to 
initialize any members (other than pSockFuncTbl and so_fd) that it needs, in 
particular setting so_bkendaux to point to any auxiliary private data the back end 
wishes to maintain for the socket.

xAcceptRtn( )

The xAcceptRtn( ) routine has the following prototype: 

STATUS xAcceptRtn
(
struct socket ** ppSo, /* IN: parent socket. OUT: child socket. */
struct sockaddr * addr,  /* Address of child's peer. */
int * addrlen /* Length of child's peer's address. */
);

The back end’s xAcceptRtn( ) is called by the accept( ) code in sockLib. This 
accept( ) code does some checking, however, before it calls xAcceptRtn( ). If addr 
is non-NULL but addrlen is NULL, accept( ) returns an error. Otherwise, accept( ) 
attempts to convert the descriptor passed as its first argument to a struct socket. If 
the descriptor is not a valid socket descriptor, accept( ) again returns an error. If the 
back end does not provide any accept handler, that is, if the acceptRtn member of 
the back end’s SOCK_FUNC structure is NULL, accept( ) again returns ERROR.

Otherwise, the accept( ) code calls the back end’s xAcceptRtn( ) function, passing 
as the first argument the address of a pointer to the struct socket, converted from 
the socket descriptor passed to accept( ). The other two arguments to 
xAcceptRtn( ) are passed directly from the corresponding arguments of accept( ).

The back end’s xAcceptRtn( ) must check that the socket passed in by the first 
argument is in fact a listening parent socket, capable of providing child socket 
connections to accept( ). If not, xAcceptRtn( ) must return ERROR and set errno 
appropriately (see IEEE Std 1003.1). If the parent can provide child connections, 
but no completed child socket connection is presently queued for the parent, then 
xAcceptRtn( ) must do one of the following:

■ set errno to EAGAIN or EWOULDBLOCK and return ERROR, if the parent 
socket is non-blocking; or

■ if the parent socket is blocking, pend until either a completed child socket 
connection becomes available (or optionally: until a timeout, signal, or other 
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implementation defined event occurs, in which case errno should be set 
appropriately, and ERROR returned).

If a completed child socket connection becomes available, xAcceptRtn( ) allocates 
a struct socket for it (and any other needed private data structures), and stores a 
pointer to the child struct socket at the address passed in the ppSo argument, 
overwriting the previous pointer to the parent’s struct socket. If the addr argument 
is non-NULL, xAcceptRtn( ) obtains the child’s peer’s socket address, and copies it 
(truncating to the length specified in the int pointed to by addrlen, if necessary) to 
the specified address addr; and finally storing the actual address length in the 
integer pointed to by addrlen. xAcceptRtn( ) then returns OK.

If xAcceptRtn( ) does not return ERROR, the accept( ) code stores a pointer to the 
back end’s SOCK_FUNC table in the child socket’s pSockFuncTbl member, then 
goes on to attempt to allocate a socket descriptor from the I/O system for the child 
socket. If this fails, accept( ) immediately calls the back end’s xCloseRtn( ) routine 
and returns ERROR.

Otherwise, accept( ) stores the allocated socket descriptor in the child struct 
socket’s so_fd member, and returns that socket descriptor as its result.

xIoctlRtn( )

The xIoctlRtn( ) routine has the following prototype: 

int xIoctlRtn
(
struct socket * so, /* the socket */
u_long cmd, /* ioctl command code */
void * data /* ioctl argument */
void * mode /* indicates if the call is from user space */
)

The back end’s xIoctlRtn( ) routine is called when the I/O system processes an 
ioctl( ) call made on a socket descriptor. The routine is called as the rule of thumb 
would suggest, passing the struct socket pointer so instead of a socket file 
descriptor and passing the ioctl command and data arguments unchanged, except 
that xIoctlRtn( ) is also passed another argument mode. This argument is NULL if 
ioctl( ) was called from the kernel; it is an arbitrary non-NULL value if ioctl( ) was 
called from a user-space RTP. This indication is intended to help support validation 
of user-space ioctl arguments.

6.3.4  Memory Validation and Socket Ioctls

Socket APIs are expected to validate their arguments for proper memory access 
when called from a user-space RTP application. This is accomplished for most 
socket calls in the socketScLib shim library. This contains the system call handlers 
for sockets API system calls; these handlers execute in the kernel and perform 
argument memory access validation before calling the appropriate kernel socket 
APIs in sockLib. (Memory validation is done using the scMemValidate( ) routine; 
see its reference entry for more information.)

Memory validation for the read( ) and write( ) buffer and length arguments is done 
by the I/O system’s system call handler code. However, ioctl( ) calls made on 
socket descriptors are a special case. The I/O system level does not have 
knowledge about the form and use of the ioctl arguments passed to ioctl 
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operations implemented by the lower-level “driver” code, such as the socket back 
ends, and so cannot do the memory validation. In VxWorks, the lower-level 
drivers (including socket back ends) are expected to do memory validation for the 
ioctls they implement which may be called by RTP applications.

sockScLib provides a pair of functions that can aid a socket back end in doing ioctl 
argument memory validation. These functions should only be called through the 
following function pointers:

int (*pSockIoctlMemVal)
(
unsigned int cmd,
void * data
);

STATUS (*pUnixIoctlMemVal)
(
unsigned int cmd,
const void * pData
);

The function pointers are only non-NULL when RTP support is included in the 
VxWorks image. They should only be called when the mode argument passed to 
xIoctlRtn( ) is non-NULL, indicating an ioctl( ) call from user space.

Most (although unfortunately not all) ioctl commands on sockets encode the 
length and usage of the command argument in the ioctl command code itself. Ioctl 
codes following the conventions in target/h/sys/ioctl.h or 
installDir/components/ip_net2-6.x/vxcoreip/include/ipnet/ipioctl.h encode 
whether the ioctl argument is a pointer to a buffer that is read into the kernel, 
written to by the kernel, or both; and if so, how large the buffer is. The top-level 
memory validation for such ioctl codes may be performed by calling 
pUnixIoctlMemVal( ), passing it the command code and the ioctl data argument. 
This routine returns OK if memory validation succeeds, otherwise it sets errno 
appropriately and returns ERROR.

There are some limitations of the function referenced by pUnixIoctlMemVal:

■ It does not check that the ioctl code is supported by the back end.

■ It assumes without any check that the code follows the conventions encoding 
the parameter length and usage, as described in target/h/sys/ioctl.h.

■ It only does top-level checking: if the ioctl parameter is a pointer to a buffer 
holding a data structure that contains additional pointers, these other pointers 
are not validated. Validating them is the responsibility of the back end.

The pSockIoctlMemVal( ) function pointer behaves similarly to 
pUnixIoctlMemVal( ), except that it additionally validates memory for a small 
number of ioctl( ) codes that do not follow the conventions upon which 
pUnixIoctlMemVal( ) depends. In the present release, these additional ioctl codes 
are FIONBIO, FIONREAD, FIOSELECT, and FIOUNSELECT. It also supports 
SIOCMUXPASSTHRU and SIOCMUXL2PASSTHRU, doing second-level validation 
of the embedded MUX ioctl commands in these two ioctls’ arguments. For any 
other ioctl code passed to pSockIoctlMemVal( ), it simply calls 
pUnixIoctlMemVal( ).
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7.1  Introduction 

This chapter shows you how to work with 802.1Q VLAN tagging in the 
Wind River Network Stack. It assumes that you are familiar with the principles 
and operations of IEEE 802.1Q VLAN.

VLAN tagging is part of the network stack. You can access it by any of the 
following methods:

■ muxL2...( ) routines (if you have built the stack with MUX-L2 support)

■ extensions to the socket interface

■ a pseudo-interface with which you can manage the VLAN as a subnet

NOTE:  802.1Q VLAN tagging is available in the Wind River Platforms builds of the 
network stack. The Wind River General Purpose Platform, VxWorks Edition, does 
not include 802.1Q VLAN tagging.

NOTE:  Building a bootrom with VLAN is not supported.
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7.2  Adding VLAN Support

Include the INCLUDE_IPNET_USE_VLAN (VLAN Pseudo Interface support) 
component in your build if you want it to include Layer 2 subnet-based VLANs. If 
you include this component, this initializes the FreeBSD-style VLAN 
pseudo-interface for subnet-based VLAN support. 

MUX Layer 2 Support

The INCLUDE_MUX_L2 (MUX Layer 2 support) component pulls in the MUX 
network interface library for layer 2. Including this component initializes the 
MUX-L2 infrastructure for VLAN support.

To allow the network stack to interoperate with MUX-L2, you must rebuild it with 
the IPCOM_VXWORKS_USE_MUX_L2 flag by using one of the following methods:

■ Enable the IPCOM_VXWORKS_USE_MUX_L2 #define found in 
ipcom/port/vxworks/config/ipcom_pconfig.h

■ Build with the flag ADDED_CFLAGS+=-DIPCOM_VXWORKS_USE_MUX_L2 

The INCLUDE_MUX_L2 component requires the following components:

■ INCLUDE_END (END interface support) 

■ INCLUDE_ETHERNET (Ethernet multicast library support) 

The INCLUDE_MUX_L2 component contains the following configuration 
parameters:

MUX_L2_MAX_VLANS_CFG (Maximum number of 802.1Q VLANs supports)
the maximum number of 802.1Q VLANs supported on the target (default = 16)

MUX_L2_NUM_PORTS_CFG (Number of ports that the device has)
the maximum number of physical ports available to the target (default = 16)

L2Config

The INCLUDE_L2CONFIG (l2config) component provides support for the layer 2 
configuration utility. If you include this component, this initializes the L2 
command-line configuration utility. This component requires the 
INCLUDE_MUX_L2 component. 

7.3  About the 802.1Q VLAN Tag Header

The Wind River VLAN implementation supports the following three frame types:

■ Untagged frames – frames that do not carry any identification of the VLAN to 
which they belong

■ Priority-tagged frames – frames that include a tag header carrying explicit user 
priority information but not identifying the frames as belonging to a specific 
VLAN

■ VLAN-tagged frames – frames that include an explicit identification of the 
VLAN to which they belong



7  Working with the 802.1Q VLAN Tag
7.4  MUX Extensions for Layer 2 VLAN Support

129

The VLAN tag header is as shown in Figure 7-1. 

The 802.1Q tag is a four-byte field after the six-byte Source Address field and 
before the two-byte length/type field in the Ethernet header. An 802.1Q VLAN 
tagging implementation indicates that a frame is tagged by setting its Type field to 
the VLAN Identifier Protocol (0x8100). This means the next two bytes contain Tag 
Control Information. 

The two-byte Tag Control Information consists of a 3-bit priority (0-7) value, a 
Canonical Format Indicator (CFI) field (0 for Ethernet), and a 12-bit VLAN 
Identifier (VID). The 12-bit VID field can take any value from 0 to 4095, but two of 
these values have special meanings according to the 802.1Q specification: The 
value of all ones (0xFFF) is reserved but currently unused; the value of all zeros 
(0x000) indicates a that the frame is priority-tagged and that no VID is present in 
the frame.

7.4  MUX Extensions for Layer 2 VLAN Support 

This section describes how to programmatically control MUX-L2 VLAN support if 
you have built your stack with MUX-L2 interoperability.

Overview of MUX-L2 VLAN Management

The MUX-L2 extensions allow you to manage the VLAN membership for a 
VxWorks target. These extensions support the following 802.1Q characteristics:

■ VLAN classification of untagged, priority-tagged, or VLAN-tagged ingress 
frames. 

Figure 7-1 VLAN Tag Header Format on Ethernet
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■ Port-based VLAN classification as the default ingress rule (that is, all untagged 
and priority-tagged frames that a port receives are classified as belonging to 
the VLAN whose VID is associated with that port).

■ Tagging of egress frames as VLAN-tagged, priority tagged, or untagged 
frames on a per-port basis.

■ Enabling a port to be a member of multiple VLANs.

■ Ingress Filter and Ingress Acceptable Frame Type configuration on a per-port 
basis.

■ Ingress Filter configuration on a per-port basis.

■ Ingress Acceptable Frame Type configuration on a per-port basis.

■ The ability to send untagged frames for some VLANs and VLAN-tagged 
frames for others on a per-port basis.

■ The assignment of all VLAN-enabled ports to the default PVID of 1. The PVID 
value of a port is configurable.

You can access and control this functionality through the muxL2...( ) routines, 
through a socket interface, or with a VLAN pseudo-interface. 

7.4.1  Enabling VLAN Support for a Port 

For an END device loaded to MUX, call the muxL2PortAttach( ) routine to enable 
VLAN support for the port. 

The muxL2PortAttach( ) routine prepares the port for VLAN support as follows:

■ It joins the port to the default VLAN with a VID of 1, according to the 802.1Q 
requirement. It also configures the port to transmit untagged frames on the 
default VLAN. You can change the egress tagging state for the default Port 
VLAN ID (PVID) by calling muxL2Ioctl( ) with the MUXL2IOCSPORTVLAN 
control command.

■ It initializes the port-specific attributes with the following defaults:

– Default Port User priority: 0

– Ingress Acceptable Frame Filter Type: admits all frame types 

– Ingress Filter: False

■ It queries the hardware for its VLAN capabilities.

A driver that supports hardware VLAN tagging must indicate this by setting 
flags in the cap_available member of the END_CAPABILITIES structure the 
driver returns in response to a EIOCGIFCAP message to its xIoctl( ) routine (see 
5.4.3 xIoctl( ), p.72). Those flags are as follows:

– IPCOM_IF_DRV_CAP_VLAN_MTU – indicates that the driver can handle 
slightly larger than normal frames (that is, frames with a VLAN tag). This 
notifies the MUX-L2 that it can leave the MTU for the port at the normal 
setting. If the IPCOM_IF_DRV_CAP_VLAN_MTU flag is not set and 

NOTE:  The muxL2PortAttach( ) routine assumes an Ethernet device. If you are 
using a non-Ethernet device, call muxL2PortAltAttach( ) instead. 
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software VLAN-tagging is required, the MUX-L2 decreases the hardware 
MTU by 4-bytes.

– IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_TX – indicates that the driver 
can insert the VLAN tag into a frame on egress, by using the information 
that it reads from the pkt->link_cookie field in host-byte order.

– IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_RX – indicates that the driver 
can strip the VLAN tag from a received frame and store that tag 
information in the pkt->link_cookie field in host-byte order.

■ It determines which type of Ethernet address format the device can support 
(Ethernet Type 2 encapsulation or 802.3 style length encapsulation). This 
information is required when the MUX-L2 assembles an Ethernet header for 
the egress frame. 

■ It saves the address of the original END driver’s pFuncTable function table. 
The MUX-L2 will restore the original driver’s function table during 
muxL2PortDetach( ). 

■ It replaces the driver’s registered xPacketDataGet( ) with 
muxL2IngressClassify( ), and the xFormAddress( ) function pointer with 
muxL2EgressClassify( ). For more information about MUX-L2 ingress and 
egress frame processing, see 7.4.3 MUX-L2 Ingress Rules, p.131, and 
7.4.4 MUX-L2 Egress Rules, p.132.

7.4.2  Disabling VLAN Support for a Port 

To disable VLAN support for a port, call muxL2PortDetach( ). This routine 
detaches the port from the MUX-L2, removes the port from all the VLAN 
memberships it has joined, and restores the original driver’s function table. If the 
port is removed from the MUX, muxDevUnload( ) calls muxL2PortDetach( ) as 
well.

7.4.3  MUX-L2 Ingress Rules 

When a frame arrives on a port, the driver’s ISR schedules the frame processing 
work to tNet0. The MUX receive routine would normally schedule a call to the 
driver’s xPacketDataGet( ) to separate the address information and data in the 
frame. However, for a VLAN-enabled port, the MUX receive routine schedules a 
call to muxL2IngressClassify( ) to filter the received frame according to its VLAN 
header tag. Figure 7-2 shows how the ingress filter handles an incoming frame.

NOTE:  As an alternative to muxL2PortAttach( ), you can call muxL2Ioctl( ) using 
the MUXL2IOCSPORTATTACH control command. 

NOTE:  As an alternative to muxL2PortDetach( ), you can call muxL2Ioctl( ) using 
the MUXL2IOCSPORTDETACH control command.
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7.4.4  MUX-L2 Egress Rules 

When the MUX needs to transmit a frame, it normally calls the driver’s 
xFormAddress( ) routine to create and prepend a link-layer-appropriate frame 
header to the M_BLK chain containing outgoing data. However, for packets 
transmitted over a VLAN-enabled port, 802.1Q requires some additional 
pre-processing.

In addition, 802.1Q requires that a port transmits only VLAN-tagged frames or 
untagged frames but never transmits using both formats for the same VLAN. To 

Figure 7-2 MUX-L2 Ingress Rules 
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support the egress tagging decision on a per-port per-VLAN basis, the MUX-L2 
keeps track of the per-port egress tagging configuration for each VLAN. 

To evaluate an outgoing frame in accordance with this information, the MUX calls 
muxL2EgressClassify( ) to determine whether the outgoing frame should be 
tagged or untagged, and then to build the link-layer header based on the tagging 
decision. Figure 7-3 shows how the egress filter handles an outgoing frame. 

7.4.5  Accessing the MUX L2 Control Routines

Call muxL2Ioctl( ) to access the MUX-L2 control functionality. These control 
functions let you do such things as retrieve port information and set the ingress 
frame filter type. For more information, see the muxL2Ioctl( ) reference entry.

7.5  Current MUX-L2 Limitations 

The current MUX-L2 implementation has the following known limitations:

■ There is no support for the automatic distribution of VLAN configuration 
using the GARP VLAN Registration Protocol (GVRP). The MUX-L2 support 
for VLAN is limited to those VLANs that are created statically.

Figure 7-3 MUX-L2 Egress Rules 
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■ The MUX-L2 does not configure and operate the address learning process 
described in the 802.1Q specification. Therefore, it is not capable of 
broadcasting or multicasting frames to multiple ports belonging to a VLAN.

■ Although the MUX-L2 allows the 802.1P User Priority to be specified with an 
egress VLAN-tagged frame, it does not support user priority to traffic class 
mapping described in the 802.1Q specification. It also does not provide any 
mechanism to perform the ingress user priority regeneration as described in 
the 802.1Q specification. 

■ Although the MUX-L2 implements selected RFC 2674 static VLAN objects, the 
VLAN configuration methodology is not compatible with the RFC 2674 MIB. 
RFC 2674 VLAN management is VLAN-centric and requires a port list bitmap 
specifying the ports belonging to a VLAN. The VLAN management for the 
MUX-L2 is port-centric and achieves VLAN configuration on a per-port basis.

■ The support for 802.1Q VLAN tagging is currently implemented for END 
drivers only.

■ The MUX-L2 implementation is provided in the context of Ethernet as the 
underlying data link technology. Because the fundamental VLAN operation 
and behavior are independent of the underlying data link, the implementation 
can be easily modified to adapt to a non-Ethernet environment. 

■ Wind River Learning Bridge is not compatible with the MUX-L2.

7.6  VLAN Management

The following subsections describe two mechanisms with which you can manage 
a VLAN: 

■ 7.6.3 Socket-Based VLAN Management, p.138

■ 7.6.2 Subnet-Based VLAN Management, p.135

7.6.1  MUX-L2 VLAN Management 

If you enable MUX-L2 functionality when you build the network stack, you can 
use the l2config utility to access the Layer 2 set routines supported by 
muxL2Ioctl( ). The l2config utility does not give you access to the muxL2Ioctl( ) 
“get” functionality, which, because of its use of structures, is more suited to 
programmatic use. However, you can access much of the same information from 
the command line using muxL2Show( ) or muxL2VlanShow( ), which are 
described in their respective reference entries and in 7.7 Using the MUX-L2 Show 
Routines, p.140. 

For port-oriented configuration needs, l2config allows you to do the following:

■ Attach/detach a port to/from MUX-L2.

■ Set the default port VID (PVID).

■ Set the default user priority.
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■ Set the acceptable ingress frame type.

■ Set the ingress frame filter.

For configuration needs involving both the port and a VLAN, l2config allows you 
to do the following: 

■ Join a port to a VLAN.

■ Set the egress frame type for the VLAN.

■ Leave a VLAN that a port joined previously.

For more information, see the examples below and the reference entry for l2config.

Sample MUX-L2 Configuration

The following example attaches the fei1 port to MUX-L2:

-> l2config "vlandev fei1 attach"
value = 0 = 0x0

The following example enables the ingress frame filter for port fei1. It also sets the 
fei1 ingress acceptable frame filter type to ADMIT_TAGGED_ONLY_FRAMES:

-> l2config "vlandev fei1 infilter on ingress admittag"
value = 0 = 0x0

The following example joins the fei1 port to the VLAN with VID 20 and configures 
the egress frame type for the VLAN to transmit VLAN-tagged frames only:

-> l2config "vlandev fei1 join vid 20 egress tagged"
value = 0 = 0x0

The following example removes the fei1 port from VLAN 20, the VLAN to which 
it was joined previously:

-> l2config "vlandev fei1 leave vid 20"
value = 0 = 0x0

The following example shows how you can issue multiple command options at the 
same time, using l2config. The attach and join commands above can be combined 
into a single command:

-> l2config "vlandev fei1 attach join vid 20 egress tagged"
value = 0 = 0x0

7.6.2  Subnet-Based VLAN Management

To support VLAN routing, FreeBSD uses the VLAN pseudo-interface to 
demultiplex VLAN-tagged frames into logical VLAN network interfaces. The 
Wind River Network Stack adapts this technique to support subnet-based VLAN 
configuration.

Each VLAN pseudo-interface can be created at run time by using the ifconfig( ) 
create command. For each pseudo-interface, call ifconfig to assign a VLAN, a 
parent interface, and a numeric VID. The parent interface must be a physical 
interface that is attached to the IP layer at the time you create the VLAN 
pseudo-interface. 

A single parent interface can support multiple VLAN pseudo-interfaces provided 
that the pseudo-interfaces have different VIDs. The parent interface must be a 
member of the VLAN for the VID assigned to the VLAN pseudo-interface.

To configure the VLAN pseudo-interface, use the following three ifconfig options:



Wind River Network Stack
Programmer's Guide, 6.8 

136

vlanInterfaceName create
Create the specified VLAN pseudo-interface named by vlanInterfaceName. 
vlanInterfaceName must start with the letters “vlan”; for example: vlan, vlan10, 
or vlanPrivate.

vlanInterfaceName destroy
Delete the specified VLAN pseudo-interface from the network stack.

vlanInterfaceName vlan vlanID vlanif interfaceName vlanpri priority 
Set the VLAN ID to vlanID, associate the physical interface interfaceName with 
vlanInterfaceName, and assign the Class Of Service value priority to the VLAN 
tag for this VLAN pseudo-interface. vlanID is a 16-bit number between 1-4094 
that is used to create an 802.1Q VLAN header for packets the stack sends from 
the VLAN pseudo-interface. priority is a three-bit value.

Packets transmitted through the VLAN interface will be diverted to the 
physical interface interfaceName with 802.1Q VLAN encapsulation. Packets 
with 802.1Q encapsulation received by the physical interface with the correct 
VLAN ID will be diverted to the associated VLAN pseudo-interface. The 
VLAN interface is assigned a copy of the physical interface’s flags and 
Ethernet address. If the VLAN interface already has a physical interface 
associated with it, this command fails. To change the association to another 
physical interface, you must first clear the existing association.

Note that you must set vlan and vlanif at the same time.

Consequences of Changing the VID

The Wind River Network Stack allows you to change the parent interface and the 
VID only when the VLAN interface is down. For example, to change the parent 
interface to fei1 and the VID for the VLAN pseudo-interface to 1234 on a created, 
configured, and up VLAN interface, type the following:

-> ifconfig vlanLab down vlanif fei1 vlan 1234 up 

Be aware that changing the VID for the VLAN pseudo-interface does not 
automatically remove the parent interface from the VLAN membership associated 
with the old VID. It also does not automatically add the parent interface to the 
member set specified by the new VID. Therefore, the parent interface must be a 
member of the VLAN specified by the new VID before the new VID can be 
assigned. The parent interface remains a member of the VLAN specified by the old 
VID unless the membership is explicitly removed. 

Example of Subnet-Based VLAN Management

The following examples show how to create VLAN pseudo-interfaces. The first 
examples rely on the compact interface naming style. The examples after that rely 
on the restrictive interface naming style. 

If you have built the network stack to support MUX-L2, when you create the 
VLAN pseudo-interface the network stack will implicitly attach the physical 
parent interface to MUX-L2 and will join the parent interface to the VLAN that you 
have configured for the VLAN pseudo-interface. Once the stack joins the port to 
MUX-L2, MUX-L2 enforces strict ingress and egress VLAN rules (as described in 
sections 7.4.4 MUX-L2 Egress Rules, p.132 and 7.4.5 Accessing the MUX L2 Control 
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Routines, p.133). When you attach the parent physical interface (port) to MUX-L2, 
you can manage the port by calling l2config( ) (for instance, to set the port ingress 
or egress properties).

Examples Using the Compact Creation API

The following example uses the compact interface naming style to create a VLAN 
pseudo interface fei1.50 with IP address 190.0.2.234/24. It also specifies the parent 
interface fei1 and VID 50 for the VLAN pseudo-interface. You must have already 
attached fei1 to the network stack.

-> ifconfig "fei1.50 create inet 190.0.2.234/24"
value = 0 = 0x0
-> ifconfig "fei1.50"
fei1.50: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496

inet 190.0.2.234 netmask 0xffffff00 broadcast 190.0.2.255
ether 00:08:c7:c9:24:76
vlan: 50 user priority: 0 parent interface: fei1

value = 0 = 0x0

The following example destroys the fei1.50 VLAN pseudo interface previously 
created.

-> ifconfig "fei1.50 destroy"
value = 0 = 0x0

The following example uses the compact interface naming style to create a VLAN 
pseudo interface, fei0.20, with IP address 190.0.4.234/24. It also specifies the 
parent interface fei0, VID 20, and user priority 5 for the VLAN pseudo-interface. 
You must have already attached fei0 to the network stack.

-> ifconfig "fei0.20 create"
value = 0 = 0x0

-> ifconfig "fei0.20 190.0.4.234/24"
value = 0 = 0x0

-> ifconfig "fei0.20 vlanpri 5"
value = 0 = 0x0

-> ifconfig "fei0.20"
fei0.20: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496
        inet 190.0.4.234 netmask 0xffffff00 broadcast 190.0.4.255
        ether 00:03:47:b0:d7:17
        vlan: 20 user priority: 5 parent interface: fei0
value = 0 = 0x0

Examples Using the Name-Restrictive Creation API

The following example creates a VLAN pseudo-interface, vlan0, with IP address 
190.0.2.123/24, assigns the pseudo-interface with VID 20, and associates it with the 
parent interface fei1. You must have already attached fei1 to the network stack.

-> ifconfig "vlan0 create" 
value = 0 = 0x0

-> ifconfig "vlan0" 
vlan0 Link type:Layer 2 virtual LAN HWaddr 
00:01:02:03:04:10 Queue:none

vlan: 20 parent: fei0
inet 190.0.2.123 mask 255.255.255.0 broadcast 190.0.2.255
inet 224.0.0.1 mask 240.0.0.0
inet6 unicast FE80::201:2FF:FE03:410%vlan10

prefixlen 64 automatic
inet6 unicast FE80::%vlan10 prefixlen 64 anycast
inet6 multicast FF02::1%vlan10 prefixlen 16 automatic
inet6 multicast FF02::1:FF03:410%vlan10 prefixlen 16
inet6 multicast FF02::1:FF00:0%vlan10 prefixlen 16
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UP RUNNING SIMPLEX BROADCAST MULTICAST
MTU:1496 metric:0 VR:0
RX packets:0 mcast:0 errors:0 dropped:0
TX packets:13 mcast:15 errors:0
collisions:0 unsupported proto:0
RX bytes:0 TX bytes:1138

-> ifconfig "vlan0 vlan 20 vlanif fei1" 
value = 0 = 0x0

-> ifconfig "vlan0 190.0.2.123/24" 
value = 0 = 0x0

-> ifconfig "vlan0" 
vlan0: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496

inet 190.0.2.123 netmask 0xffffff00 broadcast 190.0.2.255
ether 00:08:c7:c9:24:76
vlan: 20 user priority: 0 parent interface: fei1

value = 0 = 0x0

The following example destroys the vlan1 VLAN pseudo-interface previously 
created.

-> ifconfig "vlan0 destroy" 
value = 0 = 0x0

7.6.3  Socket-Based VLAN Management

Wind River extends the socket API to include a new socket option, SO_VLAN, and 
a new structure, sovlan. These provide a mechanism that can carry all the 
information relevant to VLAN configuration. If you treat the VID and the user 
priority as socket-level configuration options, you can use these extensions by 
calling getsockopt( ) and setsockopt( ) and thus get or set VLAN membership 
information. 

SO_VLAN can only be used for send operations.

The sovlan structure is defined as follows:

struct sovlan
{
/*
* If so_onff is set, the vlan id and/or user priority will be copied
* to the socket structure and SO_VLAN so_option will be set. If so_onff
* is not set, the SO_VLAN so_option for the socket will be cleared.
*/
int vlan_onoff; /* on/off option */

/*
* The priority_tagged boolean must be set to true if application using
* socket-based vlan requires to egress 802.1P priority-tagged frame
* (i.e. the value of vid is zero). Defaults to false. If set to true,
* the value specified by the vid will be ignored.
*/

BOOL priority_tagged;

unsigned short vid; /* VLAN ID, valid vid: 1..4094 */
unsigned short upriority; /* User Priority, valid priority: 0..7 */
};

After an application creates a socket, it can call setsockopt( ) to configure the VID 
and/or user priority for the socket. In order to transmit a VLAN-tagged or 
priority-tagged frame, the port/interface that the socket is bound to must already 
be attached to the MUX-L2, as described previously. If a port transmits a 
VLAN-tagged frame, the port must also be a member of the VLAN for which the 
socket-based VLAN is configured. 
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Setting User Priority for Transmitted Priority-Tagged Frames

The following code fragment is an example of how to call setsockopt( ) in order to 
configure the user priority for a socket and configure that socket to transmit 
priority-tagged frames.

struct sovlan vl;

/* set up the vlan_onoff to indicate that the VID and or User Priority 
* are valid */

vl.vlan_onoff = 1;
/* 
* Informs lower-layers (such as subnet-based VLAN) that the 
* information provided is for Priority-tagged frame and that lower-layers 
* must not alter the VLAN control information for VID configuration
*/

vl.priority_tagged = TRUE;

/* VID is not applicable for Priority-tagged frame */

vl.vid = 0;

/* Configure the Priority-tagged frame for User Priority with value 7 */

vl.upriority = 7;
if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, sizeof (struct sovlan))

< 0)
printf( "setsockopt SO_VLAN for socket %d failed\n", s);

Setting User Priority for Transmitted VLAN-tagged Frames

The following code fragment is an example of how to call setsockopt( ) in order to 
configure the user priority for the specified socket and to configure that socket to 
transmit VLAN-tagged frames.

struct sovlan vl;

/* setup vlan_onoff to indicate that VID and/or User Priority * are valid */

vl.vlan_onoff = 1;

/* 
* Informs lower-layers (such as Subnet-based VLAN) that the 
* information provided is for VLAN-tagged frame and that lower-layers should
* alter the VLAN control information for VID if the VID is not specified
*/

vl.priority_tagged = FALSE;

/* 
* Specifies VID with value of 0 to allow lower-layers (such as Subnet- 
* based VLAN) to insert the appropriate VID to the VLAN 
* control information for the outgoing VLAN-tagged frame.
*/

vl.vid = 0;

/* Configure the VLAN-tagged frame for User Priority with value 3 */
vl.upriority = 3;

if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *)&vl, sizeof (struct sovlan))
< 0)
printf ("setsockopt SO_VLAN for socket %d failed\n", s);
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Clearing the VLAN Configuration for the Socket

Consider the following code fragment calls setsockopt( ) to clear the VLAN 
configuration for a socket:

struct sovlan vl;

bzero ((char *) &vl, sizeof (struct sovlan));

/* reset all the VLAN control information for the socket */

vl.vlan_onoff = 0;

if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, sizeof (struct sovlan)) 
< 0)
printf ("setsockopt SO_VLAN for socket %d failed\n", s);

Getting Configuration Information 

The following code fragment is an example of how to call getsockopt( ) to retrieve 
the VLAN configuration for a socket.

struct sovlan vl;
int vsize = sizeof (struct sovlan);

bzero ((char *) &vl, sizeof (struct sovlan));
if (getsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, &vsize) < 0)

printf ("getsockopt SO_VLAN for socket %d failed\n", s);
if (0 == vl.vlan_onoff)

printf ("No VLAN control info for socket %d\n", s);
else

{
if (vl.priority_tagged)

printf ("Socket %d Priority-Tagged User Priority %d\n", s,
vl.upriority);

else
printf ("Socket %d VLAN-Tagged VID %d User Priority %d\n", s, vl.vid,

vl.upriority);
}

7.7  Using the MUX-L2 Show Routines

For debugging and diagnostic purposes, the MUX-L2 provides muxL2Show( ), 
muxL2StatShow( ), muxL2VlanShow( ), and muxL2VlanStatShow( ). 

Example 7-1 muxL2Show( ) 

Call muxL2Show( ) to display the configuration of ports registered with the 
MUX-L2. 

-> muxL2Show
max number of physical ports: 16
max number of vlans device supports: 16
number of vlans configured in device: 3

NOTE:  For the VLAN-tagged frame, if getsockopt( ) returns a VID value of 0, this 
implies that the application uses the socket-based VLAN, chooses not to configure 
the VID, and relies on the lower-layers (such as subnet-based VLAN) to insert the 
appropriate VID to the VLAN control information for the outgoing VLAN-tagged 
frame.
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number of ports attached to MUX-L2: 2

Device: <fei> Unit: <1> L2 Port Object: 0x10cc040 endObjId: 1
Port VID (PVID): 1 Port User Priority: 0
Port ingress filter: TRUE
Port ingress acceptable frame filter type: Admit vlan-tagged frames only
Hardware supports vlan tagging: FALSE
Hardware supports vlan mtu: FALSE
Number of vid configured for the port: 2
Port VLAN membership:

VID 1 Egress: untagged-tagged
VID 20 Egress: vlan-tagged

Device: <fei> Unit: <0> L2 Port Object: 0x10e40a0 endObjId: 2
Port VID (PVID): 1 Port User Priority: 0
Port ingress filter: TRUE
Port ingress acceptable frame filter type: Admit All Frames
Hardware supports vlan tagging: FALSE
Hardware supports vlan mtu: FALSE
Number of vid configured for the port: 2
Port VLAN membership:

VID 1 Egress: untagged-tagged
VID 100 Egress: vlan-tagged

value = 1 = 0x1

Example 7-2 muxL2VlanShow( )

Calls muxL2VlanShow( ) to display the VLAN configurations maintained by the 
MUX-L2 on a per-VLAN basis.

-> muxL2VlanShow

VLAN 1: Number of Members: 2 Egress Untagged: 2
VLAN 20: Number of Members: 1 Egress Untagged: 0
VLAN 100: Number of Members: 1 Egress Untagged: 0

Port to device name mapping:
Port 1 -> fei1
Port 2 -> fei0

VLAN Membership information:
(Legend: 'M' = Member '-' = Unspecified)

VLAN 1 : MM--------------
VLAN 20 : M---------------
VLAN 100 : -M--------------

VLAN Egress Frame Type:
(Legend: 'T' = Vlan-Tagged 'U' = Untagged '-' = Unspecified)

VLAN 1 : UU--------------
VLAN 20 : T---------------
VLAN 100 : -T--------------

value = 1 = 0x1

Example 7-3 muxL2StatShow( ) and muxL2VlanStatShow( ) 

The MUX-L2 also maintains various VLAN statistics on a per-port per-VLAN 
basis. These statistics are disabled by default for performance reasons. To include 
these statistics, build MUX-L2 with MUX_L2_VLAN_STATS defined. If VLAN 
statistics are included, muxL2VlanStatShow( ) and muxL2StatShow( ) can be 
used to monitor the traffic on a per-port per-VLAN basis.

-> muxL2StatShow
fei1 Port Statistics:

Number of received frames discarded due to non-vlan
reasons (i.e. Discard Ingress Filtering): 9
Number of egress frames discarded due to Egress
Rules violation: 0



Wind River Network Stack
Programmer's Guide, 6.8 

142

VLAN 1 staticstics:
Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

VLAN 20 staticstics:
Number of frames received: 166
Number of frames transmitted: 226
Number of received frames discarded: 0

fei0 Port Statistics:
Number of received frames discarded due to non-vlan
reasons (i.e. Discard Ingress Filtering): 0
Number of egress frames discarded due to Egress
Rules violation: 0

VLAN 1 staticstics:
Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

VLAN 100 staticstics:
Number of frames received: 393
Number of frames transmitted: 486
Number of received frames discarded: 0

value = 0 = 0x0

-> muxL2VlanStatShow
fei1 VLAN 1 staticstics

Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

fei0 VLAN 1 staticstics
Number of frames received:
Number of frames transmitted: 0
Number of received frames discarded: 0

fei1 VLAN 20 staticstics
Number of frames received: 166
Number of frames transmitted: 226
Number of received frames discarded: 0

fei0 VLAN 100 staticstics
Number of frames received: 393
Number of frames transmitted: 486
Number of received frames discarded: 0

value = 0 = 0x0
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8.1  Introduction

Quality of Service (QoS) refers to the capability of a network to treat some traffic 
flows differently than others. The most common usage is to give a specific traffic 
flow a better service than the normal best-effort service. 

Different types of flow have different requirements; for example, some flows have 
restrictions in latency, while others have restrictions in minimum bandwidth, and 
so on. For example: 

■ Interactive traffic, like telnet and SSH, performs better with low latency so that 
the user does not experience delay when typing. 

■ FTP traffic performs better when it can use as much bandwidth as possible; it 
does not matter if the latency is high or if the data arrives in bursts. 

Telnet will have a high latency if routers treat all traffic equally, which is the default 
“best effort” behavior used by most routers. But routers could improve latency if 
each router identifies the two varieties of flow and lets the telnet packets move 
ahead of FTP packets that the router has already queued to send on the outgoing 
interface. Doing so will ordinarily have little effect on the FTP application, since 
telnet normally uses little bandwidth.

NOTE:  The QoS feature is available only in the Wind River Platforms builds of the 
network stack. The Wind River General Purpose Platform, VxWorks Edition, does 
not support QoS.
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8.2  Differentiated Services 

The Differentiated Services (DiffServ) architecture is based on a model in which an 
edge router classifies traffic entering a network, possibly conditions it (for instance 
to reduce jitter or latency), and assigns it to different behavior aggregates. It assigns 
packets to behavior aggregates by setting a single differentiated-services (DS) 
codepoint in the value of the DS field of the IP datagram (the TOS field for IPv4 or 
the traffic-class field for IPv6). The core routers of the network then may forward 
these packets according to the per-hop behavior they associate with each DS 
codepoint.

To control, create, and delete interface output queues, use the API that is defined 
in the following file:

installDir/components/ip_net2-6.x/ipnet2/include/ipnet_qos.h

8.2.1  Including DiffServ in a Build

To include DiffServ in a VxWorks build, include the DiffServ build components 
listed below. You can do this through either Workbench or the vxprj command-line 
utility. 

The following six build components enable DiffServ (there are no build parameters 
for any of the components):

Differentiated Services (INCLUDE_IPNET_DIFFSERV)
The main component for differentiated services.

Classifier (INCLUDE_IPNET_CLASSIFIER)
Classifier component.

Simple Marker (INCLUDE_IPNET_DS_SM)
Component for the simple marker (see SimpleMarker, p.151).

Single Rate Three Color Marker (INCLUDE_IPNET_DS_SRTCM)
Component for the single-rate, three-color marker (see Single-Rate Three-Color 
Marker, p.151).

IPCOM QoS commands (INCLUDE_IPQOS_CMD)
Enables the use of shell commands for configuring DiffServ.

IPCOM output queue commands (INCLUDE_IPQUEUE_CONFIG_CMD)
Enables the use of shell commands for configuring output queues.

8.2.2  Using DiffServ

You can configure a DiffServ traffic classifier to run either in behavior aggregate 
mode or in multifield mode:

■ In behavior aggregate mode, the classifier looks only at the DS field (the TOS 
field in IPv4, or the traffic class for IPv6).

■ In multifield mode, the classifier may look at any field supported by the IPNET 
classifier—this mode is slower but more flexible.

To run in behavior aggregate mode, define the macro 
IPNET_DIFFSERV_CLASSIFIER_MODE_BA in the file 
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installDir/components/ip_net2-6.x/ipnet2/config/ipnet_config.h; undefine this 
macro to run in multifield mode. 

Adding a Filter Rule for a Meter/Marker Entity

To add a filter rule for a meter/marker entity when running DiffServ in multifield 
mode, you can either call a routine from within a program or use a qc command 
interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXADSFILTER, &filter);

Where filter is a ds_filter object that describes the filter you are adding (see 
ds_filter Class, p.147). The network stack chooses an ID for the filter and stores it in 
the id member of this object. Use this ID number if you need to refer to this specific 
filter, for instance if you attach it to a DiffServ meter/marker entity.

You can also use a qc command, which has the following format:

qc filter add dev device parent queueID handle filterID [filterArgs] flowid queueID 

The arguments to this command are as follows:

dev device 
The device to which you are attaching the filter, for instance eth0.

parent queueID 
The identifying number of the container queue to which you are adding the 
filter.

handle filterID [filterArgs] 
The filterID is the identifying number of the filter. You may use the following 
arguments in the filterArgs argument to describe the filter:

proto number 

tclass number 

srcport range 

dstport range 

srcaddr address[/prefix] 

dstaddr address[/prefix] 

flowid queueID 
The identifying number of the destination queue for packets that match the 
filter.

For example:

To add a filter identified by the number five to the container queue identified by 
the number one, so that all TCP packets (protocol number six) are filtered into the 
queue identified by the number 31, use the following qc command:

> qc filter dev eth0 parent 1 handle 5 proto 6 flowid 31 

To add a second filter (identified by the number three) to the same container queue 
that filters all UDP packets (protocol number 17) that are sent to 2001::/16 into the 
same queue, use the following qc command:

> qc filter dev eth0 parent 1 handle 3 proto 17 srcaddr 2001::/16 flowid 31 
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Deleting a Filter Rule from a Meter/Marker Entity

To delete a filter rule from a meter/marker entity when running DiffServ in 
multifield mode, you can either call a routine from within a program or use a qc 
command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDDSFILTER, &filter);

In this call, filter is a ds_filter object that describes the filter you are deleting (see 
ds_filter Class, p.147). You only need to set the id member of this object in order to 
specify which filter you want to delete.

You can also use a qc command, which has the following format:

# qc filter del filterID 

Creating a Meter/Marker Entity

To create a meter/marker entity, you can either call a routine from within a 
program or use a qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDSCREATE, &entity);

In this call, entity is an object of the ds superclass (see ds Class, p.148). The network 
stack will fill in the id field of this object. Use this identifying number to identify 
this entity in future calls.

See 8.2.4 Creating New Meter/Marker Entity Varieties, p.149, for descriptions of the 
meter/marker entities that are part of the Wind River Network Stack and for 
instructions on how to add new entities.

Deleting a Meter/Marker Entity

To delete a meter/marker entity, you can either call a routine from within a 
program or use a qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDSDESTROY, &entity);

In this call, entity is an object of the ds superclass (see ds Class, p.148), but you need 
only fill in the id member of this object in order to sufficiently identify the entity 
you want to delete.

Mapping a Filter to a Meter/Marker Entity

To map a filter (or DS codepoint if you are operating in multifield mode) to a 
meter/marker entity, you can either call a routine from within a program or use a 
qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXADSMAP, &mapping);
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In this call, mapping is an object of the ds_map class that describes the mapping 
you are establishing (see Mapping from a Filter Rule to a Meter Marker Entity, p.149).

Removing a Filter-to-Meter/Marker Entity Mapping

To remove a mapping between a filter (or DS codepoint if you are operating in 
multifield mode) and a meter/marker entity, you can either call a routine from 
within a program or use a qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOXDDSMAP, &mapping);

In this call, mapping is an object of the ds_map class that describes the mapping 
that you are removing (see Mapping from a Filter Rule to a Meter Marker Entity, 
p.149).

8.2.3  Classes 

The following sections describe classes of objects associated with DiffServ:

■ ds_filter – see ds_filter Class, p.147

■ ds – see ds Class, p.148

■ ds_map – see Mapping from a Filter Rule to a Meter Marker Entity, p.149

ds_filter Class

A DiffServ filter rule is instantiated as an object of the ds_filter class, which 
contains and int, read-only, Id for this filter and a classifier_rule structure.

The members of the classifier_rule class are defined as follows:

mask 
A mask that indicates which fields must match in order to trigger the filter 
rule. Construct this mask by ANDing together one or more of the CLS_RULE_x 
constants:

■ CLS_RULE_DS – DS field

■ CLS_RULE_PROTO – protocol field

■ CLS_RULE_SADDR – source address

■ CLS_RULE_DADDR – destination address

■ CLS_RULE_SPORT – source port

■ CLS_RULE_DPORT – destination port

ds 
The value that a packet must have in its DS field in order to trigger the filter 
rule (assuming the CLS_RULE_DS flag is set in mask). The DS field is the traffic 
class field for IPv6 and the TOS field for IPv4.

proto 
The value that a packet must have in its IP header’s protocol field in order to 
trigger the filter rule (assuming the CLS_RULE_PROTO flag is set in mask).
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sport_low 
The lowest source port a UDP or TCP packet can come from and still trigger 
the filter rule (assuming the CLS_RULE_SPORT flag is set in mask). 

sport_high 
The highest source port a UDP or TCP packet can come from and still trigger 
the filter rule (assuming the CLS_RULE_SPORT flag is set in mask). 

dport_low 
The lowest destination port a UDP or TCP packet can be destined for and still 
trigger the filter rule (assuming the CLS_RULE_DPORT flag is set in mask). 

dport_high 
The highest destination port a UDP or TCP packet can be destined for and still 
trigger the filter rule (assuming the CLS_RULE_DPORT flag is set in mask). 

af 
The address family the packet must belong to in order to trigger the filter rule, 
either AF_INET or AF_INET6.

saddr_prefixlen 
The prefix length (mask) that the filter rule uses when it checks whether the 
source address matches (assuming the CLS_RULE_SADDR flag is set in mask). 

daddr_prefixlen 
The prefix length (mask) that the filter rule uses when it checks whether the 
destination address matches (assuming the CLS_RULE_DADDR flag is set in 
mask). 

saddr 
The source address (or network) that packets must match in order to trigger 
the filter rule (assuming the CLS_RULE_SADDR flag is set in mask). 

daddr 
The destination address (or network) that packets must match in order to 
trigger the filter rule (assuming the CLS_RULE_DADDR flag is set in mask). 

ds Class

Meter/marker entities are objects of a variety of the ds class. The members of this 
class are defined as follows:

id 
The ID of this meter/marker entity. The network stack sets this during the 
create operation. 

name 
The name of the meter/marker entity. The names of the two entity varieties 
that come with the Wind River Network Stack are:

"srTCM" – single-rate, three-color marker

"SimpleMarker" – simple marker

d 
An object of the specific entity class. All meter/marker entities created by 
Wind River have an data type that starts with ds_, for instance ds_sm (see 
SimpleMarker, p.151) or ds_srtcm (see Single-Rate Three-Color Marker, p.151). 
The ds_data pseudoclass is a union of all of these classes.
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Mapping from a Filter Rule to a Meter Marker Entity

When an edge router in multifield mode creates a new classifier rule it gets an ID 
number in return. When it creates a meter/marker entity, it also gets an ID number 
in return. The router can search a database that maps between these two varieties 
of ID value, so that when a packet matches a rule with a particular rule ID value 
the router can determine the corresponding entity ID value. The database of 
mappings is a set of ds_map objects. The members of this class are as follows:

filter_id 
The ID of the filter rule. 

ds_id 
The ID of the meter/marker entity that applies to packets that match the filter 
rule. 

For instructions on how to establish a mapping of this sort, see Mapping a Filter to 
a Meter/Marker Entity, p.146.

8.2.4  Creating New Meter/Marker Entity Varieties

To create a new meter/marker entity variety (other than the simple marker and 
single-rate three-color marker, which already exist), do the following:

1. Implement all of the routines pointed to by function pointers in the 
Ipnet_diffserv_handlers structure (see Implement the Function Pointers in the 
Ipnet_diffserv_handlers Structure, p.149).

2. Define and register a factory function for meter/marker entities (see Define and 
Register a Factory Function for Meter/Marker Entities, p.150).

Step 1: Implement the Function Pointers in the Ipnet_diffserv_handlers Structure

A meter/marker entity must implement all of the routines pointed to by function 
pointers in the Ipnet_diffserv_handlers structure, which is defined in 
installDir/components/ip_net2-6.x/ipnet2/src/ipnet_diffserv.h. The members of 
this structure are as follows:

meter_input 
You can set this pointer to IP_NULL if this entity will do no metering on the 
flow passing through it. You should otherwise set it to point to a routine that 
measures some property of the flow and keeps track of the result in some 
private data area. The prototype of this routine is as follows:

void myMeterInput (Ipnet_diffserv_handlers * handlers,
Ipcom_pkt * packet)

marker_input 
You can set this pointer to IP_NULL if this entity will do no (re)marking of 
packets. Otherwise set this to point to a routine that marks the packet based on 
the configuration of the meter/marker or the property measured by the meter 
function. Your routine may write directly into the DS field of the Ipcom_pkt 
that it receives as the pkt argument. pkt->ipstart is the offset into the 
pkt->data area at which the IP header is stored. The prototype of this routine 
is as follows:

void myMarkerInput (Ipnet_diffserv_handlers * handlers,
Ipcom_pkt * packet)



Wind River Network Stack
Programmer's Guide, 6.8 

150

destroy 
Set this pointer to point to a routine that frees all resources held by the 
meter/marker. Do not set this pointer to IP_NULL. The prototype of this 
routine is as follows:

void myDestroy (Ipnet_diffserv_handlers * handlers);

Step 2: Define and Register a Factory Function for Meter/Marker Entities

Define a factory function for the new meter/marker entity and register it with the 
network stack. You must register the factory function as an 
Ipnet_diffserv_handlers_template. 

typedef struct Ipnet_diffserv_handlers_template_struct
{

const char * name;
Ipnet_diffserv_ctor create;
} Ipnet_diffserv_handlers_template;

The fields in this structure are defined as follows:

name 
The name of the meter/marker entity. The network stack associates this name 
with the create routine below, so that the stack calls this function when 
meter/marker entity structures (ds objects) with this name are passed to the 
SIOCXDSCREATE ioctl operation (see Creating a Meter/Marker Entity, p.146). 

create 
The create routine the network stack calls for meter/marker entities whose 
name members match name, above. The stack passes data (the d member of 
the entity’s ds object) as the first argument to this routine. This routine has the 
following prototype:

int myCreate (void * arg, Ipnet_diffserv_handlers ** phandler);

For the network stack to be able to use the new meter/marker entity type, you 
must register the factory function by passing it in to 
ipnet_diffserv_register_ctor( ) from the ipnet_diffserv_init( ) routine, which is 
defined in:

installDir/components/ip_net2-6.x/ipnet2/src/ipnet_diffserv.c 

For example, the single-rate three-color marker declares a routine called 
ipnet_diffserv_srtcm_template( ), which returns a static variable of type 
Ipnet_diffserv_handlers_template that it initializes with a name and a pointer to 
a constructor function, so its factory registration call looks like this:

ipnet_diffserv_register_ctor (ipnet_diffserv_srtcm_template ())

8.2.5  Using Existing Meter/Marker Entity Varieties

The following two meter/markers are already implemented and part of the stack: 

■ a simple marker (SimpleMarker, see SimpleMarker, p.151)

■ a single-rate, three-color marker (srTCM, see Single-Rate Three-Color Marker, 
p.151)
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SimpleMarker

The simple marker, SimpleMarker, is defined in:

installDir/components/ip_net2-6.x/ipnet2/src/ipnet_ds_sm.c. 

The simple marker copies a specific DS value into each IP header DS field on all 
packets that match a filter and can also set the drop precedence on every packet 
that matches. 

The members of the ds_sm class are defined as follows:

mask 
This member determines if the marker should set the DS field and/or set the 
drop precedence. Construct the value of the mask by ANDing the following 
two DS_SM_x constants:

■ DS_SM_DS_VAL – the DS value

■ DS_SM_DROP_P – the drop precedence

ds_value 
The DS value that the marker sets on each packet that matches (if mask has the 
DS_SM_DS_VAL bit set). 

drop_precedence 
The drop precedence (one of the IPCOM_PKT_DROP_PRECEDENCE_x 
constants) that the marker sets on each packet that matches (if mask has the 
DS_SM_DROP_P bit set). 

Single-Rate Three-Color Marker 

The single-rate, three-color marker, srTCM, is defined in:

installDir/components/ip_net2-6.x/ipnet2/src/ipnet_ds_srtcm.c 

The single-rate, three-color marker meters the byte rate of a flow and marks 
packets as green, yellow, or red. The shaper prioritizes green packets over yellow 
packets and yellow packet over red packets. See RFC 2697 for a complete 
description of the srTCM meter/marker.

The members of the ds_srtcm class are as follows:

mode 
The mode in which the srTCM marker is operating. This can be either 
DS_SRTCM_MODE_COLOR_BLIND or DS_SRTCM_MODE_COLOR_AWARE. 

CIR 
The Committed Information Rate (bytes/second): the maximum, long term, 
data rate the flow can have and still have the marker mark it as green. 

CBS 
The Committed Burst Rate (bytes): the maximum size of the token bucket for 
green packets. 

EBS 
The Excess Burst Rate (bytes): the maximum size of the token bucket for 
yellow packets. 

ds_green 
The DS value that the marker gives to green packets. 
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ds_yellow 
The DS value that the marker gives to yellow packets. 

ds_red 
The DS value that the marker gives to red packets. 

8.3  Network Interface Output Queues

You can attach an interface output queue to every network interface in the network 
stack. All packets that the network stack sends through such an interface pass 
through a queue, and the queue can meter and enforce a maximum throughput on 
the packet flow.

There are two varieties of interface output queues in the network stack: 

■ Leaf queues, in which the packets are stored. These cannot have child queues. 
(See 8.3.2 Leaf Queues, p.156.) 

■ Container queues, which have one or more child queues (which can be either 
leaf queues or container queues) and a set of rules that determine which child 
queue to queue each packet in (see 8.3.3 Container Queues, p.159).

The API that you use to create, control, and delete interface output queues is 
defined in installDir/components/ip_net2-6.x/ipnet2/include/ipnet_qos.h.

ifqueue_qos class

To establish a queue, set the members of an object of the ifqueue_qos class and 
then attach this queue object to an interface using one of the techniques described 
in Adding an Interface Output Queue, p.154. The ifqueue_qos class.

The members of the ifqueue_qos class are as follows:

ifq_name 
The name of the network interface that this queue attaches to, for instance: 
"eth0". 

ifq_type 
The type of queue, for instance:

"fifo" – see: FIFO, p.156
A first-in/first-out queue with a queue limit.

"dpaf" – see: Drop Precedence-Aware FIFO, p.157
A first-in/first-out queue with three drop precedence levels (low, 
medium, and high) and with a queue limit; packets marked “high” are 
dropped before those marked “medium” or “low”.

"null" 
A queue in which all packets are dropped; some DiffServ shapers need 
queues of this sort.

NOTE:  Set at least one of CBS or EBS to be greater than zero and at least as big as 
the largest possible packet in the flow. 
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"none" 
Indicates that the interface does not have an interface output queue.

If your system automatically attaches queues to all interfaces, you can 
effectively remove a queue from a particular interface (for instance, a 
pseudo-interface that you do not want to filter) by setting its queue type 
to none. 

"netemu" – see: Network Emulator, p.157
Can add latency, and can reorder, drop, and corrupt packets; you can use 
this to test various network conditions.

"mbc" – see: Multiband Container (MBC), p.160
Holds an array of queues, arranged in order of priority (the lower the 
index in the array, the higher the priority); packets dequeue from the 
container in order of priority.

"htbc" – see: Hierarchy Token Bucket Container (HTBC), p.160
Holds a set of queues that are not prioritized relative to each other; packets 
dequeue from these queues in a round-robin fashion.

ifq_id 
The identifying number of the queue. In GET operations, if you set this to 
IFQ_ID_NONE, the operation returns the root queue, otherwise it returns the 
queue with this ID.

In SET operations, you can set this to a specific ID if you want to operate on a 
specific queue, or you can set this to IFQ_ID_NONE if you want the stack to 
select a unique ID. If the specified queue ID already exists, a SET operation 
replaces the queue. If you replace a container queue, this removes all of its 
children.

All queues attached to a particular interface have unique identifying numbers, 
but the same number may be used to refer to different queues that are attached 
to different interfaces.

ifq_parent_id 
The ID of the parent of this queue if this is a child queue, or IFQ_ID_NONE, if 
this is the root queue.

ifq_count 
(Read-only.) The number of packets in this queue, if it is a leaf queue, or the 
sum of packets in all of its child queues, if it is a container queue.

ifq_data 
An object that defines the characteristics of the particular type of queue. This 
may be an object of a queue class of your own invention, or one of the 
following:

■ ifqueue_fifo – see: FIFO, p.156

■ ifqueue_dpaf – see: Drop Precedence-Aware FIFO, p.157

■ ifqueue_netemu – see: Network Emulator, p.157

■ ifqueue_mbc – see: Multiband Container (MBC), p.160

■ ifqueue_htbc – see: Hierarchy Token Bucket Container (HTBC), p.160
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8.3.1  Operations

This section describes the various things you can do with output queues:

■ Adding an Interface Output Queue, p.154

■ Getting an Object that Describes an Interface Output Queue, p.154

■ Adding a Filter Rule to a Container Queue, p.155

■ Deleting a Filter Rule from a Container Queue, p.156

Adding an Interface Output Queue

To add an interface output queue to a network interface, or to replace one that was 
previously added, you can either call a routine from within a program or use a qc 
command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCSIFQUEUE, &queue); 

Where queue is a ifqueue_qos object that describes the leaf or container queue you 
are adding (see ifqueue_qos class, p.152).

If the ifq_id member of the ifqueue_qos object matches that of a queue that is 
already attached to the interface, this operation will replace that queue with the 
one described by queue.

You can also use the following qc command:

# qc [-V virtualRouter] queue add [parameters] 

For instance, if you want to test how your system would work under conditions 
when there was 100 millisecond latency on interface lo0, you could create a 
network emulator queue on that device that simulates such latency, with the 
following qc command:

# qc queue add dev lo0 netemu limit 10 min_latency 100 max_latency 100 

If you want to rate-limit all traffic on interface eth0 to two Mbits per second, you 
could do this by establishing a rate-limited HTBC queue with the following 
command:

# qc queue add dev eth0 htbc rate 2000kbps

Getting an Object that Describes an Interface Output Queue

To get an object that describes an interface output queue on a network interface, 
you can either call a routine from within a program or use a qc command 
interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCGIFQUEUE, &queue);

Where queue is a ifqueue_qos object (see ifqueue_qos class, p.152).

If you call this with the ifq_id field of queue set to IFQ_ID_NONE, this routine will 
fill queue so that it describes the root queue on this interface, otherwise it will fill 
queue so that it describes the queue matching ifq_id.
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You can also use a qc command, which has the following format:

# qc [-V virtualRouter] queue show [parameters] 

Adding a Filter Rule to a Container Queue

To add a filter rule to a container queue on a network interface, you can either call 
a routine from within a program or use a qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXAIFQFILTER, &filter);

In this call filter is an ifqueue_filter object that describes the filter you are adding 
(see Filter Rules, p.159). 

You can also use a qc command, which has the following format:

# qc filter add dev device parent queueID handle filterID [filterArgs] flowid queueID 

The arguments to this command are as follows:

dev device 
The device to which you are attaching the filter, for instance eth0.

parent queueID 
The identifying number of the container queue to which you are adding the 
filter.

handle filterID [filterArgs] 
The filterID is the identifying number of the filter. You may use the following 
arguments in the filterArgs argument to describe the filter:

proto number 

tclass number 

srcport range 

dstport range 

srcaddr address[/prefix] 

dstaddr address[/prefix] 

flowid queueID 
The identifying number of the destination queue for packets that match the 
filter.

For example:

To add a filter identified by the number 5 to the container queue identified by the 
number 1, so that all TCP packets (protocol number 6) are filtered into the queue 
identified by the number 31, use the following qc command:

# qc filter dev eth0 parent 1 handle 5 proto 6 flowid 31

To add a second filter (identified by the number three) to the same container queue 
that filters all UDP packets (protocol number 17) that are sent to 2001::/16 into the 
same queue, use the following qc command:

# qc filter dev eth0 parent 1 handle 3 proto 17 srcaddr 2001::/16 flowid 31
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Deleting a Filter Rule from a Container Queue

To delete a filter rule from a container queue on a network interface, you can either 
call a routine from within a program or use a qc command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDIFQFILTER, filter);

In this call filter is an ifqueue_filter object that describes the filter you are 
removing (see Filter Rules, p.159).

You can also use a qc command, which has the following format:

# qc [-V virtualRouter] filter del [parameters]

8.3.2  Leaf Queues 

Leaf queues cannot have children and you cannot assign filter rules to them. 

The Wind River Network Stack includes the following kinds of leaf queues:

■ None, p.156

■ FIFO, p.156

■ Drop Precedence-Aware FIFO, p.157

■ Network Emulator, p.157

None 

■ Queue name: none 

If you specify none as the queue type, the interface does not have an interface 
output queue. If your system automatically attaches queues to all interfaces, you 
can effectively remove a queue from a particular interface by setting its queue type 
to none. 

FIFO 

■ Queue name: fifo 

■ File: installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue_fifo.c 

■ qc command:

# qc queue add dev device fifo limit number 

This is the default queue for all interfaces in the network stack. 

You can use FIFOs as buffers to handle temporary peaks in traffic. You can also use 
them as leaf queues in more complex queue hierarchies. 

Packets dequeue from a FIFO queue, in the same order as they arrived on the 
queue, without regard to the packets’ individual properties.

The cost of queuing or dequeuing a packet on a FIFO queue is always O(1). 

Create a FIFO queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see 
ifqueue_qos class, p.152).

2. Set the ifq_type member of that object to "fifo".
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3. Create an object of class ifqueue_fifo and set its fifo_limit member to the 
maximum number of packets that can be stored in the queue.

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_fifo object.

Drop Precedence-Aware FIFO 

■ Queue name: dpaf 

■ File: installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue_dpaf.c 

■ qc command:

# qc queue add dev device dpaf limit number 

Drop Precedence-Aware FIFO queues (DPAFs) work as normal FIFOs until the 
maximum number of packets in the queue is exceeded. If the limit is exceeded, a 
DPAF checks the drop precedence of the new packet. The following outcomes are 
possible: 

■ Reject this packet if is has high drop precedence .

■ Drop a high-drop-precedence packet from the queue and replace it with the 
new packet if this packet has medium or low drop precedence.

■ Drop a medium-drop-precedence packet from the queue and replace it with 
the new packet if this packet has low drop precedence.

■ Reject this packet if there are no packets in the queue with higher drop 
precedence that the DPAF can drop.

The extra overhead compared to FIFO makes this queue slower. The cost of 
queuing/dequeuing a packet is O(log(n)), where n is the number of packets in the 
queue. 

Create a FIFO queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see 
ifqueue_qos class, p.152).

2. Set the ifq_type member of that object to "dpaf".

3. Create an object of class ifqueue_dpaf and set its dpaf_limit member to the 
maximum number of packets that can be stored in the queue.

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_dpaf object.

Network Emulator 

■ Queue name: netemu 

■ File: 
installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue_netemu.
c 

■ qc command:

# qc queue add dev device netemu limit number [min_latency msec] \ 
[max_latency milliseconds] \ 
[drop probability [random | pattern {0|1},{0|1}[,...,{0|1}]]] \ 
[corrupt probability [random]] 

The network emulator is a testing and debugging tool. You can use it to introduce 
jitter and latency into a stream, which may result in packet reordering, or to drop 
and corrupt packets.
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A netemu queue with zero latency, zero drops, and zero corruption is equivalent 
to a FIFO queue. 

Create a network emulator queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see 
ifqueue_qos class, p.152).

2. Set the ifq_type member of that object to "netemu".

3. Create an object of class ifqueue_netemu and set its members appropriately 
(see below).

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_netemu 
object.

The members of the ifqueue_netemu class are as follows:

netemu_limit 
The maximum number of packets that can be stored in this queue. 

netemu_min_latency 
netemu_max_latency

The minimum and maximum latency that the emulator adds to each packet, in 
milliseconds. The emulator will evenly distribute the latency on individual 
packets between [netemu_min_latency..netemu_max_latency]. 

netemu_random_drop 
netemu_drop_probability
netemu_drop_pattern
netemu_drop_pattern_len

Set netemu_random_drop to TRUE to drop individual packets with the 
probability of 1/netemu_drop_probability. Set netemu_random_drop to 
FALSE to drop a packet every netemu_drop_probability packets. For 
example, if you set netemu_drop_probability to 4, setting 
netemu_random_drop to FALSE means the emulator drops every fourth 
packet, while setting it to TRUE means that for each packet there is a 
one-in-four probability that the emulator will drop it.

You can also set netemu_drop_pattern to a bitmask that represents a regular 
pattern of netemu_drop_pattern_len bits, with bits marked “1” representing 
dropped packets, so that, for instance, the pattern 00000011 
(netemu_drop_pattern = 0x00000003, netemu_drop_pattern_len = 8)will 
drop the last two of every eight packets.

netemu_random_corrupt 
netemu_corrupt_probability

Set netemu_random_corrupt to TRUE to corrupt individual packets with the 
probability of 1/netemu_corrupt_probability. Set netemu_random_corrupt 
to FALSE to corrupt a packet every netemu_corrupt_probability packets. For 
example, if you set netemu_corrupt_probability to 4, setting 
netemu_random_corrupt to FALSE means the emulator corrupts every fourth 
packet, while setting it to TRUE means that for each packet there is a 
one-in-four probability that the emulator will corrupt it.
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8.3.3  Container Queues

A container queue contains one or more child queues (child queues may be 
container queues or leaf queues or a combination of both). Filter rules determine 
which child queue the container queue stores a particular packet in.

Container Superclass

All container classes are subclasses of the ifqueue_container class (which is to say 
that the first member of the structure that defines a container class is an 
ifqueue_container structure). The members of this class are as follows:

child_count 
the number of child queues this container has (a child queue that is a container 
queue only counts as a single child even if it in turn has multiple children)

child_ids 
an array that contains the queue IDs of each of the child queues

Filter Rules

You may attach filter rules to container queues (see Adding a Filter Rule to a 
Container Queue, p.155). These rules control in which child queue a container 
queue should place packets. If a packet does not match any rule, the container 
queue queues the packet on its default child queue.

The ifqueue_filter class describes a filter rule. The members of this class are 
defined as follows:

filter_ifname
The name of the network interface this filter operates on.

filter_id
The ID of this rule. The stack sets this field when the filter is added; if you are 
deleting a filter, set this field to indicate which filter you want to delete. 

filter_queue_id
The ID of the (container) queue this filter applies to. 

filter_child_queue_id 
The ID of the child queue into which packets matching this rule will be queued 
by the container queue.

filter_rule 
The actual rule, in the form of an classifier_rule object (see 8.2 Differentiated 
Services, p.144).

Available Container Queues

The Wind River Network Stack includes the following container queues:

■ Multiband Container (MBC), p.160

■ Hierarchy Token Bucket Container (HTBC), p.160
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Multiband Container (MBC)

■ Queue name: MBC 

■ File: installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue_mbc.c 

■ qc command:

# qc queue add dev device mbc bands number [default_band number] 

An MBC container queue keeps an array of child queues (bands) in decreasing 
priority. An MBC queue always dequeues packets from the first non-empty queue 
in its array of queues.

You can use this variety of container queue when certain kinds of traffic, such as 
signalling, must transmit as quickly as possible, while other traffic, like e-mail, can 
wait for low-traffic conditions. 

When you create an MBC queue, it initially has an array of FIFO child queues. You 
may replace these with queues of another variety by issuing an SIOCSIFQUEUE 
ioctl call (see Adding an Interface Output Queue, p.154). 

Define an MBC queue by setting the ifq_type member of the ifqueue_qos 
structure to "mbc" and the ifq_data member of the ifqueue_qos structure to an 
object of the ifqueue_mbc class. The members of this class are defined as follows:

mbc_container 
The base class for container queues. 

mbc_bands 
The number of bands (child queues) that this container queue manages. You 
may only set this member prior to the time you create the MBC queue.

mbc_default_band 
Which of the bands (child queues) the MBC container queue puts a packet into 
if that packet does not match any of the filter rules. This is an index value in 
the range [0..mbc_bands). 

Hierarchy Token Bucket Container (HTBC)

■ Queue name: HTBC 

■ File: installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue_htbc.c 

■ qc command:

# qc queue add dev device htbc rate rate [burst number]

Use the HTBC queue when you want to control the bandwidth usage on an 
interface. The queue calculates the data rate by taking the sum of bandwidth used 
by all children; it calculates this when it dequeues packets. It considers all children 
to have the same priority, so it dequeues packets from the child queues in a 
round-robin fashion. 

You can add or delete child queues from an HTBC container queue throughout the 
lifetime of the HTBC. When you create an HTBC, it comes with a single child FIFO 
queue, the default queue, attached to it. You can add more queues, or replace this 
default queue with one of another variety, by using the SIOCSIFQUEUE ioctl call 
(see Adding an Interface Output Queue, p.154).

Define an HTBC queue by setting the ifq_type member of the ifqueue_qos 
structure to "htbc" and the ifq_data member of the ifqueue_qos structure 
ifqueue_htbc class. The members of this class are defined as follows:
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htbc_container 
The base class for containers.

htbc_byterate 
The maximum bandwidth, in bytes per second, at which this queue may send. 

htbc_token_limit 
The maximum number of tokens this queue can have. For each byte that an 
HTBC container queue dequeues from one of its children and sends, it 
consumes one token. You must set this value to be greater than the MTU 
(maximum transmission unit) of the interface you attach the queue to. A 
reasonable value might be in the range htbc_byterate/100 to htbc_byterate. A 
larger value results in HTBC dropping fewer packets during temporary bursts 
in the flow, so the actual value depends on the acceptable level of “burstiness.” 

htbc_default_id 
The ID number of the default queue, into which HTBC places all packets that 
do not match any filter rule.

8.3.4  Adding a New Queue Type

Create a new leaf queue variety by adding its structure to the ifqueue_data union 
(see ifqueue_qos class, p.152), implementing all routines in the Ipnet_pkt_queue 
structure, and registering an instance of that type with the 
ipnet_pkt_queue_register( ) routine.

The members of this structure are defined as follows:

type 
The name of the queue type. 

impl_size 
The size of the structure used by this queue, which may be an 
Ipnet_pkt_queue structure or a subclass structure that derives from it. 

c_ops 
If this queue is a container queue, it must implement this interface. Write these 
routines to return 0 (zero) on success, or an IPNET_ERRNO_x error code on 
failure (except for q_get, which returns a queue structure, or IP_NULL if it finds 
no queue that matches the ID).

q_get – retrieves a queue by ID number
Ipnet_pkt_queue_struct * my_q_get 

(Ipnet_pkt_queue_struct * containerQueue, int queueID)

q_insert – adds a queue to the container
int my_q_insert (Ipnet_pkt_queue_struct * containerQueue,

Ipnet_pkt_queue_struct * addThisQueue);

q_remove – removes a queue from the container
int my_q_remove (Ipnet_pkt_queue_struct * containerQueue,

Ipnet_pkt_queue_struct * removeThisQueue);

NOTE:  The Wind River Network Stack registers its queues, like the FIFO and 
HTBC queues, in the ipnet_pkt_queue_init( ) routine, which is located in 
installDir/components/ip_net2-6.x/ipnet2/src/ipnet_pkt_queue.c. You may want 
to register any new queues you add at the same time, which you can do by 
changing this routine to make additional registration calls.
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f_insert – adds a filter to a queue
int my_f_insert (Ipnet_pkt_queue_struct * containerQueue,

int filterID, classifier_rule * rule, int childQueueID);

f_remove – removes a filter from a queue
int my_f_remove (Ipnet_pkt_queue_struct * containerQueue,

int filterID)

enqueue or enqueue_locked 
Enqueues a packet on this queue. This routine has the following prototype:

int myEnqueue (struct Ipnet_pkt_queue_struct * queue, Ipcom_pkt * packet)

Write this routine to return 0 (zero) on success, or an IPNET_ERRNO_x error 
code on failure.

dequeue or dequeue_locked 
Dequeues a packet from this queue. This routine has the following prototype:

Ipcom_pkt * myDequeue (Ipnet_pkt_queue_struct * queue)

Write this routine to return the next packet (according to the rules of the 
queue), or IP_NULL if the queue is empty.

requeue or requeue_locked 
Puts a packet back on the queue that was removed from the queue with the 
dequeue function. This routine has the following prototype:

void myRequeue (Ipnet_pkt_queue_struct * queue, Ipcom_pkt * packet);

count or count_locked 
Returns the number of packets in this queue, or the sum of packets in all child 
queues if this is a container queue. This routine has the following prototype:

int myCount (Ipnet_pkt_queue_struct * queue);

reset 
Removes all packets from the queue and resets the internal state of the queue. 
This routine has the following prototype:

void myReset (Ipnet_pkt_queue_struct * queue);

dump 
Fills an ifqueue_x structure with the current configuration of this queue. This 
routine has the following prototype:

void myDump (Ipnet_pkt_queue_struct * queue,
union ifqueue_data * data);

Write this routine so that it fills the data structure with the configuration 
information specific to this queue.

configure 
Configures the queue based on the ifqueue_x structure for this queue, found 
in the data parameter. This routine has the following prototype:

int myConfigure (Ipnet_pkt_queue_struct * queue,
union ifqueue_data * data);

Write this routine so that it returns the number of elements that may be placed 
in the queue.

init 
The routine that initializes the queue after memory has been allocated for it. 
This routine has the following prototype:

int myInit (Ipnet_pkt_queue_struct * queue);
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Write this routines to return 0 (zero) on success, or an IPNET_ERRNO_x error 
code on failure.

destroy 
The routine that frees all resources allocated by this queue. This routine has the 
following prototype:

void myDestroy (Ipnet_pkt_queue_struct * queue);

8.3.5  Example—Reserving Bandwidth for an Application

This example demonstrates how to use an HTBC interface queue to reserve 
bandwidth for an application. To specify the application, we identify its specific 
UDP or TCP port—in this example, port 5001.

Step 1: Create an MBC.

Using the qc command, create an MBC with two bands—one for traffic with 
unlimited bandwidth and one for the application for which you want to reserve 
bandwidth. Use the first band as the default (used if there is no matching rule).

1. Issue the following command to create the MBC:

# qc queue add dev eth0 mbc bands 2 default_band 0

2. Issue a qc show command to verify that the MBC has been created:

# qc queue show dev eth0
mbc/1[0] queue at eth0
bands: 2, default_band: 0
fifo/1000[1] queue at eth0
limit: 16

fifo/1001[1] queue at eth0
limit: 16

Step 2: Attach an HTBC to the second band of the MBC.

The child queue in that band has ID 1001. Replace it with one with an HTBC with 
a limit of 1 Mbit per sec.

1. Issue the following command to create the child queue:

# qc queue add dev eth0 parent 1 handle 1001 htbc rate 1Mbit burst 100kb

The specified burst parameter must be low enough to improve the accuracy of 
the rate limiter, yet high enough to create a bucket container of adequate size 
for the specified rate, which is set in relation to the clock speed of the operating 
system. For further information on specifying this parameter, see Specifying the 
burst Parameter, p.164.

2. Issue another qc show command to verify the creation of this queue.

# qc queue show dev eth0
mbc/1[0] queue at eth0
bands: 2, default_band: 0
fifo/1000[1] queue at eth0
limit: 16

htbc/1001[1] queue at eth0
rate: 125kbps, burst: 100k, default id: 1002
fifo/1002[1001] queue at eth0
limit: 16

NOTE:  Do not set the remaining fields of this structure, such as id, parent_id, netif, 
prev, and next.
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Step 3: Create a filter rule for the application.

Create a filter rule that puts all traffic for the application into the band with the 
HTBC connected to it and all other traffic into the other band.

1. Issue the following command to create the rule:

# qc filter add dev eth0 parent 1 dstport 5001 flowid 1001

This command adds a filter rule to a queue that is attached to device eth0. 

The network stack will apply this rule when something is queued at the MBC 
queue (parent 1, which is the ID of the MBC). If the rule matches, it will use the 
child queue with ID 1001 (flowid 1001) . The rule specifies a destination port of 
5001. (Because no protocol is defined, the rule applies to both UDP and TCP port 
5001.)

2. Issue a ttcp command to verify the result. The ttcp command must use TCP 
port 5001 by default.

# ttcp -n 1000 192.168.130.4
ttcp-t: fd=28, buflen=8192, nbuf=1000, align=16/0, port=5001, 

sockbufsize=32767 TCP -> 192.168.130.4
ttcp-t: socket
ttcp-t: setsockopt(IP_SO_REUSEADDR)
ttcp-t: bind IPv4 0
ttcp-t: setsockopt(sndbuf)
ttcp-t: connect
ttcp-t: 8192000 bytes in 68581 milliseconds = 116 KB/sec, 119 B/msec 

+++
ttcp-t: 1000 I/O calls, msec/call = 68, calls/sec = 14

The throughput of 116 KB/sec is a bit slower than the configured value of 
125 KB/sec, but that is expected because the limit includes all headers, while ttcp 
measures the throughput of the TCP payload.

3. Change the port to 5002, which is not bandwidth-limited:

# ttcp -n 1000 -p 5002 192.168.130.4
ttcp-t: fd=29, buflen=8192, nbuf=1000, align=16/0, port=5002, 

sockbufsize=32767 TCP -> 192.168.130.4
ttcp-t: socket
ttcp-t: setsockopt(IP_SO_REUSEADDR)
ttcp-t: bind IPv4 0
ttcp-t: setsockopt(sndbuf)
ttcp-t: connect
ttcp-t: 8192000 bytes in 447 milliseconds = 17897 KB/sec, 18326 B/msec 

+++
ttcp-t: 1000 I/O calls, msec/call = 0, calls/sec = 2237

The throughput changes to 18 MB/sec. The sample output shown above was 
prepared using a debug build of the network stack running in the simulator. The 
throughput would be even higher on a network stack prepared for deployment on 
an actual target.

Specifying the burst Parameter

The burst parameter specifies the size of the “bucket” that defines the capacity of 
an HTBC. Packets received on a queue are added to this bucket, and packets 

NOTE:  The speed is always shown as kilobytes per second, so 1 Mbit/sec is shown 
as 125 KB/sec.
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transmitted on a queue are subtracted from this bucket, both at the rate specified 
by the rate parameter.

If incoming packets exceed the burst parameter, the excess packets are dropped. If 
outgoing packets are transmitted at a rate that drains the bucket, transmission 
stops until incoming packets have filled the bucket in an amount equal to the 
amount of outgoing packets in the queue. The bucket must therefore be sized so 
that is neither completely drained nor completely filled by the traffic anticipated 
on the queue, given the specified rate parameter.

To set the burst parameter, you must take the tick rate of the VxWorks operating 
system into account, which is about 60 Hz. Note further that the network stack 
might begin transmitting packets on the queue just after a tick, so the bucket must 
be large enough to allow transmission for two full ticks.

You can calculate the value for this parameter as follows:

R/60 * 2 = B

where

R = rate

B = burst

For example, if you set the rate parameter to 1 Mbit, your calculation for the burst 
parameter is as follows:

1 * 10242/60 * 2 = 35 KB

You can set the burst parameter to a higher value to allow temporary bursts of 
traffic, but the sustained rate can never exceed the value specified by the rate 
parameter, regardless of the value of the burst parameter. If you specify too low a 
value for the burst parameter, the shaped bandwidth will be lower than the value 
configured by the rate parameter.
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9.1 Introduction 167

9.2 Factors to Consider Before Using Ingress Filtering 168

9.3 Building VxWorks to Include Ingress Traffic Prioritization 169

9.4 Implementing an Ingress Filter Routine 170

9.1  Introduction

By default, the network stack treats all packets that arrive at an interface equally 
and processes them in the order of their arrival. Ingress traffic prioritization is a 
quality of service (QoS) feature that allows you to assign priorities to the packets 
that arrive at an individual interface and have the stack process higher-priority 
packets before lower-priority packets. 

To use Wind River ingress traffic prioritization, you must do the following:

1. Statically configure a job queue to hold packets that a filter routine prioritizes 
(see 9.3 Building VxWorks to Include Ingress Traffic Prioritization, p.169).

2. Implement one or more ingress filter routines that classify packets and assign 
priorities. 

Wind River provides a function prototype for this routine and a set of sample 
implementations (see 9.4 Implementing an Ingress Filter Routine, p.170). 

3. Register your filter routine to filter incoming traffic on a specific interface (see 
9.4.1 Registering an Ingress Filter Routine, p.171). 

The filter routine you implement must assign each incoming packet to one of 
the following categories:

– Packets for the stack to process immediately (QOS_DELIVER_PKT)

NOTE:  The QoS feature is available only in the Wind River Platforms builds of the 
network stack. The Wind River General Purpose Platform, VxWorks Edition, does 
not support QoS.

The Wind River Network Stack does not support ingress filtering in SMP builds.
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– Packets to queue for the stack to process later (QOS_DEFER_PKT)

– Packets for the stack to drop (QOS_IGNORE_PKT). Typically, these are 
packets in which the filter routine detects an error.

If the filter routine assigns a packet for the stack to process later (deferred 
processing), the filter routine must also assign the packet a priority.

9.2  Factors to Consider Before Using Ingress Filtering

This section applies to ingress traffic prioritization that uses the standard 
network-stack queue for incoming traffic; circumstances are different if you create 
custom job queues using jobQueueLib (see the table entry for 
Ingress QoS Job Queue in Table 9-1 under 9.3 Building VxWorks to Include Ingress 
Traffic Prioritization, p.169).

There are two things you should consider before you decide to use ingress traffic 
prioritization and develop an ingress filter routine:

■ On a system with multiple interfaces for incoming messages, you may need to 
associate a filter routine with each interface. You can associate a single routine 
with multiple interfaces.

■ The current implementation of ingress traffic prioritization does not provide 
for congestion handling or “fairness.”

Systems with Multiple Interfaces for Incoming Traffic

When you register an ingress filter routine, you associate the routine with a specific 
interface. Typically, the filter routine designates some packets for immediate 
delivery and other packets for the stack to process later (deferred processing). The 
routine assigns those packets that it designates for deferred processing a priority 
that determines the order in which the stack will process them—the stack queues 
higher priority packets ahead of lower priority packets.

If you do not associate an ingress filter routine with an interface, the stack treats all 
packets that the interface receives equally and processes them as if a filter routine 
had prioritized all of them for immediate delivery. As a result, the stack processes 
packets that arrive at an interface without ingress filtering before those packets 
that an ingress filter designated for deferred processing, even if those deferred 
packets have a high priority.

To ensure that the stack does not wait to process deferred packets until after it has 
processed all other packets, you must assign an ingress filter routine to each 
interface that receives incoming traffic. You may assign a single filter routine to 
multiple interfaces.

Traffic Congestion and Fairness

The stack queues, by priority, those packets that the ingress filter designates for 
deferred processing. The stack processes all higher-priority packets before any 
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lower-priority packets. This means that during heavy incoming traffic, 
lower-priority packets can take up an increasing amount of buffer space without 
the stack processing them. The current implementation does not limit the number 
of packets that the stack can queue for deferred delivery. As a result, it is possible 
for deferred packets to exhaust the pool of available network-interface receive 
buffers.

Driver Variety

Currently, ingress filtering in the Wind River Network Stack will only work with 
END drivers.

9.3  Building VxWorks to Include Ingress Traffic Prioritization

To include ingress traffic prioritization in an image, include the Ingress Traffic 
Prioritization (INCLUDE_QOS_INGRESS) build component in your VxWorks 
Image Project. In addition, you may need to change the default values of the 
ingress-traffic-prioritization build parameters. Table 9-1 describes the parameters.

Table 9-1 Ingress Traffic Prioritization Configuration Parameters

Workbench Description and Parameter Name Default Value and Type

Ingress QoS Job Queue
QOS_JOBQ 

The JOB_QUEUE_ID of the queue into which the ingress filter places 
prioritized and deferred packets (QOS_DEFER_PKT).

If you do not change the default value, the ingress filter places deferred 
packets into the network stack’s standard queue for incoming packets.

You can create a job queue specifically to handle deferred packets. For 
information, see the reference page for jobQLib.

netJobQueueId

long

Ingress Traffic Prioritization Job Queue Priority
QOS_JOBQ_PRI 

The jobQLib task priority for the job that handles deferred packets. 

Do not change the default priority unless you create one or more separate 
job queues based on jobQLib.

NET_TASK_QJOB_PRI - 1 

long

Ingress default deferred Job Queue Priority
QOS_DEFAULT_PRI 

The default priority that the ingress filter assigns to incoming packets. This 
can be a value from 0 to 31, with higher values having a higher priority.

0 

long
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9.4  Implementing an Ingress Filter Routine

To use ingress filtering, first implement a filter routine based on the following 
function prototype:

int ingressFilterRoutine 
(
END_OBJ * pEnd,
M_BLK_ID * ppMblk,
int * pPri 
)

The parameters to this routine are as follows:

pEnd
A pointer to an object that describes the END device over which the packet 
arrived.

ppMblk
A pointer to an M_BLK_ID that points to an incoming packet.

pPri
A pointer to an integer that can hold the incoming packet’s priority value. This 
priority can be a value from 0 to 31, with higher values having a higher 
priority.

Return values from the routine apply to the packet referenced by ppMblk. Valid 
return values are:

QOS_DELIVER_PKT 
Deliver the packet without delay to the upper layer protocol for 
processing. 

QOS_DEFER_PKT 
Queue the packet for delivery according to its priority, as given in pPri. If 
your routine returns this value, it must also set *pPri accordingly.

QOS_IGNORE_PKT    
Ignore (drop) the packet. Typically, this value indicates that the filter 
routine detected an error in the packet. When the routine returns this 
value, it assumes responsibility for calling m_freem( ) to free the packet’s 
memory space at *ppMblk. 

You can find sample implementations of the ingressFilterRoutine( ) prototype in 
the following file:

 installDir/components/ip_net2-6.x/vxcoreip/src/dlink/qosIngressHooks.c

You can find the following sample routines in this file: 

etherQosHook( ) 
Assigns priorities to Ethernet packets based on the protocol specified in 
the Ethernet header’s type field.

vlanQosHook( ) 
Assigns priorities based on the priority field in the VLAN header.

ipProtoQosHook( ) 
Assigns priorities based on the transport protocol and port-number fields 
in the packet’s header.
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dscpQosHook( ) 
Assigns priorities based on the packet’s differentiated-services code-point 
(DSCP) field.

9.4.1  Registering an Ingress Filter Routine

To register an ingress filter routine for an interface, call the qosIngressHookSet( ) 
routine. 

The syntax for qosIngressHookSet( ) is:

STATUS qosIngressHookSet 
( 
int unit,
char * ifname,
QOS_ING_HOOK hookRtn 
)

The parameters to this routine are as follows:

unit 
The unit number of the interface, for example, 0.

ifname 
The name of the interface, for example, "fei".

hookRtn 
A pointer to the ingress-filter routine that you are registering.

Deactivating Ingress Traffic Prioritization on an Interface

To deregister an ingress filter routine from an interface, which deactivates ingress 
traffic prioritization on an interface, call qosIngressHookSet( ) with hookRtn set 
to NULL.
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A.1  Introduction

This appendix provides reference information for the some of the shell commands 
used to configure the Wind River Network Stack and related software modules at 
run time.

A.2  Networking Shell Commands

ifconfig

Name

ifconfig - set or get configuration values for a network interface

Synopsis

The shell command ifconfig can be used to assign information to a network 
interface, retrieve information on a network interface, and generate reports. This 
command is accessed from the kernel shell, which can be used in either of the 
following modes:

■ command interpreter mode

■ C interpreter mode

When the shell is set to C interpreter mode, all command arguments must be 
enclosed in double quotation marks ("). In this reference entry, all syntax diagrams 
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and command examples are enclosed in double quotation marks. If you are using 
the shell in command interpreter mode, omit these quotation marks.

The syntax for the command varies by usage.

The valid syntax for assigning information to a network interface is as follows:

ifconfig "interface [protocol] [parameter parameterValue]"

The valid syntax for retrieving information on a network interface is as follows:

ifconfig "[flags] [interface] [protocol]"

The following combinations of flags are valid when using ifconfig to generate 
reports:

ifconfig "[-L] interface [ protocol ]"
ifconfig "-a [-L] [-d] [-u] [ protocol ]"
ifconfig "-l [-d] [-u] [ protocol ]"
ifconfig "[-L] [-d] [-u]"

Description

Use ifconfig to configure a network interface or to retrieve network interface 
configuration values. The ifconfig( ) API can be used programmatically.

As a convenience, failing to specify a value for parameter before the address is 
interpreted as indicating the default, add. Similarly, because of a prejudice in favor 
of IPv4, failing to specify a value for protocol is interpreted as indicating the default 
of inet, which specifies IPv4.

The correct usage of the elements of an ifconfig( ) call is as follows:

flags
The flags values apply when the ifconfig command (or ifconfig( ) call) is used 
to generate a report.

Use -a instead of specifying an interface value if you want a report containing 
information on all interfaces.

Use -d to limit the report to down interfaces.

Use -l to limit the report to a simple list of all interfaces without additional 
information.

Use -L to request lifetime information on an IPv6 address presented as a time 
offset string.

Use -u to limit the report to up interfaces.

interface
Use this parameter to specify the name of the network interface to which the 
command applies. The generic format of a network interface name is 
UnitnameUnitnumber, which results in names such as fei0.

protocol
This element lets you specify the network protocol associated with the call. 
The default protocol value is inet, which indicates the IPv4 protocol. The other 
valid value for protocol is inet6.

address
If the protocol is inet, the address is either a host name already present in the host 
name database (see hosts( )), or an IPv4 Internet address expressed in Internet 
standard dot notation. You can also use the CIDR notation (also known as the 
slash notation) to specify netmask with the address. For example, using CIDR 
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(slash) notation, 192.168.0.1/16 is a possible inet address string. However, if the 
protocol is inet6, the slash in an address string is interpreted as an indicator of 
the prefix length. For example, ::1/128. If you do not use slash notation to 
specify a prefix length in an inet6 address, ifconfig assumes a default value of 
64. To override this default without using the slash notation, you can use the 
prefixlen parameter. See the entry under the parameters description for more 
information.

destAddr
This element of an ifconfig( ) call appears only when the call applies to the 
local end of a point-to-point link. In this case, the destAddr value indicates the 
address of the correspondent on the other end the link. See the add entry under 
the parameters description below.

parameters
These elements of an ifconfig( ) call let you set the value of the configuration 
parameters associated with a network interface. The following is a list of valid 
values for parameters.

add
Add another network address to this interface. You may want to use this 
parameter when changing network numbers. It leaves the old address in place, 
which allows the interface to still accept packets destined to the old address. If 
the new address is on the same subnet as the first network address for this 
interface, you must specify a netmask of 0xffffffff. If this add applies to the 
local end of a point-to-point connection, you need to include the other end’s 
destination address. The syntax is:

ifconfig "protocol add address destAddr"

Note that the equivalent command alias is currently not supported.

delete
Remove the network address specified.

anycast
Specify that the IPv6 address configured is an anycast address. Based on the 
current specification, only routers may configure anycast addresses. Anycast 
address will not be used as source address of any of outgoing IPv6 packets.

Note that the equivalent commands -alias and -remove are not currently not 
supported.

cga
The address is cryptographically generated (inet6 only). Available only when 
IPNET_USE_RFC3971 has been defined.

down
 Mark an interface as down. If an interface is marked as down, IP does not 
transmit through that interface. If possible, ifconfig "interface down" also 
disables packet reception on the specified interface. Although marking the 
interface as down prevents IP from using routes associated with that interface, 
it does not remove the routes from the routing table.

 If the interface is later marked as up, IP will be able to use the old routes 
associated with the interface (provided some agent, such as a routing protocol 
or a user, has not explicitly deleted the old routes).
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create
Create the specified network pseudodevice. If the interface is given without a 
unit number, try to create a new device with an arbitrary unit number. If 
creation of an arbitrary device is successful, the new device name is printed to 
standard output.

destroy
Destroy the specified network pseudodevice.

mtu n
Set the maximum transmission unit (MTU) of the interface to n. The default 
MTU value is interface specific and may not be configurable.

preferred
Set the preferred lifetime for the specified IPv6 address.

prefixlen length
This parameters value is valid only when protocol is inet6. The length value 
specifies the number of address bits used for dividing networks into subnets. 
The length must be an integer value between 0 and 128. It is usually 64 under 
the current IPv6 assignment rule.

 If the prefixlen is omitted, a default value of 64 is assumed. You can also use 
the “slash after the address” notation to specify the prefix length.

tentative
Set the tentative bit in the specified IPv6 address.

-tentative
Clear the tentative bit in the specified IPv6 address.

up
Mark an interface as up. Use this parameters value to undo a previous 
ifconfig "interface down" call. This status change is a software event only. 
Simply marking an interface as up cannot reinitialize the hardware associated 
with that interface.

valid
Set the valid lifetime for the specified IPv6 address.

dstaddr
Set remote address to 'a' (inet and PPP only).

lladdr addr
Set interface link address to addr.

vr vr
Set virtual router to vr.

dhcp
Enable DHCP autoconfiguration (inet only).

-dhcp
Disable DHCP autoconfiguration (inet only).

link
Enable special processing at the link level.

-link
Disable special processing at the link level.
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promisc
Enable promiscuous mode at the interface.

-promisc
Disable promiscuous mode at the interface.

Wrapper Changes

The ifconfig backwards compatibility wrapper routine does not support (or 
supports differently) the following parameters:

Command Name Alternative Description

alias add Add inet6 or inet addresses

 -alias delete Remove inet6 or inet addresses

remove delete Remove inet6 or inet addresses.

arp None Enable the Address Resolution Protocol on the 
specified network interface.

 -arp None Disable the Address Resolution Protocol on the 
specified network interface.

autoconf None Enable IPv6 auto configuration for the specified 
interface.

-autoconf None Disable IPv6 auto configuration for the specified 
interface.

broadcast None Specify the address used to broadcast to the 
network (inet only).

debug None Enable driver dependent debugging code.

-debug None Disable driver dependent debugging code.

deprecated None Set the IPv6 deprecated address bit.

 -deprecated None Clear the IPv6 deprecated address bit.

media type None Set the media type of the interface.

mediaopt opts None Set media options of the interface.

vlan vlan_tag  None Set the VLAN ID of the interface (1-4094).

vlanpri value None Set the VLAN User Priority (0-7).

vlandev iface None Associate a physical interface to a VLAN pseudo 
interface.

-vlandev iface None Disassociate physical interface from a VLAN 
pseudo interface.

metric None Set the routing metric for the interface.

pltime preferred Preferred lifetime for the specified IPv6 address.

-tentative None Clear the tentative bit in the specified IPv6 address.

vltime valid Set the valid lifetime for the specified IPv6 address.

dstaddr different Set PPP remote address (inet only). Part of the add 
parameter.
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Unsupported Wrappers

 The following flags (used for report-generating ifconfig( ) calls) are not 
supported:

New Wrappers

The following are new commands:

qc

Name

qc - configure network interface output queue(s)

Synopsis

qc [-V vr] queue [ show | add | del ] dev if [ root | parent q-id ] [ handle q-id ] type 
[type_specific_opt]
qc [-V vr] filter [ show | add | del ] dev if parent q-id handle f-id [filter_args] flowid 
q-id

Description

qc is used to control which queues are added to network interfaces and is used to 
control the filter rules on container queues.

-V vr
Apply the operation on the specified virtual router.

queue
Create a queue, using the specified parameters.

filter
Create a filter, using the specified parameters.

Flag Alternative Description

-d None Limit report to down interfaces.

-L None Request lifetime information on an IPv6 address presented as a 
time offset string.

-l None Limit the report to a simple list of all interfaces without 
additional information.

-u None Limit the report to up interfaces.

Command  Alternative Description

lladdr addr  New Set interface link address to addr.

vr vr New Set virtual router to vr.

dhcp New Enable DHCP auto configuration (inet only).

-dhcp New Disable DHCP auto configuration (inet only).

link[0-2] New Enable special processing at the link level.

-link[0-2] New Disable special processing at the link level.
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show
Show the configuration for a queue or filter.

add
Add/replace a queue or filter.

del
Delete a queue or filter.

dev if
Specifies which network interface (or network device) the queue or filter 
applies to.

root
Specifies that this queue has no parent queue and is rooted directly at the 
network interface.

parent
Specifies which queue this queue is a child to. The parent queue must be one 
with a name ending with a “c” (mbc, htbc). The “c” stands for container and 
means that the queue is a container for one or more child queues.

handle
Specifies the ID (or handle) of this queue. It is only needed for replace 
operations.

Adding an MBC with two bands will automatically add two FIFO queues as 
children to the MBC. Those children will automatically be given unique IDs (or 
handles). Any of the children may be replaced by some other queue by using 
handle id-of-child with an add command. (There is no special replace 
operation; adding a queue with an ID that already exists means that the queue 
will be replaced.)

flowid q-id
Specifies the child queue to which a packet is queued when the packet meets 
the criteria specified by a filter.

A filter definition consist of a number of fields that must match a packet, like 
source address equal to src_addr, TOS equal to type_of_service, etc.

A queue container such as an MBC holds one or more children. Let’s assume 
it has two children, with the IDs I1 and I2.

The flowid of a filter attached to the MBC specifies the children to which a 
matching packet is queued. So q-id would be I1 or I2 in this example.

Every queue container has an implicit filter that matches any packet. Use 
default_band id to specify the id value of that child when you create an MBC.

q-id
ID of an output queue. Must be unique per interface, unless it should replace 
an existing queue.

f-id
ID of a filter, must be unique per queue unless it should replace an existing 
filter.

type
Queue type, e.g., FIFO, HTBC.

range
Numeric range, format is a, a-, -b or a-b.



Wind River Network Stack
Programmer's Guide, 6.8 

180

addr
IPv4 or IPv6 address. Note that source and destination address must be 
specified for the same domain per rule.

prefix
Number of bites used for the network identifier.

The filter parser accepts the following fields for filter_args:

    proto number

    tclass number (tclass can be substituted for tos

    srcport range

    dstport range

    srcaddr addr[/prefix]

    dstaddr addr[/prefix]

Examples

1. Add an HTBC as root to eth0, max bandwith is 2 Mbit with a burst of 100 KB:

qc queue add dev eth0 root handle 3 htbc rate 2Mbit burst 100kb

2. Add a FIFO that can queue up to 50 packets to the HTBC added in Example 1:

qc queue add dev eth0 parent 3 handle 31 fifo limit 50

3. Add a filter with ID 5 to queue (1) so that all TCP packets end up in Example 2:

qc filter dev eth0 parent 1 handle 5 proto 6 flowid 31

4. Add another filter to queue (1) so that all UDP packets sent to 2001::/16 end 
up in Example 2:

qc filter dev eth0 parent 1 handle 3 proto 17 srcaddr 2001::/16 flowid 31

qos

Name

qos - controls the QoS features in the Wind River Network Stack

Synopsis

qos [option]... op optype [args]

Description

The qos command is used to configure and view the Quality of Service features 
within the network stack, except interface queues, which use qc.

The following options exist:

-4
Use IPv4 as address domain (default).

-6
Use IPv6 as address domain.

-V tab
Operate on virtual router with index tab.
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The following operations (op) exist:

add
Add something.

delete
Delete something.

get
Lookup and display something.

list
Lookup and display something.

The following operation types (optype) exist:

policy
Policy routing.

Policy routing arguments:

Add operation:

from addr
Apply this rule if the source address is addr. 

to addr
Apply this rule if the destination address is addr.

proto p
Apply this rule if the transport proto is p.

tos n
Apply this rule if the TOS is n.

tclass n
Apply this rule if the traffic class is n.

flow f
Apply this rule if the traffic flow is f.

ifindex if
Apply this rule if the ifindex of the incoming interface is if.

flags f
Apply this rule if the packet has the appropriate flags set or unset. The flags 
are comma-separated, and to require a flag to be not set, it should be 
prepended with an explanation point (!). Existing flags are forwarded, 
multicast, tunneled, broadcast, fragment, mf ipv4, ipv6.

scope s
Apply this rule if the scope of the address is s.

reverse
If this rule is applied, do the lookup based on src instead of dst.

table t
Use the routing table with policy ID t if the rule matches.

last
Do not look at any more rules, even if there is no match on this table.

prio p
The priority of the rule to add [-32768..32767].
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Delete/get operation:

id i
The ID of the rule to delete or show.

route

Name

route - a utility to manually manipulate network routing tables

Synopsis

route [-V routetab] [-n] command [[modifiers] args]

Description

The route utility supports a limited number of general options, but a rich 
command language enables the user to specify any arbitrary request that could be 
delivered via the programmatic interface.

The route command options are as follows.

add
Add a route.

delete
Delete a route.

change
Change aspects of a route (such as its gateway).

get
Look up and display the route for a destination.

show
Print out the route table (similar to netstat –r).

monitor
Continuously report any changes to the routing information base, routing 
lookup misses, or suspected network partitionings.

vr
Add or delete a virtual route table.

The monitor command has the syntax:

route [-n] monitor

The vr command has the syntax:

route [vr] {add | delete} vr_index

vr_index 0 (the default route table) cannot be added or deleted. The new route table 
is completely empty.

Route Utility Commands

The route utility commands have the following syntax:

route [-n] command [-net | -host] [-option ... ] dest_ip [gate_ip]

Options for these route commands include the following:
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[net | host]
Forces the destination to be interpreted as a network or a host, respectively.

dest_ip
The IPv4/IPv6 destination host or network address.

gate_ip
The IPv4/IPv6 host serving as the gateway.

Route Utility Command Options

Additional options for route utility commands include:

-V vr
Specifies the virtual router index. If no VR index is specified, 0 is used. Must be 
the first switch if present.

-n
Disables DNS address lookup.

-nollinfo
Do not show routes which have the IPNET_RTM_LLINFO flag set.

-T table
Specifies the route table ID. If no route table ID is specified, the default 
(defined by IPCOM_ROUTE_TABLE_DEFAULT) is used.

-inet
IPv4 route (default)

-inet6
IPv6 route

-netmask a.b.c.d
Specifies an IPv4 destination netmask for -net routes. The netmask is stated in 
dotted decimal notation (a.b.c.d), where each portion of the mask is an integer 
between 0-255, representing the value of the bytes in that position in the mask.

-prefixlen val
Prefix length for -net routes.

-dev ifname
Device name. This option must be used if gate_ip is not specified. It may also 
be used if gate_ip is specified and gate_ip can be reached by more than one link; 
in such a case, use -dev ifname to specify which link should be used.

-mpls nhlfe_key
Specify MPLS shortcut route. 

If the destination is directly reachable via an interface requiring no intermediary 
system to act as a gateway, specify the -iface route flag; the gateway given is the 
address of this host on the common network, indicating the interface to be used for 
transmission. For further information on -iface, see Route Flags, p.184.

The optional -netmask qualifier is used to manually add subnet routes with 
netmasks different from that of the implied network interface. Specify an 
additional address parameter (to be interpreted as a network mask). You can 
override the implicit network mask generated in the AF_INET case by using this 
option after the destination parameter. You can also use the modifier -prefixlen for 
similar purposes in the IPv6 case.
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Route Flags

Routes have associated flags, which influence operation of the protocols when the 
router transmits packets to destinations matched by those routes. To set (or 
sometimes clear) these flags, indicate the corresponding modifiers as follows:

-cloning
IPNET_RTF_CLONING - generates a new route on use.

-xresolve
IPNET_RTF_XRESOLVE - emit a message on use (for external lookup).

-iface
~IPNET_RTF_GATEWAY - destination is directly reachable.

-static
IPNET_RTF_STATIC - manually added route.

-nostatic
~IPNET_RTF_STATIC - pretend route added by kernel or daemon.

-reject
IPNET_RTF_REJECT - emit an ICMP unreachable when matched.

-blackhole
IPNET_RTF_BLACKHOLE - silently discard packets (during updates).

-llinfo
IPNET_RTF_LLINFO - validly translate proto address to link address.

-proto1
IPNET_RTF_PROTO1 - set protocol specific routing flag #1.

-proto2
IPNET_RTF_PROTO2 - set protocol specific routing flag #2.

-pref
IPNET_RTF_PREF - always prefer this route.

-srcaddr
IPNET_RTF_SRCADDR - gateway specifies the default source address.

Optional Modifiers

The optional modifiers -rtt, -rttvar, -mtu, -hopcount, and -expire provide initial 
values to quantities maintained in the routing entry by transport level protocols, 
such as TCP. In a change or add command where the destination and gateway are 
not sufficient to specify the route (as in the ISO case, where several interfaces may 
have the same address), the router can use the -ifp or -ifa modifiers to determine 
the interface or interface address.

Examples

Add the default IPv4 gateway to 10.1.1.1: 

# route add default 10.1.1.1

Add the IPv4 network route 14.1/16 on the specified interface:

# route add -dev eth0 -net -netmask 255.255.0.0 14.1.0.0

Add an IPv4 route for host 15.1.6.7 to gateway 10.1.1.22:

# route add -host 15.1.6.7 10.1.1.22
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Add the default IPv6 gateway to FEC0::1:0:0:0:6:

# route add -inet6 default FEC0::1:0:0:0:6

Add a new virtual router:

# route vr -add 1

slab

The slab command shows a snapshot of how many buffers are allocated from the 
available slab caches. It also shows how much memory all slabs use from the 
operating system.

Name

slab - show how many buffers are allocated from the available slab caches

Synopsis

slab [-g]

Description

-g
Forces a garbage collection of the slabs, which means that all slab caches that 
do not have any allocated buffers at the moment are destroyed and the 
memory they are using is returned to the operating system.

Output

Full
A slab is Full if all objects are allocated.

Partial
A slab is Partial if there is at least one free object and at least one allocated 
object. New allocations are always taken from Partial slabs, whenever 
possible. 

Empty
A slab is Empty if all objects are free. Empty slabs are freed if another allocation 
cannot be satisfied without exceeding the maximum allowed amount of 
memory.

Example A-1 Example Using slab

This example shows the layout of the slab cache memory handler.

[vxWorks *]# slab 
Memory pool: IPNET memory pool has 229636 bytes allocated, alloc high is 229636, 
limit is 20971520
  Slab: IPNET bound socket, object size 16, alignment 4
    Full:    0
    Partial: 1
Objects - total: 198, allocated 3
    Empty:   0
  Slab: IPNET timer, object size 20, alignment 16
    Full:    0
    Partial: 0
    Empty:   1
Objects - total: 123, allocated 0
  Slab: IPNET kioevent softirq, object size 24, alignment 4
    Full:    0
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    Partial: 0
    Empty:   0
  Slab: IPNET poll, object size 76, alignment 4
    Full:    0
    Partial: 0
    Empty:   1
Objects - total: 49, allocated 0
  Slab: IPNET packet header, object size 608, alignment 16
    Full:    0
    Partial: 1
Objects - total: 100, allocated 28
    Empty:   0
  Slab: IPNET 1500 bytes packet buffer, object size 1666, alignment 16
    Full:    0
    Partial: 1
Objects - total: 30, allocated 28
    Empty:   0
  Slab: IPNET 3000 bytes packet buffer, object size 3166, alignment 16
    Full:    0
    Partial: 0
    Empty:   0
  Slab: IPNET 10000 bytes packet buffer, object size 10166, alignment 16
    Full:    0
    Partial: 0
    Empty:   0
  Slab: IPNET 65536 bytes packet buffer, object size 65702, alignment 16
    Full:    0
    Partial: 0
    Empty:   1
Objects - total: 1, allocated 0
  Slab: IPNET IPv4 address, object size 112, alignment 4
    Full:    0
    Partial: 1
Objects - total: 34, allocated 5
    Empty:   0
  Slab: IPNET IPv6 address, object size 140, alignment 4
    Full:    0
    Partial: 1
Objects - total: 27, allocated 10
    Empty:   0
  Slab: IPNET socket, object size 540, alignment 16
    Full:    0
    Partial: 1
Objects - total: 30, allocated 3
    Empty:   0
  Slab: TCP segment, object size 32, alignment 4
    Full:    0
    Partial: 0
    Empty:   0
  Slab: IPCOM network job, object size 16, alignment 16
    Full:    0
    Partial: 0
    Empty:   1
Objects - total: 123, allocated 0
[vxWorks *]# 

Example A-2 Deciphering slab Output

Below is a description of slab output.

Slab: IPNET timer, object size 20, alignment 16 
    Full:    0
    Partial: 1
Objects - total: 123, allocated 8
    Empty:   0
...
  Slab: IPNET 1500 bytes packet buffer, object size 1666, alignment 16
    Full:    0
    Partial: 2
Objects - total: 30, allocated 12
Objects - total: 30, allocated 28
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    Empty:   1
Objects - total: 30, allocated 0

The entries above describe two "memory cache" instances.

The first instance above is named "IPNET timer". It contains "objects" (which are 
memory areas) of size 20 bytes. That is the only size that can be allocated from this 
memory cache.

Each object is aligned to a 16 byte boundary (in this case, it happens to be the cache 
line size on this board).

The cache has one "slab" assigned to it. That slab is in Partial state, which means it 
has both allocated and free objects. Eight objects are currently allocated out of a 
total of 123.

The second instance is named "IPNET 1500 bytes packet buffer" (this is a 
replacement of the previous packet pool). Each object is 1666 bytes and aligned to 
nearest 16 bytes.

It has currently 3 slabs assigned to it, 2 are Partial and one is Empty, which means 
all its objects free. 

The slabs in Empty state would be free if the stack requested explicit garbage 
collection of all memory. It would also be free if the target hits its allocation limit 
and another memory cache, say cache “C”, fails fail to return an object unless one 
or more of Empty slabs on other memory caches are garbage collected and the 
memory is remade into objects of type C.

sysctl

The sysctl command is used to get or set system parameters.

Name

sysctl - Get or set sysctl values

Synopsis

sysctl -w variable=value
sysctl -a
sysctl variable

Description

-a
List all sysctl parameters.

-w variable=value
Change the value of variable to the specified value.

value 
Value of a system variable.

sysvar

The sysvar command lists and modifies global variables, as follows.
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System variables are similar to UNIX environment variables, except that they are 
available throughout the system to any process. For example, if you are running an 
IKE process, you can issue a sysvar command to alter a NAT variable.

The sysvar command uses a treelike data structure for all the network components 
and services. For example, the system variable iptcp.ConnectionTimeout defines 
the number of seconds the network stack tries to create connection before giving 
up.

The system variable ipssh.service.port_fwd controls whether port forwarding can 
be used.

System variables are similar to the components you configure at build time using 
the Workbench Kernel Configuration Editor. Unlike kernel components, 
however, the sysvar command modifies parameters at run time.

To include this command in your project, include 
INCLUDE_IPCOM_SYSVAR_CMD.

Name

sysvar – lists, gets, and defines system variables

Synopsis

sysvar list [name[*]]
sysvar get name
sysvar unset name[*]
sysvar set [-c | -o | -r] name value

Description

Command options are as follows:

name
Name of a system variable.

-c
OK to create.

-o
OK to overwrite.

-r
Flag read-only.

value 
Value of a system variable.

NOTE:  Not all global variables can be changed at run time. Some parameters can 
only be reset at build time, using Workbench or vxprj.
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