Table of Contents

1Table of Contents

5.2.4
Interfaces: IDFNCard & IDFNCardC (updated 09/21/01 – B. Dixon)
4
5.2.4.1
DFNOpenSystem
5
5.2.4.2
DFNCloseSystem
6
5.2.4.3
DFNOpenSequence
6
5.2.4.4
DFNCloseSequence
8
5.2.4.5
DFNOpenArchiveSequence
8
5.2.4.6
DFNAbortSequence
9
5.2.4.7
DFNDeleteSequence
10
5.2.4.8
 DFNBeginSequence
10
5.2.4.9
DFNHardReset
11
5.2.4.10
DFNSoftReset
12
5.2.4.11
DFNGetSequenceName
12
5.2.4.12
DFNGetSequenceLengthAllocated
13
5.2.4.13
DFNGetSequenceLengthAcquired
14
5.1.4.14
DFNRenameSequence
14
5.2.4.15
DFNBeginResponseLogChitchat
15
5.2.4.16
DFNEndResponseLogChitchat
16
5.2.4.17
DFNSetROI
16
5.2.4.18
DFNGetAllocationROI
17
5.2.4.19
DFNGetSequenceROI
18
5.2.4.20
DFNGetSequenceFrameSize
19
5.2.4.21
DFNGetAllocationFrameSize
20
5.2.4.22
DFNSetFrameSize
21
5.2.4.23
DFNDetectorHardwarePresentSpecification
22
5.2.4.24
DFNGetNextFrame
22
5.2.4.25
DFNGetBoardVersionInfo
24
5.2.4.26
DFNGetDriverAndDLLVersions
25
5.2.4.27
DFNLoadEvents
25
5.2.4.28
DFNSelfTest
26
5.2.4.29
DFNGetResponseLogSizeForSequence
27
5.2.4.30
DFNGetResponseLogForSequence
27
5.2.4.31
DFNGetResponseLogSizeForFrame
29
5.2.4.32
DFNGetResponseLogForFrame
30
5.2.4.33
DFNOpenSequentialPlaybackSequence
31
5.2.4.34
DFNOpenRandomPlaybackSequence
33
5.2.4.35
DFNGetSpecificFrame
34
5.2.4.36
DFNBeginSequenceNoMapping
34
5.2.4.37
DFNDeleteFrame
36
5.2.4.38
DFNIsFramePresent
37
5.2.4.39
DFNWaitForSystemIdle
38
5.2.4.40
DFNGetSequenceFrameRange
38
5.2.4.41
DFNBeginSequenceNoMappingNoLog
39
5.2.4.42
DFNBeginSequenceNoLog
41
5.2.4.43
DFNSendDetectorCommand
42
5.2.4.44
DFNSetWrapMode
44
5.2.4.45
DFNIsWrapModeSet
44
5.2.4.46
DFNGetEABMemSizes
45
5.2.4.47
DFNGetBeginSequenceTimeStamp
46
5.2.4.48
DFNGetCurrentSequenceID
47
5.2.4.49
DFNGetEventsFromEAB
48
5.2.4.50
DFNGetFreeFrameCount
49
5.2.4.51
DFNWriteEABMemory
50
5.2.4.52
DFNReadEABMemory
51
5.2.4.53
DFNAccessLocalBus
52
5.2.4.54
DASDLL Functions for Coff File Generation from CSV files
53
5.2.4.54.1
Background
53
5.2.4.54.2
DCOM Interface for Coff File Generation from CSV Files Is Available for C/C++ Applications Only
55
5.2.4.54.3
Coff File Generation Data Structures for CSV files
55
5.2.4.54.4
PC DasDLL Functions for Coff File Generation from CSV files
58
5.2.4.54.4.1
DFNGetCoffGenStockSize (IDFNCardC only)
58
5.2.4.54.4.2 DFNInitCoffGenStructure (IDFNCardC only)
60
5.2.4.54.4.3 DFNGetCoffGenStockDefaults (IDFNCardC only)
61
5.2.4.54.4.4
DFNGetCoffGenStockSetup (IDFNCardC only)
62
5.2.4.54.4.5
DFNGenerateCoffFile (IDFNCardC only)
63
5.2.4.54.4.6
Client Example using the Coff Generation Routines
65
5.2.4.54.4.7 Necessary Supporting Software for Coff File Generation from CSV
67
5.2.4.55
DASDLL Functions for Coff File Generation Directly From Perl Scripts
67
5.2.4.55.1
DFNGenCoffFromPerlScriptFile
68
5.2.4.55.2
DFNGenCoffFromPerlScript
69
5.2.4.55.3
Necessary Supporting Software for Coff File Generation from Perl Scripts
69
5.2.4.55.4
DFNGetCoffFromPerlScriptFileNoCopy
70
5.2.4.56
DFNGetResponseLogOfRunningSequence
71
5.2.4.57
DFNForceRLBufferFlip
72
5.2.4.58
DFNIsReorderModeSet
73
5.2.4.59
DFNImageReorder
74
5.2.4.60
DFNWaitTimeoutForSystemIdle
75
5.2.4.61
DFNFindSequenceID
76
5.2.4.62
DFNResetFC
77
5.2.4.63
DFNSetAutoscrubDelay
77
5.2.4.64
DFNGetAutoscrubDelay
78
5.2.4.65
DFNEnableAutoscrub
78
5.2.4.66
DFNDisableAutoscrub
78
5.2.4.67
DFNGetBeginSequenceTime
79
5.2.4.68
DFNSetArchiveSequenceTime
79
5.2.4.69
DFNGetNextHostFlag
80
5.2.4.70
DFNGetNextHostFlagTimeout
82
5.2.4.71
DFNSetWaitTypeHostFlag
84
5.2.4.72
DFNReadRTBState
85
5.2.4.73
DFNSetRTBDirection
85
5.2.4.74
DFNSetRTBLine
86
5.2.4.75
DFNChangeQueueVariable
87
5.2.4.76
DFNReadQueueVariable
89
5.2.4.77
DFNGetExtendedErrorInformation
91
5.2.4.78
DFNIsWordSwapModeSet
95
5.2.4.79
DFNImageWordSwap
96
5.2.4.80
DFNGetNextFrameTimeout
97
5.2.4.81
DFNSetFCLoopback
99
5.2.4.82
DFNGetFCLoopback
99
5.2.4.83
DFNGetGenDataConfiguration
100
5.2.4.84
DFNSetGenDataConfiguration
102
5.2.4.85
DFNSetDoorbellMask
104
5.2.4.86
DFNPeek
105
5.2.4.87
DFNPoke
105
5.2.4.88
DFNDeleteAllOrphanSequences
106
5.2.4.89
DFNDeleteAllSequences
107
5.2.4.90
DFNGetRLClassEnableMask
108
5.2.4.91
DFNSetRLClassEnableMask
108
5.2.4.92
DFNGetDirectExtendedErrorThreadInfo
109
5.2.4.93
DFNClearExtendedErrorThread
112
5.2.4.94
DFNAbortGetDirectExtendedErrorThreadInfo
113
5.2.4.95
DFNWriteValueToDFNCardOffset
114
5.2.4.96
DFNCheckAndClearExtendedErrorInfo
114
5.2.4.97
DFNBreakupErrorstring
116
5.2.4.98
DFNSetDriverCommandExecutionTimeout
118
5.2.4.99
DFNGetDriverCommandExecutionTimeout
119
5.2.4.100
DFNSetEndQueuePendingImagesTimeout
119
5.2.4.101
DFNGetEndQueuePendingImagesTimeout
120
5.2.4.102
DFNSetDetectorCommandAckTimeout
120
5.2.4.103
DFNGetDetectorCommandAckTimeout
121
5.2.4.104
DFNSetFirmwareCommandExecutionTimeout
121
5.2.4.105
DFNGetFirmwareCommandExecutionTimeout
122
5.2.4.106
DFNGetQueueVariableByteSize
122
5.2.4.107
DFNSetRTBImmuneToSoftReset
123
5.2.4.108
DFNSetRTBResponsiveToSoftReset
124
5.2.4.109
DFNChangeMultipleQueueVariables (IDFNCardC only)
124
5.2.4.110
DFNEnableAutoscrubScrubCommand
127
5.2.4.111
DFNDisableAutoscrubScrubCommand
127
5.2.4.112
DFNBeginSequenceSendi
128
5.2.4.113
DFNBeginSequenceSendiNoMapping
132
5.2.4.114
DFNBeginSequenceSendiNoMappingNoLog
133
5.2.4.115
DFNBeginSequenceSendiNoLog
135
5.2.5
HRESULT DFN DLL Errors
137
5.2.5.1
DFN DLL Success
137
5.2.5.2
DFN DLL Errors
137
5.2.5.3
DFN DLL WARNINGS
138

5.2.4
Interfaces: IDFNCard & IDFNCardC (updated 09/21/01 – B. Dixon)

The DLL for the DFN card is accessed through a DCOM interface on an NT (NT 4.0 SP3 or greater) platform. The application has to initialize the DCOM interface before accessing the DLL. Applications written in any language other than C/C++ will use the IDFNCard interface. Applications written in C/C++ will use the IDFNCard or the IDFNCardC interface. The IDFNCardC interface provides the added capability of coff file generation. Below is an example from C++ on an NT platform for a client application.
#include "stdafx.h"
//precompiled header
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include <atlbase.h>
#import "..\dasdll\dasdll.tlb"
// dasdll type library for the DCOM interface
using namespace DASDLLLib;
int main()
{

HRESULT hr;
//result - error return

int ierr = 0; // error flag

hr = CoInitialize(NULL); // initialize the COM interface

if (FAILED(hr))return(hr);

//gain access to the DFN card interface instance using a smart pointer

// IDFNCardPtr pDFN(__uuidof(DFNCard)); // interface for languages other than C/C++

IDFNCardCPtr pDFN(__uuidof(DFNCardC));

if (pDFN != NULL)

{

// the DFN DLL card interface supports error reporting. Any errors will be reported

// through the DCOM interface error handling mechanism. All we need to do here is to

// catch any errors to complete the mechanism

try
{

pDFN->DFNOpenSystem(); // open the DFN device driver

//

// fill in application logic, using DLL calls where appropriate

//

pDFN->DFNCloseSystem(); // close the DFN device driver
}
catch(_com_error e)
{

ierr = 1;

_tprintf(_T("Error (%08x) in %s: "), _T(" %s\n"), e.Error(),

(LPCSTR)e.Source(),(LPCSTR)e.Description());

pDFN->DFNCloseSystem(); // try to leave with DFN driver closed
}
}
if (pDFN != NULL)
{
// force the destructor for the com pointer to be called, or CoUnitialize will get an error

pDFN.Release(); // note this reference is not pDFN-> here, it is the dot.

// alternatively just dereference the smart pointer pDFN = NULL which will call Release
}

CoUninitialize(); //close the DCOM interface

return(ierr);
}
5.2.4.1
DFNOpenSystem

The DFNOpenSystem function
a. opens the interface to the DFN driver for overlapped IO
b. queries the driver for the max size of response log buffers
c. allocates the response log buffers for reading
d. retrieves version information for the DFN card and DFN driver
e. flashes the led’s on the DFN card to demonstrate communication (NO LONGER BEING DONE)
f. creates synchronization events and error reporting for threads
g. launches a thread to handle sequence acquisition
h. launches a thread to handle image mapping
i. launches a thread to handle reading response logs
j. launches a thread to process response logs
DFN_STATUS
 DFNOpenSystem();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:

An application would call DFNOpenSystem once at the beginning of execution. The

Application would call DFNCloseSystem once at the end of execution.
See Also:
DFNCloseSystem
5.2.4.2
DFNCloseSystem

The DFNCloseSystem function
a. stops execution of any threads that are running
b. closes any sequence left open (unmaps image buffers)
c. deletes any sequences that exist in memory
d. frees thread error reporting resources
e. frees response log buffers used for reading
f. frees response log buffer storage
g. closes the interface to the DFN driver
DFN_STATUS
DFNCloseSystem();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

An application would call DFNCloseSystem once at the end of execution.
See Also:
DFNOpenSystem
5.2.4.3
DFNOpenSequence

The DFNOpenSequenceFunction opens a new or existing sequence, specified by a sequence name. If the sequence is a new image acquisition sequence, then the lAllocation specifies the number of image buffers to pre-allocate. See remarks below, functionality is dependent upon the type of sequence being opened. Existing sequences do not need to be opened to retrieve the response logs.
DFN_STATUS
DFNOpenSequence(
CHAR *
cpstrSequenceName,

// [in] pointer to name of the sequence
long *

lpSequenceNum,

// [out] pointer to sequence identifier
long

lAllocation

// [in] number of buffers to pre-allocate
);
Parameters:
The sequence name, cpstrSequenceName , is a null terminated character string containing a unique user defined name for a sequence. The name can contain any readable ascii characters.
The sequence identifier pointer, lpSequenceNum, points to a long driver-assigned unique identifier that is returned. This identifier would be used in other DLL calls dealing with this sequence.
The number of buffers to allocate, lAllocation, is input for opening a new sequences that will be used for acquisition and is input as zero for opening a new chitchat sequence. When opening an existing sequence for sequential playback, this input parameter is ignored. When opening a new sequence for acquisition, inputting this value as –1 will cause the driver to allocate all available image buffers.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

For a new acquisition sequence:
Input the sequence name and an lAllocation as a number greater than zero or –1 to allocate all available image buffers. The sequence id number is returned. The sequence is not made current. The sequence is made current when a begin sequence call, DFNBeginSequence, is made. After an acquisition is made, the driver will automatically deallocate all image buffers that are not used. For a new acquisition sequence, make sure that the proper panel readout reorder mode is set (see DFNIsReorderModeSet and DFNImageReorder), and that the proper panel word swap mode is set (see DFNIsWordSwapModeSet and DFNImageWordSwap). Mapping during acquisition can be done with DFNGetNextFrame or DFNGetNextFrameTimeout.

For a new chitchat sequence:

Input the sequence name and an lAllocation as zero.
The sequence id number is returned. The sequence is not made current. The sequence is made current when a begin sequence call, DFNBeginSequence, is made.

For a sequential playback of an acquisition sequence that is in memory:
Input the sequence name. The lAllocation is input but ignored (can use –1). The sequence id number is returned. The sequence is made current and image mapping is started from the first frame, in sequential mode with no loop-back. Use DFNGetNextFrame to get the next mapped frame. For playback, use DFNOpenRandomPlaybackSequence. For sequential playback with directional, loopback or starting frame control, use DFNOpenSequentialPlaybackSequence.
For opening a sequence from an archive, this function is not used. Open an archive sequence with
DFNOpenArchiveSequence.

For a review of a chitchat that is in memory, this function is not used. Use

DFNGetResponseLogForSequence or DFNGetResponseLogForFrame

When a sequence is complete, the sequence is closed with DFNCloseSequence.
See Also:
DFNCloseSequence, DFNBeginSequence, DFNGetNextFrame,DFNGetNextFrameTimeout,DFNOpenArchiveSequence, DFNOpenSequentialPlaybackSequence, DFNOpenRandomPlaybackSequence
5.2.4.4
DFNCloseSequence

The DFNCloseSequence function will deallocate all mapped image buffers for an acquisition sequence that has just completed acquisition or is operating in playback or archive mode. The sequence is the current sequence. For playback and archive mode, closing the sequence marks it as complete.
DFN_STATUS
DFNCloseSequence();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

Images are unmapped as another image is requested, but the last image remains mapped until the close sequence function is called. A call to DFNCloseSequence leaves the sequence designated as the current sequence. The sequence remains in memoy and may be re-opened by calling DFNOpenSequence.
See Also:
DFNOpenSequence
5.2.4.5
DFNOpenArchiveSequence

The DFNOpenArchiveSequence opens a sequence that will be filled in memory from an archive instead of an acquisition. The DFNGetNextFrame call made when a sequence is operating in archive mode, will receive a mapped frame in memory which has read/write access. The user can then write a frame to memory from an archive file. When the sequence is opened as an archive, it is marked as an archive in the driver.
DFN_STATUS
DFNOpenArchiveSequence(
CHAR *
cpstrSequenceName,

// [in] pointer to name of the sequence
long *

lpSequenceNum,

// [out] pointer to sequence identifier
long

lAllocation

// [in] number of buffers to pre-allocate
);
Parameters:
The sequence name, cpstrSequenceName , is a null terminated character string containing a unique user defined name for a sequence. The name can contain any readable ascii characters.
The sequence identifier pointer, lpSequenceNum, points to a long driver-assigned unique identifier that is returned. This identifier would be used in other DLL calls dealing with this sequence.
The number of buffers to allocate, lAllocation, is input for opening a new sequence that will be filled from an archive. If lAllocation is input as –1, the driver will allocate all available image buffers and automatically deallocate all unused image buffers when the sequence is closed.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

For a new archive sequence only:

Input the sequence name and an lAllocation as a number greater than zero or –1.
The sequence id number is returned. The sequence is marked as an archive and made current. Mapping is begun immediately. Do not call DFNBeginSequence. Use DFNGetNextFrame to retrieve a mapped frame to fill.

When a DFNOpenArchiveSequence call is made, no other active sequence can be running.

When the archive sequence load is complete, use DFNCloseSequence.
To preserve the original sequence time, load the time with DFNSetArchiveSequenceTime after the call to DFNOpenArchiveSequence and before calling DFNGetNextFrame to actually do the load.
See Also:
DFNCloseSequence, DFNGetNextFrame, DFNSetArchiveSequenceTime
5.2.4.6
DFNAbortSequence

The DFNAbortSequence function allows the user to abort an acquisition sequence or a chitchat in progress. The sequence is the current sequence. Aborting a sequence means that all operations of image mapping (for an acquisition sequence) and response log reading for both the acquisition sequence and chitchat will cease. The DFNAbortSequence is not used when in playback mode, chitchat review mode or manual mode. In playback mode, manual mode and chitchat review mode, just use DFNCloseSequence.
DFN_STATUS
DFNAbortSequence();
Parameters:
none.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

DFNAbortSequence would only be used when a sequence is to be stopped before completing the number of frames initially requested; or to end a chitchat. DFNCloseSequence would be used after aborting an acquisition sequence. The DFNAbortSequence of an acquisition sequence makes a request to the driver to cancel DMA transfers which were initiated with the DFNBeginSequence call.
See Also:
DFNBeginSequence, DFNCloseSequence

5.2.4.7
DFNDeleteSequence

The DFNDeleteSequence function will remove a sequence from memory, and release all of the sequence resources.
DFN_STATUS
DFNDeleteSequence(
long

lSequenceNum,

// [in] sequence identifier
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the
sequence.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

DFNCloseSequence unmaps all frames in the current sequence, but does not remove the sequence from memory. DFNDeleteSequence will delete the specified sequence from memory. If the sequence deleted was the current sequence, the current sequence becomes NO_CURRENT_SEQUENCE.
See Also:
DFNCloseSequence, DFNDeleteAllSequences, DFNDeleteAllOrphanSequences
5.2.4.8

DFNBeginSequence

The DFNBeginSequence function makes the sequence current. For acquisition sequences, the DFNBeginSequence function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images; then DLL begins mapping of the images. For both acquisition and chitchat sequences, the DFNBeginSequence begins reading response logs.
DFN_STATUS
DFNBeginSequence(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName

// [in]coff file name containing events
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening thesequence. The sequence identifier is a negative number for chitchat sequences, and a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information. For chitchat sequences, this parameter is NULL.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition and chitchat sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition or chitchat. Once the user is actually ready to begin the acquisition or chitchat, the DFNBeginSequence function is called. The coff file name parameter is NULL for chitchats because there are no events running during a chitchat. For acquisition sequences, the coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
For acquisition sequences, the user would then call DFNGetNextFrame or DFNGetNextFrameTimeout to retrieve the images. DFNAbortSequence can be used to halt an acquitition or chitchat in progress. DFNCloseSequence is used to unmap any remaining mapped images. DFNBeginSequence is not used for archive mode, manual mode, sequential or random playback or retrieving response logs. After the sequence has stopped acquisition or chitchat, the response logs may be reviewed in entirity or on a per-image section. Response logs can be retrieved during active response log capture, but not associated with an image number (see DFNGetResponseLogOfRunningSequence).
For acquisition sequences, the coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequence. The coff file must be downloaded for each sequence before the acquisition begins. For a coff file to be loaded, the driver must have a soft reset done and then be placed in normal or test mode. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
Note that in release versions 3.4 and prior, a soft reset was also done on the DFN card when loading events. This reset is no longer being done automatically. It is now up to the application to do the soft reset if the application desires to do it. This change was necessary because the soft reset also reset the real time bus lines, which would not be desireable for some applications.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNGetNextFrame,

DFNGetNextFrameTimeout, DFNLoadEvents, DFNResetFC
5.2.4.9
DFNHardReset

The DFNHardReset will do a hard reset on the DFN board firmware. When a hard reset is done, the DFN card is placed in diagnostic mode. Doing the hard reset is nearly equivalent to pushing the black reset button on the DFN board.
DFN_STATUS
DFNHardReset();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The application should call either DFNHardReset or DFNSoftReset prior to beginning a sequence along with DFNResetFC.

The hard reset includes all the functionality of the soft reset, except that the real time bus lines are always reset.

The hard reset is nearly equivalent to physically pushing the black reset button on the DFN card, except that the registers are not reconfigured from the EPROMS on the DFN card. Details on this feature can be obtained by contacting Dan Staver at CRD.
See Also:
DFNSoftReset, DFNResetFC
5.2.4.10
DFNSoftReset

The DFNSoftReset will do a soft reset on the DFN board firmware. When a soft reset is done, the DFN card is placed in diagnostic mode. The rest of the functionallity at the lower level has yet to be defined.
DFN_STATUS
DFNSoftReset();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Doing a soft reset also resets the real time bus lines unless the commands have been given to make the real time bus immune to a soft reset.

Upon a soft reset, the driver clears all extended errors.

Upon a soft reset, the driver will reset the pointers into DMA to the beginning.

The application should call either DFNHardReset or DFNSoftReset prior to beginning a sequence along with DFNResetFC
See Also:
DFNHardReset, DFNResetFC, DFNSetRTBImmuneToSoftReset, DFNSetRTBResponsiveToSoftReset
5.2.4.11
DFNGetSequenceName

The DFNGetSequenceName function returns the name of a sequence stored internally under the sequence identifier key. The user must pass in an array to hold the returned name and the maximum number of bytes allocated for the name array. If the name is longer than the maximum number of bytes, only the maximum number of bytes of name is returned.
DFN_STATUS
DFNGetSequenceName(
long

lSequenceNum,

// [in] sequence identifier
DWORD
dwMaxBytes,

// [in] max bytes in cpstrSequenceName
CHAR *
cpstrSequenceName

// [out]pointer to sequence name
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening thesequence. The sequence identifier is a negative number for chitchat sequences, and a number greater than or equal to zero for acquisition sequences
The maximum size,dwMaxBytes, of the chararacter array to be filled with the sequence name, is input, so that the DLL does not return more than the character array can hold.
The character array to be used to return the name, cpstrSequenceName, should be allocated large enough to hold the name plus the null termination character.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

If the allocated string is too short, DFN_STRING_TOO_SHORT will be returned.
Remarks: The sequence name is only used for user convenience. Most function calls are made with the associated sequence identifier. The name is given to a sequence when the user opens it with DFNOpenSequence or DFNOpenArchiveSequence. If the return value is DFN_STRING_TOO_SHORT, the cpstrSequenceName will contain the first dwMaxBytes –1 of the stored name; it will be null terminated.
See Also:
DFNOpenSequence, DFNOpenArchiveSequence
5.2.4.12
DFNGetSequenceLengthAllocated

The DFNGetSequenceLengthAllocated function queries the DFN driver to return the number of image frames allocated for a sequence. Before acquisition, this number will be the number of frames allocated when the sequence was opened. After acquisition, this number will the number of frames actually acquired.
DFN_STATUS
DFNGetSequenceLengthAllocated(
long

lSequenceNum,

//[in] sequence identifier
DWORD *
length

//[out] length of sequence in frames
);
Parameters:

The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The length is a pointer to a DWORD number of frames for the sequence that will be returned.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The DFN driver will deallocate frames not used for an acquisition automatically once a sequence acquisition has ended. Usually the number of frames allocated will equal the number of frames acquired. The number of acquired frames may be less than the number allocated if the sequence is aborted or the sequence ends on an error condition.
See Also:
DFNGetSequenceLengthAcquired, DFNOpenSequence
5.2.4.13
DFNGetSequenceLengthAcquired

The DFNGetSequenceLengthAcquired function queries the DFN driver to return the number of image frames acquired for a sequence. Before acquisition, this number zero. After acquisition, this number will the number of frames actually acquired.
DFN_STATUS
DFNGetSequenceLengthAcquired(
long

lSequenceNum,

//[in] sequence identifier
DWORD *
length

//[out] length of sequence in frames
);
Parameters:

The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The length is a pointer to a DWORD number of frames for the sequence that will be returned.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The DFN driver will deallocate frames not used for an acquisition automatically once a sequence acquisition has ended. Usually the number of frames allocated will equal the number of frames acquired. The number of acquired frames may be less than the number allocated if the sequence is aborted or the sequence ends on an error condition.
See Also:
DFNGetSequenceLengthAllocated, DFNOpenSequence
5.1.4.14
DFNRenameSequence

The DFNRenameSequence function allows the user to change the name of an existing sequence. The name of the sequence is first defined upon the call to open the sequence.
DFN_STATUS DFNRenameSequence(
long

lSequenceNum,

//[in] sequence identifier
CHAR *
cpstrNewSequenceName

//[in] new sequence name
);
Parameters:

The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The sequence name, cpstrSequenceName , is a null terminated character string containing a unique user defined name for a sequence. The name can contain any readable ascii characters.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The new name specification replaces the name stored with the sequence.
See Also:
DFNOpenSequence, DFNOpenArchiveSequence
5.2.4.15
DFNBeginResponseLogChitchat

The DFNBeginResponseLogChitchat function starts the acquisition of response logs in chitchat mode for the specified sequence. Chitchat mode is a mode of detector operation in diagnostic mode when images are not being acquired. Once the chitchat has ended, the user may retrieve the response logs.
DFN_STATUS
DFNBeginResponseLogChitchat(
long

lSequenceNum,

//[in] sequence identifier (must be negative)
);
Parameters:

The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened. For chitchat mode, the sequence identifier number is negative.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Response logs contain detector operation status information.

In chitchat mode, frames are not acquired, and host flags are not used.
Chitchat sequence identifier numbers are negative. DFNGetResponseLogForSequence is used to retrieve chitchat response logs after the chitchat is ended.
See Also:
DFNEndResponseLogChitchat, DFNGetResponseLogForSequence
5.2.4.16
DFNEndResponseLogChitchat

The DFNEndResponseLogChitchat function ends the acquisition of response logs in chitchat mode for the current sequence. Chitchat mode is a mode of detector operation in diagnostic mode when images are not being acquired in the sequence. Once the chitchat has ended, the user may retrieve the response logs.
DFN_STATUS
DFNEndResponseLogChitchat();
Parameters:
none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Response logs contain detector operation status information.

In chitchat mode, frames are not acquired, and host flags are not used.
Chitchat sequence identifier numbers are negative. DFNGetResponseLogForSequence is used to retrieve chitchat response logs after the chitchat is ended.
See Also:
DFNBeginResponseLogChitchat, DFNGetResponseLogForSequence
5.2.4.17
DFNSetROI

The DFNSetROI function sets the ROI (region of interest) of an image frame that will be used for the next image sequence acquisition. The ROI is specified by the number of pixels in a column, number of pixels in a row, and the pixel offset for the (left column,top row) point of the ROI within a frame. The frame size depends upon the detector in use. Note that a pixel is 2 bytes in size.
DFN_STATUS
DFNSetROI(
USHORT
usColumns,

//[in] number of columns in ROI
USHORT
usLeft,

//[in] beginning column in ROI
USHORT
usRows,

//[in] number of rows in ROI
USHORT
usTop

//[in] beginning row in ROI
);
Parameters:
The usColumns is an unsigned short number of pixel columns in the ROI of the frame to be for the next sequence allocation. The number of pixel columns must be a multiple of 4 pixels.
The usLeft is an unsigned short number defining the offset pixel to the left side of the ROI from the left edge of the frame. The offset must be a multiple of 4 pixels.
The usRows is an unsigned short number of pixel rows of the ROI of the frame to be used for the next sequence allocation.
The usTop is an unsigned short number defining the offset pixel to the top edge of the ROI from the top edge of the frame.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

ROI is not implemented yet for anything other than full frame size.
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.
The ROI must be completely contained within the frame. In other words, the usLeft plus usColumns cannot exceed the number of columns in the frame. The usTop plus the usRows cannot exceed the number of rows in the frame.
The DFN firmware has imposed restrictions on the column ROI specifications. While the usLeft and usColumns must both be multiples of 4 pixels, there are no restrictions on the usTop and usRows specifications other than having to be within the frame.
The size of an acquired image and allocated memory is determined by the ROI which may be smaller than the frame size of the detector. The size of the image in bytes is ulRows * ulColumns * 2 bytes.
See Also:
DFNSetFrameSize, DFNGetAllocationFrameSize, DFNGetAllocationROI, DFNGetSequenceFrameSize, DFNGetSequenceROI
5.2.4.18
DFNGetAllocationROI

The DFNGetAllocationROI function returns the ROI (region of interest) of an image frame that will be used for the next image sequence acquisition. The ROI is specified by the number of pixels in a column, number of pixels in a row, and the pixel offset for the (left column,top row) point of the ROI within a frame. The frame size depends upon the detector in use. Note that a pixel is 2 bytes.
DFN_STATUS
DFNGetAllocationROI(
USHORT *
pusColumns,

//[out] pointer to number of columns in ROI
USHORT *
pusLeft,

//[out] pointer to beginning column in ROI
USHORT *
pusRows,

//[out] pointer to number of rows in ROI
USHORT *
pusTop

//[out] pointer to beginning row in ROI
);
Parameters:
The pusColumns is a pointer to unsigned short number of pixel columns in the ROI of the frame to be for the next sequence allocation.
The pusLeft is a pointer to unsigned short number defining the offset pixel to the left side of the ROI from the left edge of the frame.
The pusRows is a pointer to unsigned short number of pixel rows of the ROI of the frame to be used for the next sequence allocation.
The pusTop is a pointer to unsigned short number defining the offset pixel to the top edge of the ROI from the top edge of the frame.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.
The ROI must be completely contained within the frame.
The size of an acquired image and allocated memory is determined by the ROI which may be smaller than the frame size of the detector. The frame size is rows * columns * 2 bytes.
See Also:
DFNSetFrameSize, DFNGetAllocationFrameSize, DFNSetROI, DFNGetSequenceFrameSize, DFNGetSequenceROI
5.2.4.19
DFNGetSequenceROI

The DFNGetSequenceROI function returns the ROI (region of interest) of an image frame that was used for the specified sequence image acquisition. The ROI is specified by the number of pixels in a column, number of pixels in a row, and the pixel offset for the (left column,top row) point of the ROI within a frame. The frame size depends upon the detector in use. Note that a pixel is 2 bytes.
DFN_STATUS
DFNGetSequenceROI(
long

lSequenceNum,

//[in] sequence identifier
USHORT *
pusColumns,

//[out] pointer to number of columns in ROI
USHORT *
pusLeft,

//[out] pointer to beginning column in ROI
USHORT *
pusRows,

//[out] pointer to number of rows in ROI
USHORT *
pusTop

//[out] pointer to beginning row in ROI
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The pusColumns is a pointer to unsigned short number of pixel columns in the ROI of the frame used for the specified sequence allocation.
The pusLeft is a pointer to unsigned short number defining the offset pixel to the left side of the ROI from the left edge of the frame.
The pusRows is a pointer to unsigned short number of pixel rows in the ROI of the frame used for the specified sequence allocation.
The pusTop is a pointer to unsigned short number defining the offset pixel to the top edge of the ROI from the top edge of the frame.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.
The ROI must be completely contained within the frame.
The size of an acquired image and allocated memory is determined by the ROI which may be smaller than the frame size of the detector. The frame size is rows * columns * 2 bytes.
See Also:
DFNSetFrameSize, DFNGetAllocationFrameSize, DFNSetROI, DFNGetSequenceFrameSize, DFNGetAllocationROI
5.2.4.20
DFNGetSequenceFrameSize

The DFNGetSequenceFrameSize function returns the size of the frame that was used for allocating frames for the specified acquisition sequence. The actual memory allocated will depend upon the size of the region of interest (ROI) specified in this sequence frame size. The frame size is specified in numbers of column and row pixels. Note that a pixel is 2 bytes.
DFN_STATUS
DFNGetSequenceFrameSize(
long

lSequenceNum,

//[in] sequence identifier
USHORT *
pusColumns,

//[out] pointer to number of columns in frame
USHORT *
pusRows

//[out] pointer to number of rows in frame
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The pusColumns is a pointer to unsigned short number of pixel columns in the frame of the detector set used for the specified sequence allocation.
The pusRows is a pointer to unsigned short number of pixel rows in the frame of the detector set used for the specified sequence allocation.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each digital x-ray detector type has an inherent frame size. DFNSetFrameSize is used to specify the frame size that will be used for frame allocations for a sequence. The frame size is expressed in pixels by rows and columns. Within a frame a region of interest can be specified with DFNSetROI so that a smaller section of the frame can be acquired.
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.
The actual byte size of the frame is rows * columns * 2 bytes.
See Also:
DFNSetFrameSize, DFNGetAllocationFrameSize, DFNSetROI, DFNGetSequenceROI, DFNGetAllocationROI
5.2.4.21
DFNGetAllocationFrameSize

The DFNGetAllocationFrameSize function returns the size of the frame that will be used for allocating frames for the next acquisition sequence. The actual memory allocated will depend upon the size of the region of interest (ROI) specified in this allocation frame size. The frame size is specified in numbers of column and row pixels. Note that a pixel is 2 bytes.
DFN_STATUS
DFNGetAllocationFrameSize(
USHORT *
pusColumns,

//[out] pointer to number of columns in frame
USHORT *
pusRows

//[out] pointer to number of rows in frame
);
Parameters:
The pusColumns is a pointer to unsigned short number of pixel columns in the frame of the detector set to be used for the next allocation.
The pusRows is a pointer to unsigned short number of pixel rows in the frame of the detector set to be used for the next allocation.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each digital x-ray detector type has an inherent frame size. DFNSetFrameSize is used to specify the frame size that will be used for frame allocations. The frame size is expressed in pixels by rows and columns. Within a frame a region of interest can be specified with DFNSetROI so that a smaller section of the frame can be acquired.
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.
The actual size in bytes is rows * columns * 2 bytes.
See Also:
DFNSetFrameSize, DFNGetSequenceFrameSize, DFNSetROI, DFNGetSequenceROI, DFNGetAllocationROI
5.2.4.22
DFNSetFrameSize

The DFNSetFrameSize function allows the application to specify the size of the frame that a detector produces. The size is specified in numbers of column and row pixels. Note that a pixel is 2 bytes.
DFN_STATUS
DFNSetFrameSize(
USHORT
usColumns,

//[in] number of columns in frame
USHORT
usRows,

//[in] number of rows in frame
);
Parameters:
The usColumns is an unsigned short number of pixel columns in the frame of the detector in use. The number of columns must be a multiple of 4 pixels, and cannot exceed 512K pixels.
The usRows is an unsigned short number of pixel rows in the frame of the detector in use. The number of rows must be a multiple of 2 pixels.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each digital x-ray detector type has an inherent frame size. Specifying the frame size allows various detectors to be used. The frame size is expressed in pixels by rows and columns. Within a frame a region of interest can be specified with DFNSetROI so that a smaller section of the frame can be acquired.
Column pixels are numbered left to right, starting with zero. Row pixels are numbered top to bottom, starting with zero.

DFNSetFrameSize sets the allocation frame size that will be used for the next acquisition.

The DFN firmware has imposed restrictions on the number of rows and number of columns in the frame. The number of rows must be even and the number of columns must be a multiple of 4 pixels. The number of columns cannot exceed 512K which is a limitation that would probably never be realized, being that detectors of that size do not exist.

The frame size in bytes would be rows * columns * 2 bytes.
See Also:
DFNGetAllocationFrameSize, DFNGetSequenceFrameSize, DFNSetROI, DFNGetSequenceROI, DFNGetAllocationROI
5.2.4.23
DFNDetectorHardwarePresentSpecification

When running the system to debug without a DFN card and detector hardware, DFNDetectorHardwarePresentSpecification must be called to tell the DLL and DFN card driver to run in a "pretend" mode for code development purposes. Note that not all the DLL calls will work in this mode.
DFN_STATUS
DFNDetectorHardwarePresentSpecification(
DWORD
dwExists,

//[in] 0=no DFN card, 1 = DFN card present
);
Parameters:

The dwExists would be input as 0 for no DFN card.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The DLL assumes that the DFN card and detector hardware exist upon startup, so there is no need to call this function with a dwExists equal to 1, since that is the default condition. When the detector is not present, image acquisition is done in the TEST mode state. When the detector is present, image acquisition is done in the NORMAL mode state.

Note that in earlier documentation, this routine was thought to specify if the detector was present only. It really specifies if the DFN card is present.
5.2.4.24
DFNGetNextFrame

The DFNGetNextFrame function retrieves the image at the current position in the current sequence and adjusts the frame pointer forward (in frame sequence) one frame. The frame pointer is maintained internally by the DLL.
DFN_STATUS
DFNGetNextFrame(
ULONG *
pulFrameNumber,

//[out] driver assigned frame number
ULONG *
pulMappedAddress

//[out] mapped address of frame data
);
Parameters:
The pulFrameNumber is a pointer to a unsigned long driver assigned frame number that is returned. Frame numbers normally begin with 0 and count upward to the number of frames acquired -1.
The pulMappedAddress is a pointer to a unsigned long address in virtual memory that is accessible to the user application.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

On requesting a frame past the end of sequence DFN_END_OF_FILE is returned.
Remarks:
A call to this function will block waiting for completion. If the sequence is operating as an archive, an image space is mapped in virtual memory with read/write access and the function returns immediately. If the sequence is operating in playback mode, the image in memory is mapped into virtual memory and the function returns immediately. If the sequence is operating in acquisition mode, the function will not return until the image has been acquired (a DMA transfer) and then mapped into virtual memory.
A call to this function will unmap any frames that have already been delivered to the application through a prior call to this function, or any other function that maps a frame.
DFNOpenSequence sets the frame pointer to the first frame in the sequence. If a read is attempted past the end of sequence, the DFN_STATUS returns DFN_END_OF_FILE. For playback sequential mode when the first frame to be played back is not the first frame in the sequence, use DFNOpenSequentialPlaybackSequence instead of DFNOpenSequence, to gain more flexibility in specifying sequential playback parameters.
The value of DFN_END_OF_FILE is (unsigned long)0xA013006A.
In acquisition mode, DFNGetNextFrame calls would be made after DFNBeginSequence. In archive mode, DFNGetNextFrame calls would be made after DFNOpenArchiveSequence. In sequential playback mode, DFNGetNextFrame calls would be made after DFNOpenSequence or DFNOpenSequentialPlaybackSequence.
Note that for playback, this function can only be used for sequential playback mode. When playing back in random mode, the GetSpecificFrame function must be used instead of the GetNextFrame function.
The DFNGetNextFrame uses no timeout for unmapping the last image, and thus will block waiting for the image to be unmapped. If an application wants to control the timeout so that it does not block forever, it can set the timeout based relative to the exposure time for an image by using DFNGetNextFrameTimeout.
See Also:
DFNOpenSequence, DFNBeginSequence, DFNOpenArchiveSequence, DFNOpenSequentialPlaybackSequence, DFNGetNextFrameTimeout
5.2.4.25
DFNGetBoardVersionInfo

The DFNGetBoardVersionInfo function queries the DFN card for four version parameters:
a. The DFN board version number
b. The Event Processor FPGA version
c. The Data and Address Processor FPGA version
d. The DFN board serial number string - use a 24 character long string to be sufficient
DFN_STATUS DFNGetBoardVersionInfo(
UCHAR * pucBoardRev,

//[out] pointer to DFN board revision number
ULONG * pulEPRev,

//[out] pointer to EventProcessof FPGA version
ULONG * pulDAPRev,

//[out] pointer to Data & Address Processor FPGA version
CHAR * pcstrBoardSN

//[out] DFN board serial number character string [24 chars]
);
Parameters:

The pucBoardRev is a pointer to an unsigned char DFN board revision number: 0..255.

The pulEPRev is a pointer to an unsigned long Event Processor FPGA version number.
The pulDAPRev is a pointer to an unsigned long Data and Address Processor FPGA version number.
The pcstrBoardSN is a character string of 24 characters to hold the DFN board serial number character string (24 characters includes room for string termination character)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The Board Revision is usually displayed in hex format ("0x%02X" in C). The Event Processor FPGA version and the Data & Address Processor FPGA version are usually displayed in hex format ("0x%08X" in C). The DFN board serial number is a 64 bit number which has been converted to a character string. Use a max length string of 24 characters to retrieve the serial number character string representation. The string will be null terminated.
See Also:
DFNGetDriverAndDLLVersions
5.2.4.26
DFNGetDriverAndDLLVersions

The DFNGetDriverAndDLLVersions returns the version strings of the DFN card Driver and this DFN DLL. The driver version is read from the NT registry.
DFN_STATUS DFNGetDriverAndDLLVersions(
CHAR * cpstrDriverVersion,

// [out] driver version string
CHAR * cpstrDLLVersion

// [out] DLL version string
);
Parameters:
The cpstrDriverVersion is a character string that should be 64 characters long to be sufficient for the DFN driver version string returned (64 characters is long enough to include string termination)
The cpstrDLLVersion is a character string that should be 64 characters long to be sufficient for the DFN DLL version string returned.(64 characters is long enough to include string termination)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
This routine may be called before DFNOpenSystem. The DFN driver version is kept in the NT system registry. The DLL version is kept internally in the DLL.
See Also:
DFNGetBoardVersionInfo
5.2.4.27
DFNLoadEvents

The DFNLoadEvents function downloads the appropriate contents of the coff file to the DFN driver for loading into the DFN card. The event loading is done once prior to running an acquisition sequence. The downloading is usually accomplished by passing the name of the coff file to the DFNBeginSequence function. Both DFNBeginSequence and DFNLoadEvents make sure that the driver is put into either test or normal acquisition mode before downloading the events.
DFN_STATUS DFNLoadEvents(
CHAR * COFFileName

// [in] full path and name of coff file
);
Parameters:
The COFFileName is a null terminated character string containing the coff file name with full path information.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
This routine does not have to be called if the user passes the coff file name to one of the DFNBeginSequence functions. This function may be used to download the coff file information to the DFN driver explicitly before calling DFNBeginSequence. In that case, the coff file name would be passed as NULL to the DFNBeginSequence function so that the download would not be attempted in that function.
The information downloaded from the coff file is as follows:
a. The buffer containing all the events for the event queue and the queue variables. The queue events have been padded with a sufficient number of traps to ensure error recovery.
b. The total size of the event buffer in bytes (including all padding)
c. Offset for the start of the event queue (usually 0)
d. Offset for the start of the queue variables
A soft reset is also done automatically on the DFN card when loading events
See Also:
DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMapping, DFNBeginSequenceSendiNoLog, DFNBeginSequenceSendiNoMappingNoLog, DFNSoftReset
5.2.4.28
DFNSelfTest

The DFNSelfTest function will ask the DFN card to perform one of the self tests. The self test id is input. The self test will run to completion or end on an error before this function returns. Note: this function is currently a no-op, as it has not been implemented in the DFN driver. Calling this function will always return DFN_SUCCESS.
DFN_STATUS DFNSelfTest(
LONG lSelfTestId

// [in] self test to perform
);
Parameters

The lSelfTestId specifies which self test to perform.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

Self test cannot be run during any other activity, such as acquisition.

This function is not currently implemented.
5.2.4.29
DFNGetResponseLogSizeForSequence

The DFNGetResponseLogSizeForSequence function returns the number of bytes in the response logs stored in memory for the specified sequence, after the sequence has completed.
DFN_STATUS DFNGetResponseLogSizeForSequence(
LONG lSequenceNum,

// [in] sequence id number input
ULONG * pulBytes

// [out] pointer to number of bytes in response log of sequence
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The pulBytes is a pointer to an unsigned long number of bytes in the response log of the sequence
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
DFN_RL_TOTAL_BYTES_WRONG is returned if the total bytes stored is not a multiple of 32 bytes.
Remarks:

Each response log entry will contain 32 bytes. The number of bytes returned should be a multiple of 32 bytes. An error is returned if it is not.

The response logs retrieved during the acquisition of a sequence or during a chitchat are stored in memory under the sequence identifier. The response logs of a sequence may be retrieved using DFNGetResponseLogForSequence by supplying a buffer for the response logs to be copied to. The size of the buffer needed is retrieved using DFNGetResponseLogSizeForSequence.

Since chitchats do not contain frames, the only way to retreive chitchat response buffers is using DFNGetResponseLogForSequence; that is, DFNGetResponseLogForFrame cannot be used for chitchats.

This routine can only be used after the sequence has completed.
See Also:
DFNGetResponseLogForSequence, DFNGetResponseLogForFrame, DFNGetResponseLogSizeForFrame
5.2.4.30
DFNGetResponseLogForSequence

The DFNGetResponseLogForSequence function retrieves up to a specified buffer length of bytes of the response log stored in memory for a completed sequence from a starting byte offset.
DFN_STATUS DFNGetResponseLogForSequence(
LONG lSequenceNum,

// [in] sequence id number input
ULONG ulStartingByteOffset,

// [in] byte offset into response log to start transfer
ULONG ulLengthBuffer,

// [in] byte length of the RLBuffer
ULONG * ulBytesWritten,

// [out] pointer to number of bytes returned in RLBuffer
UCHAR * cpRLBuffer

// [out] pointer to the RLBuffer
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulStartingByteOffset is the unsigned long starting byte offset into the response logs stored for the frame.
The ulLengthBuffer is the unsigned long size of the response log buffer to be returned.
The ulBytesWritten is the unsigned long pointer containing the number of bytes actually written to the response log buffer.
The ucpRLBuffer is the unsigned char pointer to the response log buffer to be written.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each response log entry will contain 32 bytes. The resource log buffer should be allocated with a size which is a multiple of 32 bytes, unless the user does not start the starting byte offset on a response log 32 byte boundary and/or specifies the maximum bytes at something other than a multiple of 32 bytes.
The DFNGetResponseLogSizeForSequence function will return the total number of bytes contained in the response log for a sequence. The DFNGetResponseLogForSequence function can then make a single call with a buffer large enough to hold all of the response log entries, or may make a series of calls with a smaller buffer, by using the starting byte offset. It is not known, prior to running a sequence, how large the response log will be.
If the sequence is a frame acquisition sequence, the response log may be retrieved on a per-frame basis using DFNGetResponseLogSizeForFrame and DFNGetResponseLogForFrame.
The DFNGetResponseLogForSequence and DFNGetResponseLogOfRunningSequence functions are the only way to retrieve response logs gathered during a chitchat session.
This routine can only be used after the sequence has completed. If the sequence is still active, use DFNGetResponseLogForRunningSequence.
See Also:
DFNGetResponseLogSizeForSequence, DFNGetResponseLogSizeForFrame, DFNGetResponseLogForFrame, DFNGetResponseLogOfRunningSequence
5.2.4.31
DFNGetResponseLogSizeForFrame

The DFNGetResponseLogSizeForFrame function returns the number of bytes in the response logs stored in memory for the specified frame of the specified completed sequence.
DFN_STATUS DFNGetResponseLogSizeForFrame(
LONG lSequenceNum,

// [in] sequence id number input
ULONG ulFrameNum,

// [in] frame number
ULONG * pulBytes

// [out] pointer to number of bytes in response log of frame
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulFrameNum is the unsigned long frame number, , 0..N where N is the number of frames (N is an artificial frame number, containing all the response logs following the last frame (N-1))
The pulBytes is a pointer to an unsigned long number of bytes in the response log of the frame
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

DFN_RL_TOTAL_BYTES_WRONG is returned if the byte total is not a multiple of 32 bytes.
Remarks:

Each response log entry will contain 32 bytes. The number of bytes returned should be a multiple of 32 bytes. An error is returned if it is not.

Response logs for a frame are a subset of response logs for a sequence.

The response logs retrieved during the acquisition of a sequence stored in memory under the sequence identifier and grouped according to frames. The response logs of a frame of a sequence may be retrieved using DFNGetResponseLogForFrame by supplying a buffer for the response logs to be copied to. The size of the buffer needed is retrieved using this function, DFNGetResponseLogSizeForFrame.

Response logs generated before the first frame (frame numbered 0) are stored along with frame zero. Response logs generated after the last frame are stored logically under frame N, where N-1 is the last frame number, and may be retrieved by specifying the frame number as N.

Response logs for a frame are grouped so that every response log after the last frame, up to and including the frame acquisition response log is grouped with that acquired frame.

This routine can only be used for completed sequences.
See Also:
DFNGetResponseLogForSequence, DFNGetResponseLogForFrame, DFNGetResponseLogSizeForSequence
5.2.4.32
DFNGetResponseLogForFrame

The DFNGetResponseLogForFrame function retrieves up to a specified buffer length of bytes of the response log stored in memory for a specified frame of a specified completed sequence from a starting byte offset.
DFN_STATUS DFNGetResponseLogForFrame(
LONG lSequenceNum,

// [in] sequence id number input
ULONG ulFrameNum,
// [in] frame number
ULONG ulStartingByteOffset,

// [in] byte offset into response log to start transfer
ULONG ulLengthBuffer,

// [in] byte length of the RLBuffer
ULONG * ulBytesWritten,

// [out] pointer to number of bytes returned in RLBuffer
UCHAR * ucpRLBuffer

// [out] pointer to the RLBuffer
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulFrameNum is the unsigned long frame number , 0..N where N is the number of frames (N is an artificial frame number, containing all the response logs following the last frame (N-1))
The ulStartingByteOffset is the unsigned long starting byte offset into the response logs stored for the frame.
The ulLengthBuffer is the unsigned long size of the response log buffer to be returned.
The ulBytesWritten is the unsigned long pointer containing the number of bytes actually written to the response log buffer.
The ucpRLBuffer is the unsigned char pointer to the response log buffer to be written.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

Each response log entry will contain 32 bytes. The number of bytes returned should be a multiple of 32 bytes, unless the user does not start the starting byte offset on a response log 32 byte boundary and/or specifies the maximum bytes at something other than a multiple of 32 bytes.

The response logs retrieved during the acquisition of a sequence stored in memory under the sequence identifier and grouped according to frames. The response logs of a frame of a sequence may be retrieved using DFNGetResponseLogForFrame by supplying a buffer for the response logs to be copied to. The size of the buffer needed is retrieved using DFNGetResponseLogSizeForFrame.

Since chitchats do not contain frames, the only way to retreive chitchat response buffers is using DFNGetResponseLogForSequence.
Response logs generated before the first frame (frame numbered 0) are stored along with frame zero. Response logs generated after the last frame are stored logically under frame N, where N-1 is the last frame number, and may be retrieved by specifying the frame number as N.

Response logs for a frame are grouped so that every response log after the last frame, up to and including the frame acquisition response log is grouped with that acquired frame.

This routine can only be used for completed sequences.
See Also:
DFNGetResponseLogForSequence, DFNGetResponseLogSizeForFrame, DFNGetResponseLogSizeForSequence
5.2.4.33
DFNOpenSequentialPlaybackSequence

The DFNOpenSequentialPlaybackSequence opens a sequence by name that resides in memory for playback in a sequential presentation. The user may specify the starting frame to begin the playback with, the direction of the playback, and whether or not the playback will continuously loop. The named sequence is made current and the frames may then be retrieved using GetNextFrame.
DFN_STATUS DFNOpenSequentialPlaybackSequence(
CHAR *
cpstrSequenceName,

// [in] pointer to name of the sequence
long *

lpSequenceNum,

// [out] pointer to sequence identifier
ulong

ulStartingFrameNum,

// [in] starting frame number for playback
long

lDirection,

// [in] direction of playback
 //
0 = forward ; 1 = reverse
long

lLoopback

// [in] whether to loopback or not

// 0 = OFF ; 1 = ON
);
Parameters:
The sequence name, cpstrSequenceName , is a null terminated character string containing a unique user defined name for the sequence. The name can contain any readable ascii characters. This sequence must already be in memory.
The sequence identifier pointer, lpSequenceNum, points to a long driver-assigned unique identifier that is returned. This identifier would be used in other DLL calls dealing with this sequence.
The ulStartingFrameNum is the frame number for starting the playback. The frames begin acquisition at frame number zero. The last frame number of N frames would be N-1.
The lDirection is the direction of the playback. The value is 0 (zero) for forward and 1 for reverse.
The lLoopback is whether or not to do a loopback on the playback. In loopback mode, going in a forward direction, the next image after frame N-1 would be 0 (zero). In loopback mode, going in a reverse direction, the next image after zero would be N-1. The value of lLoopback is zero to turn loopback off and 1 to turn loopback on.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The sequence to be opened for playback must already be in memory. A sequence is in memory if it has just been acquired or has been loaded from an archive. The sequence is referenced by the name it is known by in memory. The sequence ID is returned and should match the ID that the driver returned from the original activity creating the sequence in memory.

The sequence will be played back in sequential order. The user may specify the starting frame number, the direction of the playback and whether the sequence will continuously loop or not.

To retrieve frames for playback, the user must call DFNGetNextFrame for each image he wants. When the user is done with playback he must call DFNCloseSequence.

If the user wishes to switch direction or change other sequential playback parameters, he must close the sequence and re-open it with the new sequential playback parameters.
See Also:
DFNGetNextFrame, DFNCloseSequence, DFNOpenRandomPlaybackSequence
5.2.4.34
DFNOpenRandomPlaybackSequence

The DFNOpenRandomPlaybackSequence opens a sequence by name that resides in memory for playback in a random presentation. The named sequence is made current and the frames may then be retrieved by using GetSpecificFrame.
DFN_STATUS DFNOpenRandomPlaybackSequence(
CHAR *
cpstrSequenceName,

// [in] pointer to name of the sequence
long *

lpSequenceNum,

// [out] pointer to sequence identifier
);
Parameters:
The sequence name, cpstrSequenceName , is a null terminated character string containing a unique user defined name for the sequence. The name can contain any readable ascii characters. This sequence must already be in memory.
The sequence identifier pointer, lpSequenceNum, points to a long driver-assigned unique identifier that is returned. This identifier would be used in other DLL calls dealing with this sequence.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The sequence to be opened for playback must already be in memory. A sequence is in memory if it has just been acquired or has been loaded from an archive. The sequence is referenced by the name it is known by in memory. The sequence ID is returned and should match the ID that the driver returned from the original activity creating the sequence in memory.

The sequence will be played back in random order, where the user may specify the frames to be played back one at a time using DFNSpecificFrame. When the user is done with playback he must call DFNCloseSequence.
See Also:
DFNGetSpecificFrame, DFNCloseSequence, DFNOpenSequentialPlaybackSequence
5.2.4.35
DFNGetSpecificFrame

The DFNGetSpecificFrame function retrieves the specific image in the current sequence when in random playback mode.
DFN_STATUS
DFNGetSpecificFrame(
ULONG
ulFrameNumber,

//[in] frame number (0..N-1)
ULONG *
pulMappedAddress

//[out] mapped address of frame data
);
Parameters:
The ulFrameNumber is a pointer to a frame number in the current sequence. Frame numbers normally begin with 0 and count upward to the number of frames acquired -1.
The pulMappedAddress is a pointer to a unsigned long address in virtual memory that is accessible to the user application.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

On requesting a frame past the end of sequence DFN_END_OF_FILE is returned.
Remarks:
A call to this function will block waiting for completion. The sequence must be operating in random playback mode to use this routine. The image in memory is mapped into virtual memory and the function returns immediately
The value of DFN_END_OF_FILE is (unsigned long)0xA013006A.
A call to this function will unmap any frames that have already been delivered to the application through a prior call to this function, or any other function that maps a frame.
In random playback mode, DFNGetSpecificFrame calls would be made after DFNOpenRandomPlaybackSequence. The sequence is closed with DFNCloseSequence.
See Also:
DFNOpenRandomPlaybackSequence, DFNCloseSequence, DFNOpenSequentialPlaybackSequence
5.2.4.36
DFNBeginSequenceNoMapping

The DFNBeginSequenceNoMapping function makes the acquisition sequence current The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL begins reading response logs, but no image mapping is done.
DFN_STATUS
DFNBeginSequenceNoMapping(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName

// [in]coff file name containing events
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The DFNBeginSequenceNoMapping function is not used for chitchat sequences.
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping, the DFNBeginSequenceNoMapping function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
If the user mistakenly calls DFNGetNextFrame after beginning the sequence with no mapping, the sequence end-of-file error code will be returned.
DFNBeginSequenceNoMapping is only used for image acquisition when real time image mapping is not desired. Response logs are still captured. After the sequence has stopped acquisition, the response logs may be reviewed in entirity or on a per-image section. Response logs can be retrieved during active response log capture, but not on a per-image section (see DFNGetResponseLogOfRunningSequence).
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceNoMapping. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The DFNBeginSequenceNoMapping, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
Note that in release versions 3.4 and prior, a soft reset was also done on the DFN card when loading events. This reset is no longer being done automatically. It is now up to the application to do the soft reset if the application desires to do it. This change was necessary because the soft reset also reset the real time bus lines, which would not be desireable for some applications.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoLog, DFNResetFC
5.2.4.37
DFNDeleteFrame

The DFNDeleteFrame function will delete the specified frame of the specified sequence in memory. The sequence may have been acquired or read in from an archive. The deletion does not affect the archive file on disk.
DFN_STATUS DFNDeleteFrame(
long

lSequenceNum,

// [in] sequence identifier
ULONG

ulFrameNumber

// [in] frame number
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The ulFrameNumber is the frame number within the sequence to be deleted. Frame numbers begin counting from zero and continue up to N-1, where N is the number of frames in the sequence.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

DFNDeleteFrame cannot be called during an active acquisition.

The frame to be deleted must be in the current sequence.
If the frame is not in the current sequence and some other activity, such as playback, is running on another sequence which is current, then this function will fail.
If the frame is not in the current sequence and no other activity is running on the current sequence, then the specified sequence here is made current automatically and the request to delete the frame is made to the driver. When the sequence is made current, it is opened as a random playback activity.
See Also:
DFNIsFramePresent
5.2.4.38
DFNIsFramePresent

The DFNIsFramePresent function will query the driver to see if the specified frame exists in memory in the specified sequence. True (1L) is returned if the frame is in memory. False (0L) is returned if the frame has already been deleted from the sequence in memory.
DFN_STATUS DFNIsFramePresent(
long

lSequenceNum,

// [in] sequence identifier
ULONG

ulFrameNumber,

// [in] frame number
long *

pboolPresent

// [out] pointer to boolean result

//
true =1L or false = 0L
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The ulFrameNumber is the frame number within the sequence to be queried for existance. Frame numbers begin counting from zero and continue up to N-1, where N is the number of frames in the sequence.
The pboolPresent is a pointer to a long (true or false) result of true (1L) or false (0L) returned from the driver in response to the query.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
A boolean can only be passed through the dcom interface as a long value, hence true is 1L and false is 0L.

DFNIsFramePresent cannot be called during an active acquisition.

The frame to be queried about must be in the current sequence.
If the frame is not in the current sequence and some other activity, such as playback, is running on another sequence which is current, then this function will fail.
If the frame is not in the current sequence and no other activity is running on the current sequence, then the specified sequence here is made current automatically and the query request about the frame is made to the driver. When the sequence is made current, it is opened as a random playback activity.
The user may want to call this routine before calling DFNDeleteFrame if there is any question if a frame exists. However, DFNDeleteFrame will handle the case when a frame has already been deleted.
See Also:
DFNDeleteFrame
5.2.4.39
DFNWaitForSystemIdle

The DFNWaitForSystemIdle routine is meant to be used after an acquisition begin sequence is called (with or without mapping), to block until the sequence is complete before calling DFNCloseSequence
DFN_STATUS DFNWaitForSystemIdle();
Parameters:
None
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Without the DFNWaitForSystemIdle routine, there is no way, except for guessing, to know how long to wait before closing the sequence. Even when the acquisition is begun with DFNBeginSequence, the images are retrieved with DFNGetNextFrame which block until each frame is available; thus in that case, the user knows, by retrieving the last frame, that the sequence has completed acquisition, but he still does not know when the system has gone back to the idle state. If the user does not wait for the system to become idle, and issues the close sequence command prematurely, then the system will try to abort the sequence.
While waiting, the routine checks that the thread monitoring the sequence acquisition has not died, and is reporting no error. The routine waits awhile for the system to be in a non-idle mode and then transition to idle mode. If the routine does not see the transition in a reasonable amount of time with no errors reported but finds it stuck in idle mode, then the routine gives up and unblocks (there is no error reported in this case).
See Also:
DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoLog

DFNWaitTimeoutForSystemIdle
5.2.4.40
DFNGetSequenceFrameRange

The DFNGetSequenceFrameRange routine returns the minimum and maximum frame numbers that still exist within a sequence that is in memory.
DFN_STATUS DFNGetSequenceFrameRange(
long

lSequenceNum,

// [in] sequence identifier
ULONG
 *
pulMinFrameNum,

// [out] pointer to minimum frame number
ULONG *
pulMaxFrameNum

// [out] pointer to maximum frame number
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The pulMinFrameNum is the minimum frame number within the sequence that is in memory.
The pulMaxFrameNum is the maximum frame number within the sequence that is in memory.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The frame numbers of a sequence are between zero and N-1 where N is the number of frames in the sequence. Once a sequence has been acquired, or loaded from an archive, frames within the sequence may be deleted. The driver can be queried to return the remaining minimum and maximum frame numbers of a sequence.
DFNGetSequenceLengthAcquired can be used to find the total number of frames that exist for a sequence in memory. This total is reflects frames that have been deleted since the sequence was acquired or loaded from an archive.
DFNIsFramePresent can be used to query the existance of a frame from the minimum to the maximum frame number.
When playing back a sequence sequentially, the sequence is played back using the minimum and maximum frame range. The user may specify the starting frame and the direction.
See Also:
DFNIsFramePresent, DFNGetSequenceLengthAcquired,
DFNOpenSequentialPlaybackSequence
5.2.4.41
DFNBeginSequenceNoMappingNoLog

The DFNBeginSequenceNoMappingNoLog function makes the acquisition sequence current The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL does not acquire response logs and no image mapping is done. Only the images are acquired into memory.
DFN_STATUS
DFNBeginSequenceNoMappingNoLog(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName

// [in]coff file name containing events
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping or response logs, the DFNBeginSequenceNoMappingNoLog function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
If the user mistakenly calls DFNGetNextFrame after beginning the sequence with no mapping, the sequence end-of-file error code will be returned.
DFNBeginSequenceNoMappingNoLog is only used for image acquisition when real time image mapping and response log acquisition is not desired. After the sequence has stopped acquisition, the sequence of images may be played back.
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceNoMappingNoLog. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
Note that in release versions 3.4 and prior, a soft reset was also done on the DFN card when loading events. This reset is no longer being done automatically. It is now up to the application to do the soft reset if the application desires to do it. This change was necessary because the soft reset also reset the real time bus lines, which would not be desireable for some applications.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog,

DFNResetFC
5.2.4.42
DFNBeginSequenceNoLog

The DFNBeginSequenceNoLog function makes the acquisition sequence current. The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL does not acquire response logs, but images are acquired and mapping is done.
DFN_STATUS
DFNBeginSequenceNoLog(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName

// [in]coff file name containing events
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping, the DFNBeginSequenceNoLog function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
DFNBeginSequenceNoLog is only used for image acquisition and mapping when response log acquisition is not desired.
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceNoLog. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The DFNBeginSequenceNoMapping, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
Note that in release versions 3.4 and prior, a soft reset was also done on the DFN card when loading events. This reset is no longer being done automatically. It is now up to the application to do the soft reset if the application desires to do it. This change was necessary because the soft reset also reset the real time bus lines, which would not be desireable for some applications.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping, DFNResetFC
5.2.4.43
DFNSendDetectorCommand

The DFNSendDetectorCommand function allows the user to send a command to the detector through the DFN card. The detector can be in diagnostic or acquisition mode. The detector command has a command mask followed by three command parameters. Any parameters which are not used must be set to zero. When complete, two parameters are returned to the user. It is up to the user to decipher the meaning of the return.
DFN_STATUS
DFNSendDetectorCommand(
ULONG
ulParam0,

// [in] Command bit pattern mask
ULONG

ulParam1,

// [in] Command parameter 1
ULONG

ulParam2,

// [in] Command paramater 2 for SendiTrap
ULONG

ulParam3,

// [in] Command parameter 3 (set to 0L)
ULONG *
pulHdr1,

// [out] Returned parameter 1
ULONG *
pulHdr2

// [out] Returned parameter 2
);
Parameters:
The detector command mask is sent in ulParam0. This unsigned long parameter must always have a value corresponding to the detector command to be executed.
The command parameters are ulParam1, ulParam2 and ulParam3. Currently commands only use ulParam1, if a parameter is needed. If ulParam1 is not needed, set it to zero (0L). The ulParam2 is used to specify the state of the SendiTrap. The ulParam3 us currently unused and should be set to 0L. It is up to the user to specify the parameters correctly. There is no error checking done on the parameters at the driver or DLL level. If the parameters are wrong, the detector itself will return an error.
The parameters, returned to the user upon command completion , are pointed to by pulHdr1 and pulHdr2. It is up to the user to decipher the return parameters. Hdr1 is an unsigned long detector response type. Hdr2 is an unsignes long detector response argument.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For releases 3.4.1 and earlier, of the DFN firmware, it was only possible to send a detector command in the diagnostic mode. That is, it was only possible to send a detector command when an acquisition was not running. With release 3.5 of the DFN firmware, it is possible to send a detector command at any time. However, if a sequence is running, the command will only be serviced when the running coff file hits a SendI command. The DLL no longer places the board in diagnostic mode automatically when this routine is called. If this routine is used to send detector commands while a sequence is running, and ulParam2 is sent as 0L, the SendiTrap is off and the driver will send the command even if the sequence has reached the EndQ. If an application wishes to know if the command was serviced by the sendi during the running of the sequence and not possibly after, then ulParam2 should be set to 1L to turn the SendiTrap on. If the ulParam2 has been sent as 1L, then when a detector command is sent while the queue is executing, but does not complete before the EndQ, an error will be returned by the driver. In this way, the application can tell that the detector command was not done while the queue was running. If you do not care if the command was completed during or after a sequence completes, then send ulParam2 as 0L. If a sequence is not running when the command is issued, the state of the SendiTrap is ignored.
 If the board is in diagnostic mode and has been autoscrubbing, you may find that it is necessary to send a scrub command (0x0000, 0x0000) before sending the command of interest, to wake up the board.
Commands sent to the detector through the DFN card are sent in single step mode, one command at a time. The function blocks until the command has completed and the two Hdr parameters are returned.
If not all three command parameters are used, place the used ones in order, beginning with ulParam1 and fill in the unused parameters with a long zero. Currently ulParam2 and ulParam3 are not used; they should be filled with a long zero.
Commands are passed through the DLL and the driver to the detector with no parsing, or error checking of command mask or parameters.
Upon return from the driver, the driver echos the command mask to the DLL. The DLL checks that the command mask matches the command mask that was sent, so that the return parameters are assured to belong to the command sent.
The commands sent with this command are of the type that are used in coff files for the detector queue commands. For example 0x0000, 0x0000 is the scrub command and 0x1002, 0x0000 is the get detector signature command.
See Also:
DFNLoadEvents, DFNAccessLocalBus
5.2.4.44
DFNSetWrapMode

The DFNSetWrapMode function allows the user to set the acquisition mode for a sequence that has been opened to wrap mode before acquisition is started. The number of images in the wrap buffer is the sequence length that the sequence was opened with, but the number of frames to be acquired can be many times the sequence length, with image overwritting.
DFN_STATUS
DFNSetWrapMode(
long lSequenceNum

// [in] sequence identifier
)
Parameters:
The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

Wrap mode cannot be set for sequences opened for archive mode.

Wrap mode cannot be set for a sequence after acquisition has taken place.

An image will not be overwritten if it has not been mapped at least once.
Sequence acquisition begun with image mapping turned off should not use wrap mode since the DFN driver will not overwrite an image that has not been mapped.
After acquisition, the frame range available can be determined by calling DFNGetSequenceFrameRange.
See Also:
DFNGetSequenceFrameRange, DFNIsWrapModeSet
5.2.4.45
DFNIsWrapModeSet

The DFNIsWrapModeSet function allows the user to query if the acquisition mode for a sequence has been set to wrap mode
DFN_STATUS
DFNIsWrapModeSet(
long lSequenceNum,

// [in] sequence identifier
long * pboolWrapping
// [out] pointer to true (1L) if warp mode is
// set, false (0L) otherwise
)
Parameters:
The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The returned pboolWrapping pointer will point to a long value of true (1L) if wrap mode is set or false (0L) otherwise.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
A boolean value is passed through the dcom interface as a long value; hence, true is returned as 1L and false returned as 0L.

Wrap mode is never set for sequences opened for archive mode.
Wrap mode is never set for sequences whose acquisition was done with no real time image mapping.
See Also:
DFNSetWrapMode
5.2.4.46
DFNGetEABMemSizes

The DFNGetEABMemSizes function returns the total size of EAB memory in bytes and the current size in bytes of the detector queue and queue variable portions of EAB memory that were programmed by loading events.
DFN_STATUS
DFNGetEABMemSizes(
ULONG * pulEABSize,

// [out] pointer to total size of EAB memory
ULONG * pulDetQSize,

// [out] pointer to size of detector queue portion
ULONG * pulQVarsSize

// [out] pointer to size of queue variables portion
)
Parameters:
The pulEABSize is a pointer to the unsigned long representing the total size in bytes of EAB memory. This value will always be available from the driver, whether or not the EAB memory has been programmed by loading events from a coff file.
The pulDetQSize is a pointer to the unsigned long representing the size in bytes of the detector queue portion of EAB memory, which was last programmed from a coff file. If the memory has not been programmed, the value will be returned as 0L.
The pulQVarsSize is a pointer to the unsigned long representing the size in byes of the queue variables portion of EAB memory, which was last programmed from a coff file. If the memory has not been programmed, the value will be returned as 0L.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The EAB memory is programmed by calling DFNLoadEvents explicitly, or by specifying a coff file name when calling one of the DFNBeginSequence routines.
The total size of EAB memory is a constant. The sum of the detector queue portion and the queue variables portion (the sum of which makes up the size of the events program) cannot exceed the total EAB memory size. The EAB memory size is not the size of the memory that is programmed, but it is the total size of memory that is available to program. The memory size that is programmed is the sum of the ulDetQSize plus the ulQVarSize.
See Also:
DFNLoadEvents, DFNBeginSequence, DFNBeginSequenceNoLog,
DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping
5.2.4.47
DFNGetBeginSequenceTimeStamp

The DFNGetBeginSequenceTimeStamp returns a time stamp string containing the date and time that an acquisition sequence or chitchat sequence was begun by requesting that the driver begin the sequence.
DFN_STATUS
DFNGetBeginSequenceTimeStamp{
long lSequenceNum,

// [in] sequence identifier
CHAR *
cstrTimeString

// [out] pointer to the string containing the time stamp
}
Parameters:
The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences, or negative for a chit chat sequence.
The cstrTimeString is a character string that must contain at least 26 characters. The string must be allocated by the application. The returned string will be of the form in the example below:

Wed Jan 02 02:03:55 1980
There are two bytes in the string following the year which each contain the end of string character of value zero.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is begun, the time is captured just before the command is sent to the driver to begin the sequence. Note that the resolution on the captured time is to the nearest second.
The time stamp is Y2K compliant.
See Also: DFNBeginSequence, DFNBeginSequenceNoLog,
 DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping,
 DFNBeginResponseLogChitChat, DFNGetBeginSequenceTime
5.2.4.48
DFNGetCurrentSequenceID

The DFNGetCurrentSequenceID returns the sequence ID that was last made current. If the current sequence was deleted, or no sequence was ever made current then a long value of 99999 is returned.
DFN_STATUS
DFNGetCurrentSequenceID(
long *
plSequenceNum
)
Parameters:
The unique sequence identifier was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences, or negative for a chit chat sequence. The plSequenceNum is the pointer to the long sequence ID. If the "current" sequence has been deleted or if no sequence was ever made current, then a value of 99999L is returned as the sequence number and the DFN_STATUS is returned as DFN_SUCCESS.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
If the current sequence is an acquisition or archive sequence, its value will be a number greater than or equal to zero. The DLL and the driver both keep track of the current sequence number for an acquisition or archive sequence. When this routine is called, a double check is made for current acquisition or archive sequences that both the driver and the DLL have the same sequence ID as the current sequence id. If there is a mismatch than DFN_NO_CURRENT_SEQUENCE is returned for the DFN_STATUS, because this situation would be an error.
If no sequence was ever made current or if the current sequence has been deleted, then the sequence id value will be 99999L which will be a key value to mean NO_CURRENT_SEQUENCE. Note that the DFN_STATUS will be returned as DFN_SUCCESS in this case, because not having a current sequence is generally not an error. A sequence is set to current at an appropriate time.

A sequence is made current when one of the begin sequence calls is made.
See Also: DFNBeginSequence, DFNBeginSequenceNoLog,
 DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping,
 DFNBeginResponseLogChitChat
5.2.4.49
DFNGetEventsFromEAB

The DFNGetEventsFromEAB allows the user to retrieve the detector queue offset, the queue variables offset, the total size of the events program and the events program itself. This information was originally loaded into EAB memory from a coff file when the sequence was begun, or explicitly by DFNLoadEvents.
DFN_STATUS
DFNGetEventsFromEAB(
ULONG * pulDetQOffset,

// [out] pointer to detector queue offset
ULONG * pulQVarsOffset,

// [out] pointer to queue variables offset
ULONG * pulCoffBufSize,

// [out] pointer to size of events program
CHAR *
 cpCoffBuf

// [out] pointer to a char buffer containing events program
);
Parameters:
The pulDetQOffset is the pointer to the unsigned long byte-offset where the detector queue commands begin within the events program. This value is usually 0L.
The pulQVarsOffset is the pointer to the unsigned long byte-offset where the queue variables begin within the events program.

The pulCoffBufSize is the pointer to the total size in bytes of the events program buffer.

The cpCoffBuf is the pointer to the char buffer containing the events program.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
If the DFNGetEventsFromEAB is called before any coff file has been loaded, the driver will return an error.
It is the responsibility of the user application to allocate a large enough buffer to hold the events program read from EAB memory. The size of the events program can be determined by calling DFNGetEABMemSizes and adding together the detector queue size and the queue variables size. The result of this addition will be the size of the character buffer to allocate to hold the events program (the cpCoffBuf buffer). The DFNGetEABMemSizes routine also returns the maximum size of EAB memory. The size of the events program will be equal to or smaller than this maximum size.
When a coff file is loaded at beginning a sequence or explicitly by calling DFNLoadEvents, the DLL automatically reads back the EAB memory and verifies that what was downloaded matches what is read back.
See Also:
DFNLoadEvents, DFNBeginSequence, DFNBeginSequenceNoLog,

DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping,

DFNGetEABMemSizes
5.2.4.50
DFNGetFreeFrameCount

The DFNGetFreeFrameCount allows the user to query the driver for how many free frames there are of a size in pixels by passing in the number of pixel rows and columns.
DFN_STATUS
DFNGetFreeFrameCount(
USHORT
usColumns,

//[in] number of pixel columns in frame
USHORT
usRows,

//[in] number of pixel rows in frame
ULONG *
pulFrameCount

//[out] number of free frames of requested size
);
Parameters:
The usColumns is an unsigned short number of pixel columns in a frame.
The usRows is an unsigned short number of pixel rows in a frame.
The pulFrameCount is a pointer to an unsigned long containing the number of free frames of the size in pixels determined by usColumns * usRows.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The usColumns and usRows in pixels do not have to be the size of any image currently set. These numbers are used as query parameters for a proposed frame size.
See Also:
DFNSetFrameSize, DFNGetAllocationFrameSize

DFNGetSequenceFrameSize
5.2.4.51
DFNWriteEABMemory

The DFNWriteEABMemory routine allows the user to write to a particular address of the EAB memory on the Event Processor FPGA, while the DFN card is in Normal or Test mode.
DFN_STATUS
DFNWriteEABMemory(

ULONG ulEABaddr,

// [in] destination address within EAB memory

long
lBytes,

// [in] number of bytes to write

CHAR * cpCmdBuf,

// [in] buffer containing bytes to write

ULONG * pulMailbox0

// [out] pointer to the actual unsigned long word written to the
//
 command register
);
Parameters:

The ulEABaddr is the destination address within EAB memory as a byte offset from 0L.
The lBytes is the number of bytes being written to EAB memory starting at the destination address. This value will be from 1 to 16.

The buffer cpCmdBuf is the command buffer of data bytes being written to EAB memory.
The pulMailbox0 is the pointer to the unsigned long value returned when the call is complete. It contains the actual long word that was written to the DFN card command register for the write operation. Firmware developers can use this value for debugging, but it is of little practical use to the user application program.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The destination address must be a number from 0L to the maximum size of EAB memory minus one. This maximum size can be obtained by calling DFNGetEABMemSizes.
The DFN card must be in NORMAL or TEST mode to write to EAB memory (just as when a Coff file is loaded in DFNLoadEvents). This routine will automatically put the card into the correct mode if it is not already in that mode. NORMAL or TEST mode is the mode the DFN card is in just prior to an acquisition. The DFN card may be put into NORMAL or TEST mode without actually beginning an acquisition.
A buffer of data written to EAB memory cannot exceed 16 bytes.
The data buffer is written to EAB memory in a series of 4 byte long words in big endian format required by EAB memory, reversed from the input little endian format input by this routine. Any bytes beyond the number sent are automatically zero filled by this routine in the long words transferred to the DFN card.
See Also:
DFNGetEABMemSizes, DFNLoadEvents, DFNReadEABMemory, DFNChangeQueueVariable
5.2.4.52
DFNReadEABMemory

The DFNReadEABMemory routine allows the user to read a number of bytes starting at a particular address of the EAB memory on the Event Processor FPGA, while the DFN card is in Normal or Test mode.
DFN_STATUS
DFNReadEABMemory(

ULONG ulEABaddr,

// [in] address within EAB memory to begin reading from

long
lBytes,

// [in] number of bytes to read

CHAR * cpCmdBuf,

// [out] buffer containing the bytes read from EAB memory

ULONG * pulMailbox0

// [out] pointer to the actual unsigned long word written to the

//
command register
);
Parameters:
The ulEABaddr is the address to read from. It must be within EAB memory as a byte offset from 0L.
The lBytes is the number of bytes being read from EAB memory starting at the address ulEABaddr. This value must be from 1 to 16.
The buffer cpCmdBuf is the command buffer used to hold the data bytes being read from EAB memory.
The pulMailbox0 is the pointer to the unsigned long value returned when the call is complete. It contains the actual long word that was written to the DFN card command register for the read operation. Firmware developers can use this value for debugging, but it is of little practical use to the user application program.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The ulEABaddr address must be a number from 0L to the maximum size of EAB memory minus one. This maximum size can be obtained by calling DFNGetEABMemSizes.
The DFN card must be in NORMAL or TEST mode to read from EAB memory (just as when a Coff file is loaded in DFNLoadEvents, or data is written to EAB memory in DFNWriteEABMemory). This routine will automatically put the card into the correct mode if it is not already in that mode. NORMAL or TEST mode is the mode the DFN card is in prior to an acquisition. The DFN card may be put into NORMAL or TEST mode without actually beginning an acquisition.
A buffer of data read from EAB memory cannot exceed 16 bytes. It is the responsibility of the application to provide a buffer of size lBytes to hold the returned data.
The data buffer is read from EAB memory in a series of 4 byte long words in the big endian format of EAB memory and then reversed to little endian format before being returned from this routine. The long words are transferred to the data buffer, so that the least significant byte of the first EAB returned long word becomes the first byte in the output buffer, the least significant byte of the second returned long word becomed the fourth byte of the output buffer (assuming lBytes > 4) etc, ie in little endian format.
See Also:
DFNGetEABMemSizes, DFNLoadEvents, DFNWriteEABMemory, DFNReadQueueVariable
5.2.4.53
DFNAccessLocalBus

The DFNAccessLocalBus routine lets the user read or write to the DFN card local bus when the card is in the diagnostic mode.
DFN_STATUS
DFNAccessLocalBus(
ULONG

ulFunction,

// [in] 24 least significant bits of a command (read or write)
ULONG

ulParam1,

// [in] command specific argument 1 (or zero fill if unused)
ULONG

ulParam2,

// [in] command specific argument 2 (or zero fill if unused)
ULONG *
pulResult

// [out] pointer to unsigned long word result if read function
);
Parameters:
The ulFunction contains the command for accessing the local bus. Only the 24 least significant bits are used. This function will be to read or write.
The ulParam1 is a first argument to the function.
The ulParam2 is a second argument to the function.
The pulResult is a pointer to the resulting unsigned long word returned if the function was a read.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Since the card must be in diagnostic mode, an acquisition cannot be running when this command is used.
If the card is not in diagnostic mode, this routine will automatically be placed in diagnostic mode before sending this command to the driver.
There is no error checking done on the contents of the function or its arguments. The accuracy of these values is the responsibility of the user.
If either or both of the command specific arguments (ulParam1 and ulParam2) are not used, then they must be zero filled (0L).
The result (pulResult) is only meaningful if the function was a read operation, otherwise what is returned in pulResult is meaningless. It is up to the user to interpret the value.
Upon return from the driver, the driver echos the command mask of ulFunction to the DLL. The DLL checks that the command mask matches the command mask that was sent.
See Also:
DFNSendDetectorCommand
5.2.4.54
DASDLL Functions for Coff File Generation from CSV files

5.2.4.54.1
Background

There are several reasons for wanting to dynamically generate a coff file from within the data acquisition dll from a CSV file. The origin of the CSV file is the PC Das Tool Spreadsheet. There are tools to generate a coff file which can be run independently of the data acquisition application. The coff file generated is used by the application by sending it's name to the PC Das DLL. A DLL routine reads the contents as a buffer and sends it to the DFN driver which in turn downloads it to the DFN card. (see DFNLoadEvents)
Integrating coff file dynamic generation into the DLL removes the burden on the user to generate the coff file outside the application, and then , to remember what that particular coff file contains. . The dynamically generated coff file will still be stored in a filename specified by the application. This approach guarantees consistency between what the application is planning to do and what the coff file contains. The content of the coff file drives what the DFN card does and what the application does should be consistent.
The DLL, DFN driver and DFN card all reside on the same computer. The coff file must reside on the same computer too, so that the driver can read it. In systems where the DFN computer is separate from the host (for instance a linux host communicating through the DCOM interface to the DLL in the DFN NT computer), coff files generated on the host side would have to be transferred to the DFN computer. Having the DLL generate the coff file would place the coff file where it needs to be automatically. This applies to the projects that have the application living on another computer (linux or SUN for instance) and use the DFN NT box much like the old IDC. The DLL’s DCOM interface allows usage in this manner.
The capability for the DLL to load an existing coff file by name does not change with the added capability of being able to generate the coff file.
By giving the DLL interface a few added functions, we are able to integrate and launch the PC Das Tool Translator and the Event Compiler tools from within the DLL, making use the bulk of the coff file generation development already done. Of course these tools would still be available outside of the DLL to a user who wanted to run them manually, beginning with the PC Das Tool spreadsheet.
Applications that want to have a set of default parameters for the panel in use, could make a single set of defaults, or construct a set of defaults based on frame type (dark, light, scrub etc) or in any manner the application chose. The application developers could create the stock default sets using the PC das tool spreadsheet and output the csv files for later use (this is the SAVE H capability in the spreadsheet). The set of default parameters would perhaps define a single event of one frame acquisition for the frame type. At the lowest level of programmatic generation, the application could build up a series of acquisitions starting with the defaults which it would modify. The application could really handle this in any way it wished. The default parameters are stored the same way as the “stock setups” described below, but the application would probably segregate as “the defaults”. An application could build up a coff file from the defaults as a basis or use a stock setup as a basis.
For applications that can work from a set of default “stock setups”, the application can request a complete coff file setup by name from the DLL. These stock setups are actually stored as the CSV files that the PC Das Tool spreadsheet outputs as the configuration csv file for a coff file. The application could begin with the stock setup and programmatically change whatever it wishes to. A call to the DLL would then use the new information for creating a new CSV file which would then be used to generate the coff file. The stock setups can be generated by using Doug Albagli’s spreadsheet tool. Applications that wish to generate the stock setups can build them manually or launch excel for the spreadsheet tool. The stock setups would be stored and retrieved by full path name (directory and filename). The stock setups would be application dependent. The application developers would be responsible for installing and maintaining the stock setups. For instance, there may be a stock setup to create a bad pixel map. There would be an event for collecting a number of dark frames, then the two events as sets of light frames at the low and high MA settings. This would be the stock setup. The application might read in the stock setup and change the number of light frames to collect at each of the MA settings. (Or change whatever it wished to). It is just that most of the settings are in place and only a minor change would be made and then the DLL call is made to generate the coff file.
At the time of the beta release of the PCDas acquisition DLL, the PCDas Tool Spreadsheet only contained the algorithms for the Mammo panels. It is hoped that the algorithms for the Cardiac and Rad panels will be added later.
5.2.4.54.2
DCOM Interface for Coff File Generation from CSV Files Is Available for C/C++ Applications Only

Because the coff file information from CSV files is being passed as a structure, the DCOM interface for the DLL has to be done as a non-oleautomation interface. This means that only clients written in C or C++ can access this interface. This interface is called DFNCardC. Another interface to the DLL, called DFNCard, is oleautomation compliant. This means that the DLL can be accessed from any language (visual basic, perl, java, C, C++, web languages etc). However, the DFNCard oleautomation compliant interface cannot pass structures, so the implementation of the coff file generation is not available through the DFNCard interface
If it becomes necessary that other language based applications want to have the coff file generation from CSV files incorporated into the DFNCard oleautomation interface, the coff file information can be passed in as a SAFEARRAY of VARIANTS. This type of information passing is very complicated to implement and it is also difficult for the application programmers to use. It would take at least 2-3 weeks to implement this oleautomation compliant capability. We will not add this capability now, since the applications in the near future will be in C/C++.
5.2.4.54.3
Coff File Generation Data Structures for CSV files

The data structures used to contain all of the information used for coff file generation are described below. The structures are contained within the type library of the DLL which is imported into the client application. The structure contains the data from the csv file defining the configuration (for instance, a csv file from the PC Das Tool spreadsheet). The structure contents has each value tagged with a status as unspecified, default, stock_setup or application_setup. Any item which is unspecified, will not be output for coff file generation.
The tOneEvent structure defines a single event. An event is a series of images that are acquired using the same set of detector and xray parameters. A coff file can contain several events. A structure to define a single event for the DLL is shown below. Note that the COFF file does not get the x-ray parameters themselves, only the x-ray timing parameters. The application has to take care of sending the x-ray parameters of KV, MA etc to whatever X-ray interface the application is maintaining. The x-ray parameters are written in the CSV file, but the tool to generate the coff file will ignore them. In the same way, the display and archive parameters are not put into the generated coff file, but they will be saved in the CSV file. The application has to handle the archive and display parameters on its own.
The structures are defined in an include file within the dll called CoffCsv.h, which may be used for reference. A copy of this include file follows:
#if !defined(__COFFCSV_H__)

#define __COFFCSV_H__

// an enumerated type for keeping track of parameter status

typedef enum eParams{

DFN_UNSPECIFIED = 0x00000000,

DFN_DEFAULT = 0x00000001,

DFN_STOCKSETUP = 0x00000002,

DFN_APPSETUP = 0x00000004

}eParamStatus;

// a structure to hold one unsigned long value and its status

typedef struct tUlongp{

ULONG

ulVal;

eParamStatus
status;

} tUlongParam;

// a structure to hold one floating point value and its status

typedef struct tFloatp{

float

fVal;

eParamStatus
status;

} tFloatParam;

// a structure to hold one double value and its status

typedef struct tDoublep{

double

dVal;

eParamStatus
status;

}tDoubleParam;

// structure containing all parameters for a single event

typedef struct tOneE{

 // Detector Parameters

// Main Voltages

tUlongParam RowEnable;

// 0 = off, 1 = on

tFloatParam
ScanOffVoltage;

// -5.0 to -17.5 volts

tFloatParam
ScanOnVoltage;

// 5.0 to 16.0 volts

tFloatParam
CommonElec1;

// -1.0 to -16.0 volts

// Arc Settings

tUlongParam
FeedbackCapacitor;
// 1 to 4

tUlongParam
PostIntegratorGain;
// 1 to 4

tUlongParam
Bandwidth;

// 0 to 1

// Readout / Ramps

tUlongParam
TimingMode;

// 0 to 3

tUlongParam
RampOrLUT;

// 0 to 7

// Timing

tUlongParam
MsBetweenFrames;
// 8 to 16000ms

tUlongParam
UsBetweenFrames;
// 0 to 999 usecs

tUlongParam
TriggerXrays;

// 0=off , 1=on

tUlongParam
MsDelayXrayTrigger;
// 0 to ? ms

// Number of Frames for this event

tUlongParam
FramesInEvent;

// 0 to ?

// Display Parameters

// These are sometimes entered as 0 or X or 1

CHAR

cpRaw[16];

 // 0=false, anything else = true

CHAR

cpOffsetCorrected[16];
 // 0=false, anything else = true

CHAR

cpGainCorrected[16];
 // 0=false, anything else = true

CHAR

cpBadPixelCorrected[16]; // 0=false, anything else = true

CHAR

cpDisplayLoop[16]; // 0=false, anything else = true

// Archive Parameters

// Frame type is combination (see table below) of

//

TriggerXrays.ulVal & ArchiveSharedHostRam.ulVal

CHAR

cpArchiveSharedHostRAM[16]; // 0=no, 1 = yes

CHAR

cpArchiveHardDisk[16];

// 0=false, anything else = true

CHAR

cpSaveAsOffsetCal[16];

// 0=false, anything else = true

CHAR

cpSaveAsGainCal[16];

// 0=false, anything else = true

// Other Detector Parameters

tFloatParam
ArcReference;

// reference voltage

tFloatParam
ScanCompensation;
// compensation voltage

tFloatParam
CommonElec2;

tUlongParam
CESelect;

tFloatParam
PanelReadTimeMs;

tFloatParam
PanelXrayWindowMs;

tFloatParam
PanelFrameTimeMs;

tFloatParam
PanelFpsTime;

tFloatParam
PanelTotalTimeSec;

tUlongParam
RowsReadout;

// 1,2,16,32

tUlongParam
RowLongOrShort;
// row length short = 0,long =1

tUlongParam
RightRowTriState;
// 0,1

tUlongParam
LeftRowTriState;
// 0,1

tUlongParam
DigitalTestSelect; // 1..8

tUlongParam
AnalogTestSelect;
// 1..16

tUlongParam
AnalogTestSource; // 1..16

tUlongParam
DRCColumnSum;

// 0,1

tUlongParam
CompLongShort;

// Compensation long=1 or short=0

tUlongParam
CommonVoltageSelect; // 0,1

tUlongParam
CompensationEnable; //0=off,1=on

// X-Ray Parameters

CHAR

cpTarget[16];

CHAR

cpFilter[16];

CHAR

cpFocalSpot[16];

tFloatParam
Kvp;

tFloatParam
Mas;

tFloatParam
Ma;

tDoubleParam
PulseWidthMs;

CHAR

cpExternalFilter[16];

CHAR

cpXrayMode[16];

// rad or fluro

}tOneEvent;

// CoffEvents Structure for All Events and other single parameters for Coff File Generation

typedef struct tCoffE{

CHAR
cpCoffFileName[128];

CHAR
cpDescription[128];

// description of coff file

CHAR
cpVersion[16];

// version

CHAR
cpAddComment0[128];

// additional comment space

CHAR
cpAddComment1[128];

// additional comment space

CHAR
cpAddComment2[128];

// additional comment space

CHAR
cpAddComment3[128];

// additional comment space

CHAR
cpAddComment4[128];

// additional comment space

CHAR
cpAddComment5[128];

// additional comment space

CHAR
cpAddComment6[128];

// additional comment space

CHAR
cpAddComment7[128];

// additional comment space

CHAR
cpAddComment8[128];

// additional comment space

CHAR
cpAddComment9[128];

// additional comment space

CHAR
cpDetectorType[16];

// Ap20, Mam, Ap40,etc

CHAR
cpFirmware[16];

// (H2.0,H2.1); (3.4d,3.6),

// (X1,X2,X3),etc

CHAR

cpArc[16];

// 3c, 4, etc

tUlongParam
Rows;

// number of pixel rows in panel

tUlongParam
Columns;

// number of pixel columns in panel

tUlongParam
 Pitch;

// panel pitch microns per pixel

CHAR

cpXRayType[16];
// DMR,etc.

tUlongParam
DisplayROIStartRow;

tUlongParam
DisplayROIStartColumn;

tUlongParam
DisplayROINumRows;

tUlongParam
DisplayROINumCols;

tUlongParam
ArchiveROIStartRow;

tUlongParam
ArchiveROIStartColumn;

tUlongParam
ArchiveROINumRows;

tUlongParam
ArchiveROINumCols;

tDoubleParam Latency;

// latency

tDoubleParam Margin;

// margin

ULONG NumEvents;

// number of events defined

tOneEvent *sTheEvents;

// array of OneEvent events

}tCoffEvents;

#endif

The frame type for an event is defined by the combination of two of the parameters: TriggerXrays.ulVal and ArchiveSharedHostRam.ulVal, according to the following table:
	FrameType
	TriggerXrays
	ArchiveSharedHostRam

	Light_frame
	Yes
	Yes

	Dummy_light_frame
	Yes

	No

	Dark_frame
	No
	Yes

	Scrub_frame
	No
	No

5.2.4.54.4
PC DasDLL Functions for Coff File Generation from CSV files

The DLL routines necessary to accomplish dynamic coff file generation from within an application are described below.
Memory for the tCoffEvents structure, including the array of OneEvents, must be allocated by the application before it is used in a DLL call.
5.2.4.54.4.1
DFNGetCoffGenStockSize (IDFNCardC only)

The DFNGetCoffGenStockSize looks at a named csv file and returns the number of events it contains. If the application wants to add a scrub event, then the number of events returned is incremented by one.
DFN_STATUS DFNGetCoffGenStockSize(
CHAR * cpStockNameNPath,
ULONG ulAddScrubFlag,
ULONG * pulNumEvents
)
Parameters:
cpStockNameNPath is the full path name and filename of the CSV file containing the stock setup or stock default
ulAddScrubFlag ,if true then the size returned will leave room for a first event characterized as a scrub event that the application will add. If false, then no additional space is calculated for the scrub event. This would always be false for stock defaults.
pulNumEvents is the pointer to the number of events in the stock setup (incremented by 1 if the scrub flag is true)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks
In order for an application to retrieve a stock setup structure, it has to know the size so that memory can be allocated before making the DFNGetStockSetup call. The DLL will return the number of events that must be allocated by the application for a tCoffEvents structure. Note that this stock may either be one of the stock setups or the stock defaults.
The example (in C) below shows how memory could be allocated for the coff file structure once the number of events is known:
#include <malloc.h>

tCoffEvents * CEvents; // coff file events structure pointer

ULONG ulNumEvents; // number of events in the coff file events structure

if ((CEvents = (tCoffEvents *)malloc(sizeof(tCoffEvents))) = = NULL)

{

printf("ERROR: cannot malloc event structure\n");

exit(1); // error exit

}

if ((CEvents->sTheEvents = (tOneEvent*)malloc(sizeof(tOneEvent) * ulNumEvents) = = NULL)

{

printf("Error cannot malloc oneevent structure\n");

free(CEvents);

exit(1); // error exit

}

// <program code goes here>

//Both memory allocations must be freed before exiting the program in the proper order:

free(Cevents->sTheEvents);

free(Cevents);
An application does not have to use a stock setup or defaults, but it makes the process easier. The stock setups or stock defaults can be set up in the PC Das tool spreadsheet and saved as a csv (comma separated variable) file. We can pick up these stock files here and modify them. It is up to the application to make the appropriate modifications.
An application that is not using a stock setup would still allocate memory as in the example above, for the number of events it wishes to do.
See Also: DFNGetCoffGenDefaults, DFNGetCoffGenStockSetup, DFNInitCoffGenStructure
 5.2.4.54.4.2 DFNInitCoffGenStructure (IDFNCardC only)

The DFNInitCoffGenStructure will initialize the contents of the structure passed in to unspecified for the number of events in the structure.
DFN_STATUS
DFNInitCoffGenStructure(

ULONG ulNumEvents,

struct tCoffE * spEvents

)

Parameters:

ulNumEvents

is the number of events contained in the tCoffEvents structure

spEvents

is the pointer to the coff file events structure to be initialized to empty

(the application has already allocated the memory for struct tCoffE)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
If the application is building it’s own events structure, ie not reading in a default setup or a stock setup, then it may want to call this routine to initialize the structure to empty. The regular character strings are set to eos (end of string) for the first character. The character strings that are flags such as cpBadPixelCorrected are initialized with the character numerical zero followed by the eos (for false). All of the status flags for ULONG, float and double parameters are set to DFN_UNSPECIFIED.
If the application is reading in a stock setup, then this routine is called internally when the DFNGetCoffGenStockDefaults or DFNCoffGenGetStockSetup routine is called.
Note that we do not use the alias tCoffEvents for the struct tCoffE in the call, because the DCOM interface does not recognize the alias.
See Also:
DFNGetCoffGenStockDefaults, DFNGetCoffGenStockSetup
5.2.4.54.4.3 DFNGetCoffGenStockDefaults (IDFNCardC only)

The DFNGetCoffGenStockDefaults routine allows an application to read in the contents of a csv file and designate the contents as default parameters.
DFN_STATUS
DFNGetCoffGenStockDefaults(
CHAR * cpStockNameNPath,
struct tCoffE * spStockEvents
)
Parameters:

cpStockNameNPath
is the full path name and filename of the CSV file containing the stock
 defaults.

spStockEvents

is the pointer to the application’s tCoffEvents structure filled in from
 the stock defaults file

(the application has already allocated the memory for struct tCoffE)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The DLL will read the CSV file specified and fill in the tCoffE file structure. Any parameters of the tOneEvent embedded structure array or the tCoffE structure that are missing from the CSV file will have their status set to DFN_UNSPECIFIED. The rest of the specified parameters would have their status set to DFN_DEFAULT. It would be up the responsibility of the application to change parameters that it wishes to in the tCoffE structure, and to change the status to either DFN_UNSPECIFIED if it is removing a parameter, or to DFN_APPSETUP if it is entering a parameter value.
It is also the responsibility of the application to define the defaults and organize them in the CSV files . Perhaps the application will set up one CSV file to hold all of the defaults for the application and manage which event is for which default set itself (such as the first event would be the default for dark frames, the second event would be the default for a certain type of light frame etc). Or the application may keep defaults for frame types in separate CSV files. The application developers make the decision on how to store the defaults.
This function could be called at any time during acquisition setup by the application. This function will not generate a Coff file nor download anything to the DFN card's EAB memory.
The application is responsible for allocating the memory for the tCoffE structure.
The application can get the default sets of parameters and then build the series of events for a coff file generation, only changing those default parameters that it wishes to. The series of events for a coff file generation would be stored in another tCoffE structure.
In the future, it may be that the detector type, firmware revision number and arc chip revision number can be read from the DFN card installed, so that we would not have to input those values. This functionallity is not available yet.
See Also:
DFNGetCoffGenStockSetup
5.2.4.54.4.4
DFNGetCoffGenStockSetup (IDFNCardC only)

The DFNGetCoffGenStockSetup routine allows an application to read in the contents of a csv file and designate the contents as stocksetup parameters. It also allows the application to ask for space to be left for the first event to be a scrub frame, which the application will add.
DFN_STATUS DFNGetCoffGenStockSetup(
CHAR * cpStockNameNPath,
ULONG ulAddScrubFlag,
struct tCoffE * spStockEvents
)
Parameters:

cpStockNameNPath
is the full path name and filename of the CSV file containing the stock
setup.
UlAddScrubFlag

is the flag for returning the stock setup with the first event with empty
space to add the scrub event. (true 1L to make the scrub room, 0L for
 no scrub room)

spStockEvents

is the pointer to the application’s tCoffE structure filled in from
 the stock setup file

(the application has already allocated the memory for tCoffE)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The DLL will read the CSV file specified and fill in the tCoffE file structure. Any parameters of the tOneEvent embedded structure that are missing from the CSV file will have their status set to DFN_UNSPECIFIED. The rest of the specified parameters would have their status set to DFN_STOCKSETUP. It would be up the responsibility of the application to change parameters that it wishes to in the tCoffEvents structure, and to change the status to either DFN_UNSPECIFIED if it is removing a parameter, or to DFN_APPSETUP if it is entering a parameter value.
If the ulAddScrubFlag is specified, then the structure will have all the events shifted over so that the first event can be filled in with scrub parameters by the application. The scrub parameters may be filled in with default scrub parameters if the application has maintained default scrub parameters. The application may have stock setups that already include scrub events. Use the AddScrubFlag only if you are adding space to hold the scrub event. The application has to fill in the scrub event parameters itself, perhaps by using the information from a default scrub setup.
See Also:
DFNGetCoffGenStockDefaults
5.2.4.54.4.5
DFNGenerateCoffFile (IDFNCardC only)

The DFNGenerateCoffFile routine takes the contents of the tCoffE structure and outputs a csv file. This csv file is used as input to the PC Das Tool Translator which in turn outputs a pair of perl scripts. The main perl script is run using the other perl script and the Event Compiler routines to generate the coff file.
DFN_STATUS DFNGenerateCoffFile(
CHAR * cpCSVNameNPath,
CHAR * cpPerlPath,
CHAR * cpCoffPath,
CHAR * cpCoffBaseName,
struct tCoffE *spCoffFileEvents,
ULONG ulOverWriteFlag
)
Parameters:
cpCSVNameNPath
is the path and name of the csv file to be written. The extension should be .csv.
cpPerlPath
is the path where the perl library is installed. The path name should end with a slash. This path is known within perl as @INC.

cpCoffPath

is the path for output where the coff file will be stored, along with any
intermediate perl scripts used to generate it. This path name should end with a slash.
cpCoffBaseName
is the base name with no extension for the coff file name. The intermediate perl scripts will also use this base name.
spCoffFileEvents
is the pointer to the structure containing all the information necessary to

generate the coff file.

ulOverWriteFlag

is a flag to overwrite a coff file if it already exists (0L = false,
1L = true)
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

If the application was building the coff file information from scratch, it would build up an array of tOneEvent structures. The application would start with the default parameters and change the ones that need to be changed for the particular application, and then store the modified tOneEvent structure as one of the events to be generated in the Coff file.
If the application was building the coff file information from a stock setup, it would request the size of the stock setup(with or without scrub space), allocate memory and then request the stock setup by name(with or without the scrub space). The application would then modify whatever pieces of the tCoffE structure that it wished to, adding the scrub event if it needed to, and update the status of the parameters appropriately. Then the application would make this DFNGenerateCoffFile and pass in the tCoffE structure.
The name of the coff file is stored in the spCoffFileEvents structure. However, the application can specify all the input and output names and paths in this call. It is up to the application to be consistent (or not) with the name stored in the events structure and the cpCoffBaseName. The comma separated variable file generated will have the name specified in the call, coff file generated will have the base name with a .bin extension, while the intermediate perl scripts will have the base name and the base name with additional characters (_test) with .pm extensions. The coff file and intermediate perl scripts will be placed in the cpCoffPath directory. If a coff file of the same name exists and the ulOverWriteFlag has been set to false (0L), then an error will be returned and the new coff file will not be generated. If the ulOverWriteFlag is true (1L), then the new coff file will be generated, overwriting any file of the same name, if it exists. The user should not overwrite the stock setup files. Perhaps these stock setups could be maintained as read-only files.
Note that for each coff file generated with this method, a CSV file of the same base name, but with a .csv extension will be written. The coff file will have a .bin extension and an additional file which is in text format has a .txt extension.
The application is responsible for allocating memory for the spCoffFileEvents structure, whether building from scratch or using a stock setup. When building from a stock setup, the application can request the size to allocate in bytes from the DLL. The application is also responsible for freeing the allocated memory.
When the DFNGenerateCoffFIle routine is called, it uses the tCoffE structure to write a CSV file (the coff file name except with a csv extension). The PC das Tool would then be generated to create intermediate files (a pair of perl scripts) and finally the event compiler is run to produce the coff file.
Once a coff file has been successfully generated, it will be stored on the hard drive of the computer containing the DFN card. The coff file is then ready to be loaded and used (other DLL routines are used for loading the coff file by name and starting the acquisition sequence).

The perl path may be similar to "perl\\site\\lib\\". Note that the path must end with a slash.
This function does not download anything to the DFN card, i.e. it does not write anything to EAB memory.
Note that the stock setups are easily generated from the PC Das Tool spreadsheet tool.
See Also:
DFNLoadEvents
5.2.4.54.4.6
Client Example using the Coff Generation Routines

The following example in C shows how the coff file can be generated from within a client application.
// client_app.cpp
#include "stdafx.h" // precompiled header must be first of the includes

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

#include <atlbase.h>

#include <conio.h>

#include <io.h>

#include <malloc.h>

#import "..\dasdll\dasdll.tlb"
// dasdll type library

using namespace DASDLLLib;

#include <fcntl.h>

#include <sys/types.h>

#include <io.h>

#include <sys/stat.h>

int main(int argc, TCHAR** argv)

{

HRESULT hr;

// DFN_STATUS returned from DLL calls

struct tCoffE * CEvents;

// coff generation structure

ULONG ulNumEvents;

// number of events in a coff generation structure

int ierr;

// error code

CEvents = NULL;

ulNumEvents = 0L;

ierr = 0;

// initialize the COM interface

hr = CoInitialize(NULL);

if (FAILED(hr))

{

ierr = 2;

return(ierr); // bail out

}

// gain access to the DFN card interface instance using the smart pointer pDFN

IDFNCardCPtr pDFN(__uuidof(DFNCardC)); // non-automation interface

if (pDFN != NULL)

{

// The DFN card interface supports error reporting.

// Any errors will be reported through the COM interface

// error handling mechanism. All we need to do here is

// catch any errors to complete the mechanism.

try

{

pDFN->DFNOpenSystem(); // open the device driver

 // get the size of the stock file

pDFN->DFNGetCoffGenStockSize("d:\\pcdas\\coffgen\\ap20.csv",0L,

&ulNumEvents);

// malloc the structure to hold the stock file with its events array

if ((CEvents = (struct tCoffE *)malloc(sizeof(struct tCoffE))) = = NULL)

{

_tprintf(_T("ERROR: cannot malloc event structure\n"));

goto BAILOUT;

}

if ((CEvents->sTheEvents = (tOneEvent*)malloc(

 sizeof(tOneEvent) * ulNumEvents)) = = NULL)

{

_tprintf(_T(

 "Cannot malloc oneevent structure for numEvents = %lu\n"),

ulNumEvents);

free(CEvents);

CEvents = NULL;

goto BAILOUT;

}

// test initializing the structure even though this is not really necessary

// here since the structure will be initialized in DFNGetCoffGenStockSetup

pDFN->DFNInitCoffGenStructure(ulNumEvents,CEvents);

// read in the stock setup from the csv file

pDFN->DFNGetCoffGenStockSetup(

"d:\\pcdas\\coffgen\\ap20.csv",0L,CEvents);

_tprintf(_T("name: %s\n"),CEvents->cpCoffFileName);

// HERE is where we would modify any of the parameters that we wanted to

// write out a new csv file, generate perl scrip & coff file

// overwrite the csv file if it exists. The new coff file will have the base name

// with .bin . Here the new coff file would be called ap20new.bin

pDFN->DFNGenerateCoffFile("d:\\pcdas\\coffgen\\ap20new.csv",

"d:\\perl\\site\lib\\","d:\\pcdas\\coffgen\\","ap20new",CEvents,1L);

// make use of the new coff file -- load events -- or set up a sequence

pDFN->DFNLoadEvents("d:\\pcdas\\coffgen\\ap20new.bin");

// other useful code would be here

pDFN->DFNCloseSystem(); // close the device driver

} // end try block

catch(_com_error e)

{

_tprintf(_T("ERROR (%08x) in %s: ") _T(" %s\n"), e.Error(),

(LPCSTR)e.Source(), (LPCSTR)e.Description());

// try to leave with the system closed -- may not be able to

pDFN->DFNCloseSystem();

ierr = 1;

}// end catch block

}// end if pDFN != NULL

BAILOUT:

if (CEvents != NULL)

{

if (CEvents->sTheEvents != NULL)free(CEvents->sTheEvents);

free(CEvents);

}

if (pDFN != NULL)

{

pDFN.Release(); //force the destructor to be called now

}

CoUninitialize(); // close the COM interface

return ierr;

}

 5.2.4.54.4.7 Necessary Supporting Software for Coff File Generation from CSV

In order to dynamically generate coff files from CSV files, the following software must be installed on the system with the DLL and DFN driver. The paths for the supporting software must be appropriately set.
· perl (background at http://www.perl.com, but download ActivePerl which contains Win32 perl plus perl script from www.ActiveState.com/Products/ActivePerl)
· grep.exe for NT (download from http://www.eos.ncsu.edu/eos/info/ie/ie_info/.install.i386_nt35/bin/)
· translator.pm
 (developed by Kate Dudding at GECRD)
· the event compiler library of perl modules (developed by Greg Denault at GECRD) The event compiler modules (event.pm, util1.pm and frm.pm) must be installed in perl's @INC path. Perhaps the \perl\site\lib directory would be an appropriate place.
· Microsoft Excel and the PCDas Tool Spreadsheet (developed by Doug Albabli at GECRD) if you want to generate the default and stock setup csv files.
Perl is used to run the translator and the event compiler. Grep is used to check for errors output from the translator.
5.2.4.55
DASDLL Functions for Coff File Generation Directly From Perl Scripts

For application developers who do not want to use the PC Das Tool Spreadsheet to generate a CSV file and make use of the PC Das Tool Translator to produce a perl script, the application can input it's own perl script to the DLL to generate a coff file. There are two routines in the DLL to accomplish coff file generation directly from a perl script. The first routine would be used when the application and the DLL reside on the same machine. The second routine would be used when the application is running on a remote host and the DLL is running on a DCOM server. Since these routines do not pass structures, they are available from both the IDFNCard and IDFNCardC interfaces.
5.2.4.55.1
DFNGenCoffFromPerlScriptFile

The DFNGenCoffFromPerlScriptFile is used to generate a coff file directly from a perl script when the application and the DLL reside on the same machine.
DFN_SUCCESS
DFNGenCoffFromPerlScriptFile(
CHAR * cpPerlScriptNameNPath
);
Parameters:
cpPerlScriptNameNPath
is the name and path of the perl script file. The filename will probably have a .pm extension. The path name should have backward slashes.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The routine will run the event compiler using the perl script. The output is a coff file which is written to the same location as the perl script, but with a .bin extension. A text file representation of the coff file is also written with a .txt extension.
If the coff file to be generated already exists, a copy of the coff file is saved with the same name but with a timestamp extension. The timestamp is the number of seconds since 01-01-1970.
This routine will not download the coff file to the DFN board or write anything to EAB memory.
To run the event compiler manually, the command is simply "perl PerlScriptNameNPath.pm" where the perl script has the appropriate name and path.
See the necessary software section below for perl references and proper path installation for the event compiler. The event compiler is itself a collection of two perl scripts.
See Also:
DFNLoadEvents, DFNGenCoffFromPerlScript,DFNGenCoffFileFromPerlScriptNoCopy
5.2.4.55.2
DFNGenCoffFromPerlScript

The DFNGenCoffFromPerlScript routine takes a buffer containing the perl script, along with the number of bytes in the buffer, writes the perl script file to the designated name and path and then runs the event compiler to generate the coff file. This routine is used when the application resides on a remote host.
DFN_STATUS
DFNGenCoffFromPerlScript(
CHAR *cpPerlScript,
ULONG ulNumBytes,
CHAR * cpNameNPath
);
Parameters:

cpPerlScript
is the buffer containing the perl script text to be written on the server machine

ulNumBytes
is the number of bytes in the perl script to be written

cpNameNPath
is the filename and path on the server machine where the perl script will be
written. The filename will probably have a .pm extension.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The perl script buffer is written to the designated filename and path on the server machine where the DLL resides.
The routine will run the event compiler using the perl script. The output is a coff file which is written to the same location as the perl script, but with a .bin extension. A text file representation of the coff file is also written with a .txt extension.
This routine will not download the coff file to the DFN board or write anything to EAB memory.
See Also:
DFNLoadEvents, DFNGenCoffFromPerlScriptFile
5.2.4.55.3
Necessary Supporting Software for Coff File Generation from Perl Scripts

In order to dynamically generate coff files directly from perl scripts, the following software must be installed on the system with the DLL and DFN driver. The paths for the supporting software must be appropriately set.
· perl (background at http://www.perl.com, but download ActivePerl which contains Win32 perl plus perl script from www.ActiveState.com/Products/ActivePerl)
· the event compiler library of perl modules (developed by Greg Denault at GECRD) The event compiler modules (event.pm, util1.pm and frm.pm) must be installed in perl's @INC path. Perhaps the \perl\site\lib directory would be an appropriate place.
5.2.4.55.4
DFNGetCoffFromPerlScriptFileNoCopy

The DFNGenCoffFromPerlScriptFileNoCopy is used to generate a coff file directly from a perl script when the application and the DLL reside on the same machine. If a coff file of the same name exists, no copy is saved.
DFN_SUCCESS
DFNGenCoffFromPerlScriptFileNoCopy(
CHAR * cpPerlScriptNameNPath
);
Parameters:
cpPerlScriptNameNPath
is the name and path of the perl script file. The filename will probably have a .pm extension. The path name should have backward slashes.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The routine will run the event compiler using the perl script. The output is a coff file, which is written to the same location as the perl script, but with a .bin extension. A text file representation of the coff file is also written with a .txt extension.
If the coff file to be generated already exists, a copy of the coff file is NOT saved. Use DFNGenCoffFromPerlScriptFile if you want a copy of the old coff file to be saved..
This routine will not download the coff file to the DFN board or write anything to EAB memory.
To run the event compiler manually, the command is simply "perl PerlScriptNameNPath.pm" where the perl script has the appropriate name and path.
See the necessary software section above for perl references and proper path installation for the event compiler. The event compiler is itself a collection of two perl scripts.
See Also:
DFNLoadEvents, DFNGenCoffFromPerlScript,DFNGenCoffFileFromPerlScript
5.2.4.56
DFNGetResponseLogOfRunningSequence

The DFNGetResponseLogOfRunningSequence function retrieves up to a specified buffer length of bytes of the response log stored in memory for a sequence which may still be in progress. The function returns what has been read from the driver so far, beginning at the starting byte offset.
DFN_STATUS
GetResponseLogOfRunningSequence(
long lSequenceNum,

// [in] sequence id number input
ULONG ulStartingByteOffset,

// [in] byte offset into response log to start transfer
ULONG ulLengthBuffer,

// [in] byte length of the RLBuffer
ULONG *pulBytesWritten,

// [out] pointer to number of bytes returned in RLBuffer
UCHAR *ucpRLBuffer

// [out] bytes of response log returned
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulStartingByteOffset is the unsigned long starting byte offset into the response logs stored for the frame.
The ulLengthBuffer is the unsigned long size of the response log buffer to be returned.
The pulBytesWritten is the unsigned long pointer containing the number of bytes actually written to the response log buffer.
The ucpRLBuffer is the unsigned char pointer to the response log buffer to be written.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each response log entry will contain 32 bytes. The resource log buffer should be allocated with a size which is a multiple of 32 bytes.
This routine is similar to DFNGetResponseLogForSequence, but allows access to the response log while the acquisition sequence or chitchat sequence is in progress. The routine would also work for completed sequences. The routine differs from DFNGetResponseLogForSequence in that no error is returned if there are no response logs for a sequence yet, or if the application asks for a byte offset beyond what has been collected.
The DFNGetResponseLogSizeForSequence function cannot be used for a sequence that has not completed.
.The DFNGetResponseLogOfRunningSequence function can make a series of calls with a buffer large enough to hold several response log entries and by using the bumping starting byte offset. It is not known how large the response log is before making the call. When the routine returns less than the maximum requested, the user knows he has reached the end.
To get the latest entries of response log the application could make the call to have the driver return the partially filled response log buffer with DFNForceRLBufferFlip; otherwise the response log buffer is not returned by the driver during a running sequence until the buffer is full. Of course, the application should not be flipping buffers too frequently.
The application cannot obtain the response log parsed by frame number (using DFNGetResponseLogForFrame) until the sequence has completed. The application would have to parse the raw response logs itself.
The DFNGetResponseLogForSequence and DFNGetResponseLogForRunningSequence functions are the only way to retrieve response logs gathered during a chitchat session.
See Also:
DFNGetResponseLogForSequence, DFNForceRLBufferFlip
5.2.4.57
DFNForceRLBufferFlip

The DFNForceRLBufferFlip routine tells the drive to flip the response log buffer. If the DLL has an outstanding read on the response log for an active sequence, then the partially filled response log buffer is returned.
DFN_STATUS
DFNForceRLBufferFlip();
Parameters:
NONE
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is begun, the driver automatically flips the response log buffer and discards any response log entries in the old buffer because there are no outstanding response log reads.
The application does not have to make any buffer flip calls unless it wishes to obtain response log entries from an active running sequence in conjunction with calls to access the raw response log with DFNGetResponseLogOfRunningSequence.
The driver has two buffers that it fills with response logs. The driver can be filling one response log while the DLL is processing the filled one. The assumption is made that the DLL processing will be faster than the driver filling. The DLL stores the response logs in memory that it reads from the driver, and does not do any parsing of the response log until the sequence has completed. The application could cause a problem with too frequent response log buffer flipping if the DLL does not have time to store the response log to free the buffer for re-use.
See Also:
DFNGetResponseLogOfRunningSequence
5.2.4.58
DFNIsReorderModeSet

The DFNIsReorderModeSet function will query the driver for the present reorder setting. The NT registry for the DFN driver sets a default reorder mode. The application can over-ride this setting by using DFNImageReorder. This function returns the current reorder setting whether it is the default or has been set by the DFNImageReorder call. Image reorder sets the order that the image is read from the detector panel. An application usually wants the image to appear in raster format.
DFN_STATUS
DFNIsReorderModeSet (
long lSequenceNum,
long * pboolReorder
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The pboolReorder is a pointer to a boolean. If the Reorder mode is set, this flag will be returned true (1L); otherwise this flag is returned false (0L);

Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is allocated, its images will be reordered or not based on the default set in the registry (see DFN Device Driver Registry Keys, Default Parameters, Frame, ReorderImage). This setting may be overridden by an application by using DFNImageReorder after the sequence is allocated, but before acquisition begins. The flag that is returned by the DFNIsReorderModeSet reflects the current setting.
Some types of detector panels are not normally read in raster form (for example, the cardiac panel and the rad panel). When the data is transferred from the DFN card to the NT-PC host memory, it can be reordered into raster form. Setting the reorder mode tells the DFN card to do the reordering. Other types of panels (for example, the mammography panel) are normally read out in raster form and therefore do not need reordering. It is the applications responsibility to properly set the reordering mode for the panel in use.
Note that setting reorder does not mean raster mode. Whether the output is in raster mode depends upon the panel type and whether or not applying the reorder algorithm will result in raster format. Setting reorder mode only means that the reorder algorithm is applied.
Reordering images for a sequence only applies when the images are acquired. The reorder mode does not apply to sequences read in from an archive, or a sequence that is in playback mode.
See Also:
DFNImageReorder
5.2.4.59
DFNImageReorder

The DFNImageReorder function will allow an application to override the present reorder setting for a sequence that has been allocated, but not yet acquired. The NT registry for the DFN driver sets a default reorder mode. Image reorder sets the order that the image is read from the detector panel. An application usually wants the image to appear in raster format.
DFN_STATUS
DFNImageReorder (
long lSequenceNum,
ULONG ulReorderFlag
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulReorderFlag is a flag for which way to set the reorder mode. If the Reorder mode is to be set, this flag should be input as 1L; otherwise, to unset the reorder mode, this flag is input as 0L;

Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is allocated, its images will be reordered or not based on the default set in the registry (see DFN Device Driver Registry Keys, Default Parameters, Frame, ReorderImage). This setting may be overridden by an application by using DFNImageReorder after the sequence is allocated, but before acquisition begins. The DFN card must be in diagnostic mode when this command is received. DFNImageReorder will place the card in diagnostic mode if it is not already in diagnostic mode. The flag may be queried by the DFNIsReorderModeSet function.
Some types of detector panels are not normally read in raster form (for example, the cardiac panel and the rad panel). When the data is transferred from the DFN card to the NT-PC host memory, it can be reordered into raster form. Setting the reorder mode tells the DFN card to do the reordering. Other types of panels (for example, the mammography panel) are normally read out in raster form and therefore do not need reordering. It is the applications responsibility to properly set the reordering mode for the panel in use.
Note that setting reorder does not mean raster mode. Whether the output is in raster mode depends upon the panel type and whether or not applying the reorder algorithm will result in raster format. Setting reorder mode only means that the reorder algorithm is applied.
Reordering images for a sequence only applies when the images are acquired. The reorder mode does not apply to sequences read in from an archive, or a sequence that is in playback mode.
For applications that only use one type of panel, the default reorder setting in the driver should be set for the panel type in use.
See Also:
DFNIsReorderModeSet
5.2.4.60
DFNWaitTimeoutForSystemIdle

The DFNWaitTimeoutForSystemIdle routine is meant to be used after an acquisition begin sequence is called (with or without mapping), to block until the sequence is complete or the wait times out before calling DFNCloseSequence.
DFN_STATUS DFNWaitTimeoutForSystemIdle(
DWORD dwTimeoutMs,
long * boolIsTimedOut
);
Parameters:

The dwTimeoutMs is the number of milliseconds to wait before timing this function out.
The boolIsTimedOut is a flag that is returned false if the wait terminated because of sequence acquisition completion. The flag is returned true if the function timed out using the input dwTimeoutMs.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error. Note that timeout is not an error.
Remarks:
Without the DFNWaitTimeoutForSystemIdle routine, there is no way, except for guessing, to know how long to wait before closing the sequence. Even when the acquisition is begun with DFNBeginSequence, the images are retrieved with DFNGetNextFrame which block until each frame is available; thus in that case, the user knows, by retrieving the last frame, that the sequence has completed acquisition, but he still does not know when the system has gone back to the idle state. If the user does not wait for the system to become idle, and issues the close sequence command prematurely, then the system will try to abort the sequence.
While waiting, the routine checks that the thread monitoring the sequence acquisition has not died, and is reporting no error. The routine waits awhile for the system to be in a non-idle mode and then transition to idle mode. If the routine does not see the transition in a reasonable amount of time with no errors reported but finds it stuck in idle mode, then the routine gives up and unblocks (there is no error reported in this case). This function will also terminate the wait if the elapsed time exceeds the input timeout value specified.
The DFNWaitForSystemIdle does not time out, and will wait for acquisition completion, assuming that the transition from idle state to acquisition state has been seen. The problem with using the DFNWaitForSystemIdle is that the function will wait forever if the transition from acquisition mode to idle mode does not happen. Of course this would mean that there is an internal problem, but the application would be "hung". By using the DFNWaitTimeoutForSystemIdle, the application could attempt to abort the hung sequence and regain control.
The application is responsible for choosing a timeout that exceeds the expected elapsed acquisition time with a reasonable margin.
See Also:
DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoLog

DFNWaitForSystemIdle
5.2.4.61
DFNFindSequenceID

The DFNFindSequenceID will return the sequence id associated with a sequence name when the sequence was opened (or renamed).
DFN_STATUS DFNFindSequenceID(
CHAR * cpSequenceName,
long * plSequenceNum
);
Parameters:

cpSequenceName is the name of the sequence

plSequenceNum is the pointer to the long sequence id returned.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
DFNFindSequenceID finds the sequence id for any sequence that has done an open sequence but not a delete sequence. The sequence does not have to be the current sequence.
DFNGetCurrentSequenceID returns the sequence id for the sequence that is marked current.
From a sequence ID, the name can be returned by using DFNGetSequenceName.
See Also:
DFNGetCurrentSequenceID, DFNGetSequenceName
5.2.4.62
DFNResetFC

The DFNResetFC routine resets the Fibre Channel Hardware on the DFN card.
DFN_STATUS
DFNResetFC()
Parameters:
None
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:

Note: reset of the fibre channel has been disabled.

The application should call DFNResetFC prior to beginning a sequence.

For best results, the DFNSoftReset or DFNHardReset should be called as well.
See Also:
DFNSoftReset, DFNHardReset, DFNBeginSequence, DFNBeginSequenceNoMapping,

DFNBeginSequenceNoLog, DFNBeginSequenceNoMappingNoLog
5.2.4.63
DFNSetAutoscrubDelay

The DFNSetAutoscrubDelay routine sets the autoscrub frequency. The input is the delay in microseconds between scrubs.
DFN_STATUS
DFNSetAutoscrubDelay(
ULONG

ulDelayMircoSecs
);
Parameters:

The ulDelayMicroSecs is the unsigned long delay in microseconds to set.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:

The smallest delay that can be set is 2 microseconds.

For instance, for a delay of 1millisecond, input the delay as 1000 microseconds.
See Also:
DFNGetAutoscrubDelay, DFNEnableAutoscrub, DFNDisableAutoscrub
5.2.4.64
DFNGetAutoscrubDelay

The DFNGetAutoscrubDelay routine gets the autoscrub frequency currently set in the firmware. The returned value is the delay in microseconds between scrubs.
DFN_STATUS
DFNSetAutoscrubDelay(
ULONG
*
pulDelayMircoSecs
);
Parameters:

The pulDelayMicroSecs is the pointer to the unsigned long delay in microseconds.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
See Also:
DFNSetAutoscrubDelay, DFNEnableAutoscrub, DFNDisableAutoscrub
5.2.4.65
DFNEnableAutoscrub

The DFNEnableAutoscrub routine enables the autoscrub function on the DFN card. The DFN card will automatically tell the detector to scrub the panel at the autoscrub rate.
DFN_STATUS
DFNEnableAutoscrub()
Parameters:
None
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
The autoscrub rate can be set by DFNSetAutoscrubDelay, and the current rate can be queried by DFNGetAutoscrubDelay.
The autoscrub will automatically be disabled when a sequence is begun.
The autoscrub function can be disabled explicitly by calling DFNDisableAutoscrub.
See Also:
DFNGetAutoscrubDelay, DFNSetAutoscrubDelay, DFNDisableAutoscrub
5.2.4.66
DFNDisableAutoscrub

The DFNDisableAutoscrub routine will disable the autoscrub function on the DFN card. Autoscrub is the function that automatically scrubs the panel at the autoscrub rate.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
The autoscrub will automatically be disabled when a sequence is begun.
The autoscrub function can be disabled explicitly by calling DFNDisableAutoscrub. The call will block until the DFN card acknowledges that the operation of disable has completed.
See Also:
DFNGetAutoscrubDelay, DFNEnableAutoscrub, DFNSetAutoscrubDelay
5.2.4.67
DFNGetBeginSequenceTime

The DFNGetBeginSequenceTime function returns the time of beginning the sequence in seconds sincd Jan 1, 1970. This time is when an acquisition sequence or chitchat sequence was begun by requesting that the driver begin the sequence.
DFN_STATUS
DFNGetBeginSequenceTime(
long lSequenceNum,

// [in] sequence identifier
DWORD * pdwSecsSince70

// [out] pointer to the seconds since Jan 1, 1970
)
Parameters:
The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences, or negative for a chit chat sequence.
The pdwSecsSince70 is the pointer to the DWORD returned with the time in seconds since Jan 1, 1970..
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is begun, the time is captured just before the command is sent to the driver to begin the sequence. Note that the resolution on the captured time is to the nearest second.
The time stamp is Y2K compliant.
DFNBeginSequenceTimeStamp returns time as a string based on the same internal value of seconds since Jan 1, 1970.
See Also: DFNBeginSequence, DFNBeginSequenceNoLog,
 DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping,

 DFNBeginResponseLogChitChat, DFNBeginSequenceTimeStamp
5.2.4.68
DFNSetArchiveSequenceTime

The DFNSetArchiveSequenceTime function is used when loading an archive to set the original time of the archive acquisition. The original time can be preserved in this manner.
DFN_STATUS
DFNSetArchiveSequenceTime(
long lSequenceNum,

// [in] sequence identifier
DWORD dwSecsSince70

// [in] seconds since Jan 1, 1970 – sequence starting time
Parameters:
The unique sequence identifier, lSequenceNum, was returned to the user upon opening the archive sequence. The sequence number will be a number greater than or equal to zero for acquisition sequences.
The dwSecsSince70 is the DWORD containing the time in seconds since Jan 1, 1970 for the start of the acquisition sequence that was originally archived. It is assumed that the archived header would contain the time of the original sequence start.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When an original acquisition sequence is begun, the time is captured just before the command is sent to the driver to begin the sequence. Note that the resolution on the captured time is to the nearest second. This time could have been requested and stored in the output header for the archive when the sequence was archived from the original data.
This routine allows the original time to be stored with the images so that new headers formed for playback or a subsequent archive from the loaded images can preserve the original sequence starting time. Call DFNSetArchiveSequenceTime after making the DFNOpenArchiveSequence call, and before actually loading the archive by calling DFNGetNextFrame for the loading memory mapped location.
The time stamp is Y2K compliant.
DFNBeginSequenceTimeStamp returns time as a string based on the same internal value of seconds since Jan 1, 1970.
See Also: DFNBeginSequence, DFNBeginSequenceNoLog,
 DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping,

 DFNBeginResponseLogChitChat, DFNBeginSequenceTime, DFNBeginSequenceTimeStamp
5.2.4.69
DFNGetNextHostFlag

The DFNGetNextHostFlag function is used when an active acquisition expects host flags to be sent from the DFN card running a coff file which includes host flag logic for synchronization with host software. The host software would be waiting for the host flag to be set and sent. There are two types of host flags. The "notify" type of host flag tells the user program that the running coff file has reached a certain point. A notify type of host flag requires no further action from the user program. The "wait" type of host flag tells the user program that the running coff file has paused, and is waiting for the user program to send back the host flag, presumably after doing something that the coff file has been paused for. The function can specify the rate of polling for a host flag to be available.
DFN_STATUS
DFNGetNextHostFlag(
DWORD dwPolltimeMs,

// [in] polling time delay in milliseconds
UCHAR * pucHostFlag,

// [out] host flag returned
UCHAR * pucFlagKey,

// [out]flag key returned (notify type or wait type)
long * plSequenceNum

// [out]sequence number currently running
);
Parameters:
The dwPolltimeMs sets the rate of polling to see if the host flag is available. The time is specified in milliseconds. For instance, 100ms might be used here.
The pucHostFlag is the pointer to the unsigned char host flag returned from the DFN card. For the wait type of host flag, this value must be sent back to the DFN when the user program wants to satisfy the waiting host flag condition.

The pucFlagKey is the pointer to the unsigned char flag key returned from the DFN card.
The wait type of host flag has a value of 1. The notify type of host flag has a value of 2. The key value will be 0 when no host flag is available (such as at end of file)
The plSequenceNum is a pointer to the current sequence number returned by the driver. The user program can verify that the returned sequence number matches the sequence using the host flag.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

DFN_END_OF_FILE is returned when no more host flags are available.
Remarks:

The routine polls for a host flag to be available every dwPolltimeMs ms.
If the routine returns with DFN_SUCCESS, then the next host flag has been retrieved. The routine will not return until either a host flag is available, the sequence has ended (returning DFN_END_OF_FILE) or an error has occurred either in trying to retrieve the next host flag, or in the acquisition sequence itself.
If no more host flags are available because the acquisition sequence has ended, then DFN_END_OF_FILE is returned. There is no error reporting description in this case. The value of DFN_END_OF_FILE is (unsigned long)0xA013006A.
The routine checks that the sequence acquisition has not encountered an error and that the software running the sequence is in progress. An error is returned if the running sequence has encountered an error.
The application is responsible for decoding the contents of the host flag. The contents are logically set by the coff file. The contents can be interpreted as a value from 1..255 or as a bit sequence. At this time, a host flag value of 0 is not possible. For instance your application could use host flag 11 and in the coff file perl script this host flag would be specified as 0x0BFF01, where the 0B is the flag value 11 in hex, the FF is the mask that allows all possibilities and 01 means that it is a host flag type of flag. Note that setting the mask to 0B instead of FF has worked sometimes, but when the application uses multiple flags, it will sometimes hang if FF is not used. In the coff file perl script a flag is specified as a notify type by using the Flag command and as a wait type by using the Wait command. That is if $Hflag1 = 0x0BFF01 then using Wait($Hflag1) would be a wait-type host flag usage.
The host flag key value identifies the type of host flag that has been retrieved. The notify type is used to inform the user program that a certain point has been reached in the running coff file. The coff file continues to run and does not expect anything from the user program to be sent. The wait type requires action by the user program. The coff file will pause until the required host flag is sent back.
See Also
:
DFNGetNextHostFlagTimeout, DFNSetWaitTypeHostFlag
5.2.4.70
DFNGetNextHostFlagTimeout

The DFNGetNextHostFlagTimeout function is used when an active acquisition expects host flags to be sent from the DFN card running a coff file which includes host flag logic for synchronization with host software. The host software would be waiting for the host flag to be set and sent. The host application can specify a timeout so that the function will return if no host flag is available within the timeout. This function does not poll.
DFN_STATUS
DFNGetNextHostFlagTimeout(
UCHAR * pucHostFlag ,

// [out] host flag returned
UCHAR * pucFlagKey,

// [out] flag key returned
long * plSequenceNum,

// [out] current sequence number
DWORD dwTimeoutMs,

//[in] timeout in milliseconds
long *pbIsTimedOut

//[out] flag for timed out (0L=false, 1L=true)
);
Parameters:
The pucHostFlag is the pointer to the unsigned char host flag returned from the DFN card if the function has not timed out.
The pucFlagKey is the pointer to the unsigned char flag key returned from the DFN card if the function has not timed out. The wait type of host flag has a value of 1. The notify type of host flag has a value of 2. The key value will be 0 when no host flag is available.
The plSequenceNum is a pointer to the current sequence number returned by the driver. The user program can verify that the returned sequence number matches the sequence using the host flag.
The dwTimeoutMs is the time out specified in milliseconds to try to retrieve the next host flag.
The isTimedOut flag is returned true (1L) if the function has timed out so that there is no next host flag available. The isTimedOut flag will be false (0L) if the host flag is retrieved.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

DFN_END_OF_FILE is returned when no more host flags are available.
Remarks:
If the routine returns with DFN_SUCCESS and isTimedOut is 0L (false), then the next host flag has been retrieved. The routine will not return until either a host flag is available, the sequence has ended (returning DFN_END_OF_FILE), an error has occurred either in trying to retrieve the next host flag, or in the acquisition sequence itself or the function has timed out.
If no more host flags are available because the acquisition sequence has ended, then DFN_END_OF_FILE is returned. There is no error reporting description in this case. The value of DFN_END_OF_FILE is (unsigned long)0xA013006A.
The routine checks that the sequence acquisition has not encountered an error and that the software running the sequence is in progress. An error is returned if the running sequence has encountered an error.
The application is responsible for decoding the contents of the host flag. The contents are logically set by the coff file. The contents can be interpreted as a value from 1..255 or as a bit sequence. At this time, a host flag value of 0 is not possible. For instance your application could use host flag 11 and in the coff file perl script this host flag would be specified as 0x0BFF01, where the 0B is the flag value 11 in hex, the FF is the mask that allows all possibilities and 01 means that it is a host flag type of flag. Note that setting the mask to 0B instead of FF has worked sometimes, but when the application uses multiple flags, it will sometimes hang if FF is not used. In the coff file perl script a flag is specified as a notify type by using the Flag command and as a wait type by using the Wait command. That is if $Hflag1 = 0x0BFF01 then using Wait($Hflag1) would be a wait-type host flag usage.
The host flag key value identifies the type of host flag that has been retrieved. The notify type is used to inform the user program that a certain point has been reached in the running coff file. The coff file continues to run and does not expect anything from the user program to be sent. The wait type requires action by the user program. The coff file will pause until the required host flag is sent back.
See Also
:
DFNGetNextHostFlag, DFNSetWaitTypeHostFlag
5.2.4.71
DFNSetWaitTypeHostFlag

The DFNSetWaitTypeHostFlag function will set a host flag in the DFN that presumably the running event processor (using a downloaded coff file) is expecting. The event processor would be waiting for the host application to set the host flag as a means of synchronization between the host application and the DFN event processor. The event processor has already sent the user program a wait-type host flag to inform the user program that it will pause until the wait-type host flag is sent back. The user program can do something before sending the host flag back.
DFN_STATUS
DFNSetWaitTypeHostFlag(
UCHAR ucHostFlag

// [in]wait-type host flag to be set
);
Parameters:
The ucHostFlag is the unsigned char host flag to be sent to the DFN card. This is the same value that the event processor returned in the DFNGetNextHostFlag or DFNGetNextHostFlagTimeout. The flag key for this flag had to be the wait type, or this setting function will fail.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

If an acquisition sequence is not running, then an error is returned.

If the event processor is not expecting the host flag to be sent, then this function will fail.

The contents of the host flag are determined by the host application and the writer of the coff file.
Setting a host flag can be thought of as a software trigger. The coff file logic has to be written to expect the host flag. The event processor first sends the wait-type host flag to the user program and then pauses execution until the wait-type host flag is returned, using this routine.
See Also
:
DFNGetNextHostFlag, DFNGetNextHostFlagTimeout
5.2.4.72
DFNReadRTBState

The DFNReadRTBState function returns the state of the RTB channel lines.
DFN_STATUS DFNReadRTBState(
unsigned short * pusRTBState,

// current state of the RTB lines (lower 12 bits)
unsigned short * pusRTBDirection

// current direction of RTB lines defined (lower 12 bits)
);
Parameters:
The pusRTBState is a pointer to the returned state of the RTB lines. The lower 12 bits of this 16 bit parameter represents the RTB lines, with channel zero being the least significant bit. The bit will be set to 1 if the RTB line is high, or zero if the RTB line is low.
The pusRTBDirection is a pointer to the returned current direction settings of the RTB lines. The lower 12 bits of this 16 bit parameter represents the RTB line direction, with channel zero being represented by the least significant bit. A value of 1 means that the line is controlled by the DFN card as an output line. A value of 0 means that the line is an input line to the DFN card. Note that the lower 8 lines can be either input or output lines, the upper 4 lines of the 12 RTB lines are always input lines.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

Currently there are 8 RTB lines implemented. In the future, a total of 12 are to be implemented.

RTB lines are used to send and receive signals to and from external hardware through the DFN card. The RTB lines can be set and reset from within the running coff file. The perl script used to generate the coff file would have used the Flag routine to set or reset the RTB line(s) at an appropriate location in the logic. The RTB lines can also be set by using the DLL function DFNSetRTBLine. The direction of the individual RTB lines is set by DFNSetRTBDirection. The running coff file can wait for an RTB line to be set high for those lines whose direction is input. Those lines, whose direction is output, are used to signal external hardware.
See Also:
DFNSetRTBDirection, DFNSetRTBLine
5.2.4.73
DFNSetRTBDirection

The DFNSetRTBDirection function allows the application to set the direction (input or output) for RTB line I/O. An RTB channel line used for input would have it's direction bit set to 0. An RTB channel line used for output would have it's direction bit set to 1.
DFN_STATUS DFNSetRTBDirection(
unsigned short usRTBDirection,

// direction bits for channels(0=input,1=output bits)
unsigned short usRTBDefaults

// RTB values lines will be driven to upon queue error
);
Parameters:
The usRTBDirection parameter sent to the DFN sets the bits matching the RTB channel lines for the direction of I/O. The lower 12 bits represent the channels. Channel line zero is represented by the least significant bit. Note that all channels are set with this call, but only the lower 8 channels can be set as output lines. Lines 8 thru 11 are always input lines.
The usRTBDefaults contains the value bits representing the value that an RTB line output will be driven to upon event queue error. Lines that have an input direction are ignored.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Each RTB line can be designated as an input line or an output line, but not both.
The direction of an RTB line can be changed as long as logical consistency is maintained in the running coff file.
See Also:
DFNSetRTBLine
5.2.4.74
DFNSetRTBLine

The DFNSetRTBLine is used to set the specified RTB channel line(s) high 1 or low 0. Note that the direction of the specified RTB channel lines must have had their I/O direction previously set as output lines.
DFN_STATUS DFNSetRTBLine(
unsigned short usMask,
unsigned short usData
);
Parameters:

The usMask contains the representation of which RTB channel line(s) to set high or low. The channels are represented by corresponding bits in this parameter. For instance, RTB channel line zero is represented by setting the least significant bit (bit 0) in the usMask parameter to 1. Multiple channel lines can be represented at the same time with this parameter. Note that only the lower 8 channels can be used as output channels if their direction has been set to output.

The usData contains the value (0 or 1) which will be set on the corresponding RTB lines set in the mask.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For each bit set to 1 in the usMask parameter, the corresponding RTB channel line will be set high or low as directed in usData, if the direction of that line has been set for output. Only lines 0 to 7 may be set for output.

For each bit set to 0 in the usMask, no action is attempted for that channel.

For this release of the DFN firmware, setting an RTB line can only be done in diagnostic mode. Do not send this command while a sequence is running. If the board is not in diagnostic mode, the DLL will put the board into diagnostic mode before sending this command.
See Also:
 DFNSetRTBDirection
5.2.4.75
DFNChangeQueueVariable

The DFNChangeQueueVariable routine allows the user to change the value of a queue variable that exists at a particular address of the EAB memory on the Event Processor FPGA, while the DFN card is in Normal or Run mode or in Test or Run_T mode. The queue variable is accessed with its symbol name and frame name. With Revision 3.5, the frame name has been added to the argument list with the inovation of full queue variables. The number of bytes sent is no longer 8. Bytes no longer need to be reversed.
For DLL Revision 3.5 and later:
DFN_STATUS
DFNChangeQueueVariable(
CHAR *cpSymbolName,
// [in] name of symbol at destination address within EAB
// memory which is to be changed

CHAR * cpFrameName,

// [in] name of the frame that the symbol belongs to.

CHAR *
cpByteBuffer,

// [in] buffer containing bytes of value for queue variable

ULONG ulNumBytes,

// [in] number of bytes being sent in cpByteBuffer – must
// be 2, 3 or 4

ULONG * pulMailbox0

// [out] pointer to the actual unsigned long word written to the
// command register
);
Parameters:
The cpSymbolName is the name of the queue variable at the destination address within EAB memory. The symbol name will be mapped to the destination address using the symbol table created when the COFF file was loaded. Symbol names must be unique in the first 8 characters.
The cpFrameName is the name of the frame that the symbol name belongs to. Frame names must be unique in the first 8 characters.
The buffer cpByteBuffer contains the data bytes (value) being written to EAB memory for this queue variable. The buffer value will contain 2, 3 or 4 bytes as appropriate for the type of queue variable being changed. The DFNGetQueueVariableByteSize routine can be used to get the size of the queue variable.
Example for 3 bytes for symbol “sname1” of frame “fname1”:

ULONG ulValue;

ULONG ulMailbox0;

ulValue = 0x00FEC0BA; // 3 bytes of data

pDFN->DFNChangeQueueVariable(“sname1”,”fname1”,(char *)&ulValue,
3, &ulMailbox0);

will result in BA C0 FE in EAB memory which is in big endian format on the DFN card.
The pulMailbox0 is the pointer to the unsigned long value returned when the call is complete. It contains the actual long word that was written to the DFN card command register for the write operation. Firmware developers can use this value for debugging, but it is of little practical use to the user application program.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The symbol name and frame name must match a symbol of a frame used in the COFF file. When the COFF file is loaded into the DFN card, the symbol name and frame name are mapped to a destination address, and stored in an internal symbol table in the PCDAS DLL. An error is returned if the symbol name is not found in the symbol table. Symbol names and frame names must be unique in the first 8 characters.
The DFN card must be in NORMAL or RUN or TEST or RUN_T mode to write to EAB memory. This routine will automatically put the card into the NORMAL or TEST mode if it is not already in NORMAL or RUN or TEST or RUN_T mode. NORMAL or TEST mode is the mode the DFN card is in just prior to an acquisition(RUN or RUN_T). The DFN card may be put into NORMAL or TEST mode without actually beginning an acquisition.
A buffer written to EAB memory for a queue variable value cannot exceed 4 bytes.
See Also:
DFNGetEABMemSizes, DFNLoadEvents, DFNReadEABMemory, DFNReadQueueVariable, DFNGetQueueVariableByteSize, DFNChangeMultipleQueueVariables
5.2.4.76
DFNReadQueueVariable

The DFNReadQueueVariable routine allows the user to read the value of a queue variable that exists at a particular address of the EAB memory on the Event Processor FPGA, while the DFN card is in NORMAL or RUN or TEST or RUN_T mode. The queue variable is accessed with its symbol name. Note that the parameter list for reading a queue variable has changed with revision 3.5 of the DLL, with the inovatation of full queue variables, specifying a frame name, and no longer needing to reverse bytes for big endian format.
For DLL Revision 3.5 and later:
DFN_STATUS
DFNReadQueueVariable(
CHAR *cpSymbolName,
// [in] name of symbol at destination address within EAB
// memory which is to be changed

CHAR *cpFrameName,

// [in] name of frame that the symbol belongs to

CHAR *
cpByteBuffer,

// [out] buffer containing bytes of value for queue variable

ULONG ulNumBytesMax,
// [in] number of bytes contained in cpByteBuffer which can
// be filled by the read (can always be 4).

ULONG * pulNumBytesReturned, //[out] number of bytes contained in the queue variable read,

// as 2, 3 or 4 as appropriate for the specified symbol.

ULONG * pulMailbox0

// [out] pointer to the actual unsigned long word written to the
// command register
);
Parameters:
The cpSymbolName is the name of the queue variable at the destination address within EAB memory. The symbol name will be mapped to the destination address using the symbol table created when the COFF file was loaded. Symbol names must be unique in the first 8 characters.
Beginning with Revision 3.5, the cpFrameName is the name of the coff file frame that the queue variable belongs to.
The buffer cpByteBuffer contains the data bytes (value) read and returned from EAB memory for this queue variable. For Revision 3.5 there is no longer any byte reversal necessary.
Beginning with Revision 3.5 the ulNumBytesMax will be the number of bytes in the cpByteBuffer provided to receive the symbol value. The cpByteBuffer will be receiving 2, 3 or 4 bytes depending on the type of queue variable read. It would be safe to always make this buffer be 4 bytes long.
For Revision 3.5, the pulNumBytesReturned will be the number of bytes returned as the value of the queue variable. Queue variables now contain 2, 3 or 4 bytes. For earlier revisions this number was always 8.
The pulMailbox0 is the pointer to the unsigned long value returned when the call is complete. It contains the actual long word that was written to the DFN card command register for the write operation. Firmware developers can use this value for debugging, but it is of little practical use to the user application program.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The symbol name and frame name must match a symbol of a frame used in the COFF file. When the COFF file is loaded into the DFN card, the symbol name of a frame is mapped to a destination address, and stored in an internal symbol table in the PCDAS DLL. An error is returned if the symbol name is not found in the symbol table. Symbol names and frame names must be unique in the first 8 characters.
The DFN card must be in NORMAL or RUN or TEST or RUN_T mode to write to EAB memory. This routine will automatically put the card into NORMAL or TEST mode if it is not already in NORMAL or RUN or TEST or RUN_T mode. NORMAL or TEST mode is the mode the DFN card is in just prior to an acquisition. The DFN card may be put into NORMAL or TEST mode without actually beginning an acquisition.
A buffer read from EAB memory for a queue variable value cannot exceed 4 bytes. Some queue variable types use 4 bytes, some use 3 bytes and some use 2 bytes. The use can use the routine DFNGetQueueVariableByteSize to query how many bytes a particular queue variable uses.
For instance, if the symbol "sname" of frame “fname” has 3 data bytes in EAB memory of BA C0 FE which we want to read, we would do the following.

ULONG ulValue;

ULONG ulMailbox0;

ULONG ulNumBytesReturned;

ulValue = 0L; //zero out the value we want to read

pDFN->DFNReadQueueVariable(“sname”,”fname”,(char *)&ulValue, 4,
&ulNumBytesReturned, &ulMailbox0);
Upon return, the ulValue would be 0x00FEC0BA and the ulNumBytesReturned woud be 3. Note that we could also have passed in 3 for the fourth argument instead of 4. If you use the 4 byte as the length of the buffer, then the unused bytes will be zero filled, eliminating the necessity for initializing the 4 byte ulValue to 0L to begin with. Note that the byte order read from the DFN card would be BA C0 FE.
See Also:
DFNGetEABMemSizes, DFNLoadEvents, DFNReadEABMemory, DFNChangeQueueVariable, DFNGetQueueVariableByteSize
5.2.4.77
DFNGetExtendedErrorInformation

The DFNGetExtendedErrorInformation returns extended error information for DFN driver errors reported below the level of the DLL. This routine would be called right after an error is returned from the DLL. The reported error code for a routine is contained in the DFN_STATUS returned by a routine. The error is usually captured within a try-catch block.
DFN_STATUS DFNGetExtendedErrorInformation(
HRESULT hr_reported,

//[in] the error reported from the DLL call
ULONG * ulMask,

// [out] the mask to tell which of the error categories have info
ULONG * ulEQErrors,

// [out] event queue errors
ULONG * ulFCErrors,

// [out] fibre channel errors
ULONG * ulHFErrors,

// [out] host flag errors
ULONG * ulIMGErrors,

// [out] image or DMA transfer errors
ULONG * ulRLErrors

// [out] response log errors
);
Parameters:
 The hr_reported is the error that was returned on the previous DLL call.
 The ulMask is a bitmask to indicate which of the error reporting words contain valid information. The
Bitmask will be a combination of the following constants defined in the driver include file dfn.h. These constants are or’d together to form the mask.
#define EQERRS

(1L<<0) // Event Queue errors
#define FCERRS

(1L<<1) // Fibre Channel errors
#define HFERRS

(1L<<2) // Host Flags errors
#define IMGERRS
(1L<<3) // Image or DMA transfer errors
#define RLERRS

(1L<<4) // Response Log errors
The ulEQErrors is the event queue error reporting word. The bits in this word must be first masked with the possible valid bits and then tested with possible error bits to determine what errors are being reported.
#define EQ_ERROR_BITS_MASK 0x0000FFFF // only these bits are set
 For Event queue errors
#define EQ_GENERATE_ERROR_CMD
(1L<<11) // Generate Error command (bit 0)
#define EQ_PRG_RD_ERR

(1L<<10) // unimplemented
#define EQ_PRG_WR_ERR

(1L<<9)
 // unimplemented
#define EQ_UNRECOG_EVENT

(1L<<8)
 // bad event code read from queue
#define EQ_EOQ_NO_ENDQ

(1L<<7)
 // end of queue reached w/ no ENDQ
#define EQ_FC_SEND_ERR

(1L<<6)
 // FC problem on TX attempt
#define EQ_FLAG_ERR

(1L<<5)
 // unrecognized flag type
#define EQ_LOOP_ERR

(1L<<4)
 // out of range loop jump attempted
#define EQ_GET_RXDAT_ERR

(1L<<3)
 // unimplemented
#define EQ_MODE_ERR

(1L<<2)
 // unimplemented
#define EQ_ONE_STEP_ERR

(1L<<1)
 // unimplemented
#define EQ_ALWAYS_0

(1L<<0)
 // always 0
The ulFCErrors is the fibre channel error reporting word. The bits in this word must be first masked with the possible valid bits and then tested with possible error bits to determine what errors are being reported.
#define FC_ERROR_BITS_MASK
 0x0000FFFF
// only these bits are set
 For fiber channel errors
#define FC_GENERATE_ERROR_CMD
(1L<<10)
// Generate Error command (bit 1)
#define FC_RESERVED

(1L<<9)

// reserved
#define FC_BAD_LINK_STATE

(1L<<8)

// bad link state
#define FC_LINK_STATE_MACH_PROB
(1L<<7)

// link state machine problem
#define FC_RCV_CRC_ERR

(1L<<6)

// receive CRC error
#define FC_SYNC_LOSS

(1L<<5)

// loss of sync on FC link
#define FC_BAD_RCVR_DATA

(1L<<4)

// bad data from FC receiver
#define FC_NO_RCVR_SIG

(1L<<3)

// no signal detected by receiver
#define FC_SPURIOUS_ACK

(1L<<2)

// spurious ack occurred on FC
#define FC_ACK_XMIT_MISMATCH
(1L<<1)

// ack does not match xmit cmd
#define FC_TIMEOUT

(1L<<0)

// timeout occurred before ack
The ulHFErrors is the host flag error reporting word. The bits in this word must be first masked with the possible valid bits and then tested with possible error bits to determine what errors are being reported.
#define HF_ERROR_BITS_MASK
0x00070000
// only these bits are set
 For host flag errors
#define HF_GENERATE_ERROR_CMD
(1L<<18)
// Generate Error command (bit 5)
#define HF_2MANY_Q_INTS

(1L<<17)
// queue interrupt generated while
// other pending
#define HF_2MANY_WAIT_HF_INTS
(1L<<16)
// wait on host flag interrupt
// generated while other pending
The ulImgErrors is the image/DMA transfer error reporting word. The bits in this word must be first masked with the possible valid bits and then tested with possible error bits to determine what errors are being reported.
#define IMG_ERROR_BITS_MASK
0x0000FCDF
// only these bits are set

 For image read/DMA errors
#define IMG_DFN_IMG_BUFS_FILLED
(1L<<12)
//DFN has not DMA's data to host
//fast enough
#define IMG_SEE_NICK

(1L<<11)
// DMA not working correctly
#define IMG_GENERATE_ERROR_CMD
(1L<<10)
// Generate Error command (bit 2)
#define IMG_DMA_ADDR_OOB

(1L<<7)

// DMA desgination address out of
// bounds
#define IMG_FRAMES_FULL

(1L<<6)

// All allowed frames are filled
#define IMG_INCOMPLETE_IMAGE
(1L<<4)

// previous image not complete
// (det. sync too early?)
#define IMG_MISSED_IMAGE

(1L<<3)

// previous image completely
// missed (detector. missed the
// command?)
#define IMG_2FEW_LINES

(1L<<2)

// too few lines in received frame
#define IMG_2MANY_LINES

(1L<<1)

// too many lines in received frame
#define IMG_FRAMING_ERROR

(1L<<0)

// did not get EOF unique word
// when expected
The ulRLErrors is the response log error reporting word. The bits in this word must be first masked with the possible valid bits and then tested with possible error bits to determine what errors are being reported.
#define RL_ERROR_BITS_MASK
0x00000320
// only these bits are set
 For response log errors
#define RL_FIFO_FILLED

(1L<<5)

// response log fifo has been filled
#define RL_ADDR_ERROR

(1L<<8)

// response log addressing error
#define RL_FULL_ERROR

(1L<<9)

// response log full error
Return value:
DFN_STATUS will always be DFN_SUCCESS for no error upon return.
Remarks:
The hr_reported is captured on the try-catch block of an application. The “_com_error e” variable in the catch block has a member e.Error() function which returns the hr_reported. The e.Description already contains the error strings for the errors reported with the extended error information. The application, however, may want to use the raw error reporting information itself, and hence, the existance of the DFNGetExtendedErrorInformation routine.
Anyone making use of this routine should get the defines from the driver include file dfn.h.
Multiple errors are reported with this extended error reporting mechanism.
To see if an error report contains valid information, “and” the constant with the mask. For instance to see if the event queue errors are being reported, see if (ulMask & EQERRS) is true.
To test for one of the event queue errors—such as the EQ_GENERATE_ERROR_CMD, see if
 ((ulECErrors & & EQ_ERROR_BITS_MASK) & EQ_GENERATE_ERROR_CMD)
is true, for instance.
Similar examples for error testing for true are:
((ulFCErrors & FC_ERROR_BITS_MASK) & FC_GENERATE_ERROR_CMD)
((ulHFErrors & HF_ERROR_BITS_MASK) & HF_2MANY_Q_INTS)
((ulIMGErrors & IMG_ERROR_BITS_MASK) & IMG_GENERATE_ERROR_CMD)
((ulRLErrors & RL_ERROR_BITS_MASK) & RL_FIFO_FILLED)
See Also:
the DFN Driver manual
5.2.4.78
DFNIsWordSwapModeSet

The DFNIsWordSwapModeSet function will query the driver for the present word swap setting. The NT registry for the DFN driver sets a default word swap mode. The application can over-ride this setting by using DFNImageWordSwap. This function returns the current word swap setting whether it is the default or has been set by the DFNImageWordSwap call. Image word swap sets the order that the image columns is read from the detector panel. For the mammo panel, the word swap should be turned on. For the cardiac and rad panels, the word swap should be off.
DFN_STATUS
DFNIsWordSwapModeSet (
long lSequenceNum,
long * pboolWordSwap
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The pboolWordSwap is a pointer to a boolean. If the Word Swap mode is set, this flag will be returned true (1L); otherwise this flag is returned false (0L);

Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is allocated, its images will be word swapped or not based on the default set in the registry (see DFN Device Driver Registry Keys, Default Parameters, Frame, WordSwap Image). This setting may be overridden by an application by using DFNImageWordSwap after the sequence is allocated, but before acquisition begins. The flag that is returned by the DFNIsWordSwapModeSet reflects the current setting.
Word swap should be turned on for the mammo panel, otherwise every pair of columns will be output in the wrong order and appear swapped in the image. For cardiac and rad panels, this word swapping does not have to be done. When the data is transferred from the DFN card to the NT-PC host memory, it can be word swapped for mammo panels into the correct form. Setting the word swap mode tells the DFN card to do the word swapping. It is the application's responsibility to properly set the word swap mode for the panel in use.
Word swapping images for a sequence only applies when the images are acquired. The word swapping mode does not apply to sequences read in from an archive, or a sequence that is in playback mode.
See Also:
DFNImageWordSwap
5.2.4.79
DFNImageWordSwap

The DFNImageWordSwap function will allow an application to override the present word swap setting for a sequence that has been allocated, but not yet acquired. The NT registry for the DFN driver sets a default word swap mode. Image word swap sets the order that the image columns are read from the detector panel. The word swap should be turned on for the mammo panel, and off for the cardiac and rad panels.
DFN_STATUS
DFNImageWordSwap (
long lSequenceNum,
ULONG ulWordSwapFlag
);
Parameters:
The lSequenceNum is a long sequence identifier number that was assigned to the sequence when it was opened.
The ulWordSwapFlag is a flag for which way to set the word swap mode. If the word swap mode is to be set, this flag should be input as 1L; otherwise, to unset the word swap mode, this flag is input as 0L;

Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When a sequence is allocated, its images will be word swapped or not based on the default set in the registry (see DFN Device Driver Registry Keys, Default Parameters, Frame, Word Swap Image). This setting may be overridden by an application by using DFNImageWordSwap after the sequence is allocated, but before acquisition begins. The DFN card must be in diagnostic mode when this command is received. DFNImageWordSwap will place the card in diagnostic mode if it is not already in diagnostic mode. The flag may be queried by the DFNIsWordSwapModeSet function.
Word swap should be turned on for the mammo panel, otherwise every pair of columns will be output in the wrong order and appear swapped in the image. For cardiac and rad panels, this word swapping does not have to be done. When the data is transferred from the DFN card to the NT-PC host memory, it can be word swapped for mammo panels into the correct form. Setting the word swap mode tells the DFN card to do the word swapping. It is the application's responsibility to properly set the word swap mode for the panel in use.
Word swapping images for a sequence only applies when the images are acquired. The word swap mode does not apply to sequences read in from an archive, or a sequence that is in playback mode.
For applications that only use one type of panel, the default reorder setting in the driver should be set for the panel type in use.
See Also:
DFNIsWordSwapModeSet
5.2.4.80
DFNGetNextFrameTimeout

The DFNGetNextFrameTimeout function retrieves the image at the current position in the current sequence and adjusts the frame pointer forward (in frame sequence) one frame. The frame pointer is maintained internally by the DLL. DFNGetNextFrameTimeout allows the unmapping timeout to be set for acquisitions where an application does not want to block forever.
DFN_STATUS
DFNGetNextFrameTimeout(
ULONG *
pulFrameNumber,

//[out] driver assigned frame number
ULONG *
pulMappedAddress,

//[out] mapped address of frame data
DWORD
dwUnmapTimeoutMs,

//[in] unmap operation timeout in msec
long *

IsTimedOut

//[out]flag for unmap operation timeout

);
Parameters:
The pulFrameNumber is a pointer to a unsigned long driver assigned frame number that is returned. Frame numbers normally begin with 0 and count upward to the number of frames acquired -1. When a timeout occurs, the frame number is returned as –1L.
The pulMappedAddress is a pointer to a unsigned long address in virtual memory that is accessible to the user application. When a timeout occurs, the mapped address is returned as –1L.
The dwUnmapTImeoutMs is the number of milliseconds to allow the unmap operation to wait to be satisfied when the IOCTL call is made to the driver to unmap the previous image mapped. The DLL will override this input to set to the minimum of 20 seconds if it is input as less.
The IsTimedOut is a flag returned as 0L if the unmap operation did not time out, and is returned as 1L if the operation did time out. When a timeout occurs, both the frame number and the mapped address are returned as –1L.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error

On requesting a frame past the end of sequence DFN_END_OF_FILE is returned.
Remarks:
A call to this function will block waiting for completion after first unmapping the previous image. If the unmapping operation times out, this function will return without mapping the next image. Usually this function would only be called for active acquisitions. The DFNGetNextFrame routine does not have a default timeout, which means that it blocks forever. If the sequence is operating as an archive, an image space is mapped in virtual memory with read/write access and the function returns immediately. If the sequence is operating in playback mode, the image in memory is mapped into virtual memory and the function returns immediately. If the sequence is operating in acquisition mode, the function will not return until the unmap of the previous image has succeeded and the next image has been acquired (a DMA transfer) and then mapped into virtual memory.
A call to this function will unmap any frames that have already been delivered to the application through a prior call to this function, or any other function that maps a frame. It is this unmap operation that the timeout dwUnmapTimeoutMs is specified for. If the unmap times out, the routine will return with DFN_SUCCESS, but the IsTimedOut flag will be set to 1L.
DFNOpenSequence sets the frame pointer to the first frame in the sequence. If a read is attempted past the end of sequence, the DFN_STATUS returns DFN_END_OF_FILE. For playback sequential mode when the first frame to be played back is not the first frame in the sequence, use DFNOpenSequentialPlaybackSequence instead of DFNOpenSequence, to gain more flexibility in specifying sequential playback parameters.
The value of DFN_END_OF_FILE is (unsigned long)0xA013006A.
In acquisition mode, DFNGetNextFrameTimeout calls would be made after DFNBeginSequence. In archive mode, DFNGetNextFrameTimeout calls would be made after DFNOpenArchiveSequence. In sequential playback mode, DFNGetNextFrameTimeout calls would be made after DFNOpenSequence or DFNOpenSequentialPlaybackSequence.
Note that for playback, this function can only be used for sequential playback mode. When playing back in random mode, the GetSpecificFrame function must be used instead of the GetNextFrameTimeout function.
When using the DFNGetNextFrameTimeout, if the unmap operation times out, the DFN_STATUS is returned as DFN_SUCCESS, but the IsTimedOut will be set to 1L (true). The IsTimedOut flag must be checked to make sure that the operation of getting the next frame has succeeded. The DLL will use a timeout of 20 seconds if the input timeout is less, but will use the input timeout if it is 20 seconds or greater.
See Also:
DFNOpenSequence, DFNBeginSequence, DFNOpenArchiveSequence, DFNOpenSequentialPlaybackSequence, DFNGetNextFrame
5.2.4.81
DFNSetFCLoopback

The DFNSetFCLoopback function either enables or disables the Fiber Channel loopback. If the input value is 0, the loopback is disabled and traffic from the DFN card to the Fiber Channel goes to the DCB/Detector. If the input value is 1, loopback is enabled and traffic is fed from transmit directly into receive. Note that this command is a programmable loopback. The same effect can be achieved in hardware for enable by using a special loop-back fiber channel cable attached to the DFN card.
DFN_STATUS DFNSetFCLoopback(
ULONG

ulLoopbackState

// [in] 0L for disable loopback; 1L for enable
);
Parameters:

The ulLoopbackState is the loopback state to set in the DFN card. (0L = disable; 1L = enable).
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Fiber channel loopback is used for testing purposes. When used in conjunction with Generate Data Circuit of the DFN board to generate pseudo image data, the loopback must be set either in hardware or software to be able to have the pseudo image data sent over the fiber channel as if it were coming from the DCB/Detector. This routine is used as the software Fiber Channel loopback enable/disable. By using the Generate Data Circuit with the FC Loopback, the application can be tested without having a DCB and/or detector panel attached.
Use DFNGetFCLoopback to get the current state of the software loopback. Note that the software cannot detect the presense of the hardware loopback cable.

The loopback cable is unnecessary if the application uses the software loopback enable.
Setting the loopback state can only be done in the diagnostic state. As long as an acquisition is not running, the DLL will take care of putting the DFN card in the diagnostic state. If an acquisition is running, an error is returned.

The input value is checked that it is either 0L or 1L. Any other input value generates an error.
See Also:
DFNGetFCLoopback, DFNGetGenDataConfiguration, DFNSetGenDataConfiguration
5.2.4.82
DFNGetFCLoopback

The DFNGetFCLoopback function returns the state of the Fiber Channel loopback. If the state is 0, the loopback is disabled and traffic from the DFN card to the Fiber Channel goes to the DCB/Detector. If the state is 1, loopback is enabled and traffic is fed from transmit directly into receive.
DFN_STATUS DFNGetFCLoopback(
ULONG
 *
pulLoopbackState
// [out] pointer to loopback state:
// returns 0L for disabled loopback; 1L for enabled
);
Parameters:
The pulLoopbackState is the pointer to the loopback state returned from the DFN card. (0L = disabled; 1L = enabled).
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Fiber channel loopback is used for testing purposes. When used in conjunction with Generate Data Circuit of the DFN board to generate pseudo image data, the loopback must be set either in hardware or software to be able to have the pseudo image data sent over the fiber channel as if it were coming from the DCB/Detector. This routine is used as the software Fiber Channel loopback enable/disable. By using the Generate Data Circuit with the FC Loopback, the application can be tested without having a DCB and/or detector panel attached. This routine gets the current state of the software loopback. Note that the software cannot detect the presence of the hardware loopback cable.

Use DFNSetFCLoopback to set the current state of the software loopback.
See Also:
DFNSetFCLoopback, DFNGetGenDataConfiguration, DFNSetGenDataConfiguration
5.2.4.83
DFNGetGenDataConfiguration

The DFNGetGenDataConfiguration returns the current settings in the configuration for using the Generate Data Circuit. The configuration contents are discussed below. The Generate Data Circuit is a feature of the DFN card used to generate pseudo image data instead of taking it from the Detector Control Board (DCB) / Apollo panel. Pseudo image data is generated by the DAP FPGA on the DFN card.
DFNGetGenDataConfiguration(
UCHAR *ucpGenerateData,

// [out] pointer to circuit enabled/ disabled flag
UCHAR *ucpDAPTarget,

// [out] target DAP or EP – pointer to UCHAR
UCHAR *ucpRowMultiplier,

// [out] row multiplier code – pointer to UCHAR
UCHAR *ucpFrameMultiplier,

// [out]frame multiplier code – pointer to UCHAR
UCHAR *ucpColumnMultiplier,

// [out]column multiplier code – pointer to UCHAR
Unsigned short * uspGenerateDataMask

// [out] pointer to mask
);
Parameters:
The ucpGenerateData is a pointer to an unsigned char flag. The flag will be returned as a 1 if the Generate Data Circuit is enabled. The flag will be returned as 0 if the Generate Data Circuit is disabled.
The ucpDAPTarget is a pointer to an unsigned char flag. The flag will be returned as 0 if the target is the internal DAP. The flag will be returned as 1 if the target is the EP.
The ucpRowMultiplier is the pointer to the code for row multiplier. If the flag is 0, the row multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
The ucpFrameMultiplier is the pointer to the code for frame multiplier. If the flag is 0, the frame multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
The ucpColumnMultiplier is the pointer to the code for column multiplier. If the flag is 0, the column multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
The uspGenerateDataMask is the pointer to the mask for how many of the 16 bits will be used to cycle through to generate the data. The mask sets which bits of a generated value are allowed to be set.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Generally the pseudo data is a smooth changing ramp with the same dimensions as the cardiac panel (1024x1024 pixels, 2 bytes each). This lets the user test the system with no DCB and/or panel attached. If a DCB or panel is attached, when the Generate Data circuit is enabled, the DCB data path is bypassed.
The Generate Data circuit is configured when a begin sequence is issued (see DFNBeginSequence and it’s variants). This function is used to see what settings the driver will use when the circuit is enabled. If DFNSetGenDataConfiguration has not been called, the driver will use the default registry settings.
Pixel values are created as a function of their position to create the ramp. Positions of pixels begin counting from 0. For any multipliers set to zero, no multiplication is done for the row, column or frame portion of the formula. The following formula is used for each pixel when all multipliers are non-zero (note that the mask will affect which bits of the value are allowed to be set):

GeneratedPixelValue =

 (rowposition * 2^(ucRowMultiplier –1)) * (columnposition * (2^(ucColumnMultiplier –1)) *

(frame_number * (2^(ucFrameMultiplier –1))
The GenerateDataMask will set the bits that are allowed to be set in a pixel value. For instance if the mask is set to 0xFF, then generated pixel values will run between 0 and 255; if the mask is set to 0xF0, then generated pixel values will run between 128 and 255 in steps of 16.
If the ucDAPTarget is set to 0, the DAP loops the generated data back into its own receiver which bypasses the Fiber Channel receive bus. If the ucDAPTarget is set to 1, the DAP sends the generated data to the EP FPGA which, in turn, transmits it over the Fiber Channel transmit bus. In this case, there must be the special loop-back fiber channel cable attached to the DFN card or the fiber channel loopback enable must be set in software. (see DFNSetFCLoopback). If the cable is missing or the software loopback has not been sent, the pseudo image data will be sent over the fiber channel to the detector panel which will read it as unknown data; this probably only works with the cardiac panel. The user is responsible for setting up correctly. The driver and DLL have no means to verify how it is set up.

Use DFNSetGenDataConfiguration to set up the Generate Data Configuration.
See Also:
DFNSetFCLoopback, DFNGetFCLoopback, DFNSetGenDataConfiguration
5.2.4.84
DFNSetGenDataConfiguration

The DFNSetGenDataConfiguration allows the application to configure the current settings for using the Generate Data Circuit. The configuration contents are discussed below. The Generate Data Circuit is a feature of the DFN card used to generate pseudo image data instead of taking it from the Detector Control Board (DCB) / Apollo panel. Pseudo image data is generated by the DAP FPGA on the DFN card.
DFNSetGenDataConfiguration(
UCHAR ucGenerateData,

// [in] circuit enabled/ disabled flag (0 or 1)
UCHAR ucDAPTarget,

// [in] target DAP or EP (0 or 1)
UCHAR ucRowMultiplier,

// [in] row multiplier code (0 to 3)
UCHAR ucFrameMultiplier,

// [in] frame multiplier code (0 to 3)
UCHAR ucColumnMultiplier,

// [in] column multiplier code (0 to 3)
unsigned shoft usGenerateDataMask // [in] generate data mask
);
Parameters:
The ucGenerateData is an unsigned char flag. The flag set to 1 enables the Generate Data Circuit. The flag set to 0 disables the Generate Data Circuit.
The ucDAPTarget is an unsigned char flag. The flag will be set to 0 if the target is the internal DAP. The flag will be set to 1 if the target is the EP.
The ucRowMultiplier is the code for row multiplier. If the flag is 0, the row multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
The ucFrameMultiplier is the code for frame multiplier. If the flag is 0, the frame multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
The ucColumnMultiplier is the code for column multiplier. If the flag is 0, the column multiplier is disabled. If the flag is 1, the multiplier is 1. If the flag is 2, the multiplier is 2. If the flag is 3, the multiplier is 4 (not 3). Multiplier use is described below.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Generally the pseudo data is a smooth changing ramp with the same dimensions as the cardiac panel (1024x1024 pixels, 2 bytes each). This lets the user test the system with no DCB and/or panel attached. If a DCB or panel is attached, when the Generate Data circuit is enabled, the DCB data path is bypassed.
The Generate Data circuit is configured when a begin sequence is issued (see DFNBeginSequence and it’s variants). This function is used to set what settings the driver will use when the circuit is enabled. This function must be called before beginning the sequence. The DFN must be in diagnostic mode. If there is no sequence running, the DLL will take care of putting the DFN in diagnostic mode. If a sequence is running when this function is called, an error is returned.
Pixel values are created as a function of their position to create the ramp. Positions of pixels begin counting from 0. For any multipliers set to zero, no multiplication is done for the row, column or frame portion of the formula. The following formula is used for each pixel when all multipliers are non-zero (note that the mask will affect which bits of the value are allowed to be set):

GeneratedPixelValue =

 (rowposition * 2^(ucRowMultiplier –1)) * (columnposition * (2^(ucColumnMultiplier –1)) *

(frame_number * (2^(ucFrameMultiplier –1))
The GenerateDataMask will set the bits that are allowed to be set in a pixel value. For instance if the mask is set to 0xFF, then generated pixel values will run between 0 and 255; if the mask is set to 0xF0, then generated pixel values will run between 128 and 255 in steps of 16.
If the ucDAPTarget is set to 0, the DAP loops the generated data back into its own receiver which bypasses the Fiber Channel receive bus. If the ucDAPTarget is set to 1, the DAP sends the generated data to the EP FPGA which, in turn, transmits it over the Fiber Channel transmit bus. In this case, there must be the special loop-back fiber channel cable attached to the DFN card or the fiber channel loopback enable must be set in software. (see DFNSetFCLoopback). If the cable is missing or the software loopback has not been sent, the pseudo image data will be sent over the fiber channel to the detector panel which will read it as unknown data; this probably only works with the cardiac panel. The user is responsible for setting up correctly. The driver and DLL have no means to verify how it is set up.

Use DFNGetGenDataConfiguration to get the current Generate Data Configuration.
The input parameters will be checked for allowable values. An error will be returned if an input value is out of range.
See Also:
DFNSetFCLoopback, DFNGetFCLoopback, DFNGetGenDataConfiguration
5.2.4.85
DFNSetDoorbellMask

The DFNSetDoorbellMask allows the application to set the bit mask used for the DFN card doorbell register. This register controls which hardware events will generate interrupts to the driver.
DFN_STATUS DFNSetDoorbellMask(
ULONG ulDoorbellMask

// mask for enabling various DFN card interrupts
);
Parameters:
The ulDoorbellMask enables/ disables DFN card interrupts. If a bit position is set, that event will cause an interrupt.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:

The valid bits for the doorbell mask is documented in the driver (see the driver include file dfn.h).

The application developer is expected to have significant understanding of modifying this register.

Setting the doorbell mask cannot be done when an acquisition is running.
The driver will set this valus on the DFN card immediately when this call is made. The driver also set this register when a sequence acquisition is begun.
One use of this function would be to disable fiber channel errors.
Note there is no function to read the doorbell register at the application level.
5.2.4.86
DFNPeek

The DFNPeek function allows an application to read the DFN board at the offset address given in the input argument. The value at that address is returned.
DFN_STATUS DFNPeek(
ULONG ulAddressOffset,

// address offset from the base of the DFN card
ULONG *pulValue

// pointer to the value at the address
);
Parameters:

The ulAddressOffset is the offset from the base of the DFN card.

The pulValue is the pointer to the ULONG containing the value returned from the input address.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Certain locations on the DFN board are write only. This function does not check for that and simply tries to return the value at the specified offset. The user is responsible for interpreting the return value.
No check is done to ensure that the input offset address is valid. If an offset is given that is beyond the range of the DFN board addresses, the driver will still attempt to read that location. This may cause operating system instability or even a system crash.
See Also:
DFNPoke
5.2.4.87
DFNPoke

The DFNPoke function allows an application to write a value to the DFN board at the offset address given in the input argument.
DFN_STATUS DFNPoke(
ULONG ulAddressOffset,

// address offset from the base of the DFN card
ULONG ulValue

// value to write to the address
);
Parameters:

The ulAddressOffset is the offset from the base of the DFN card.

The ulValue is the ULONG value to be written to the input address.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Note that certain locations on the DFN board are read only. This function does not check for that and simply tries to write the input value to the specified offset address.
No check is done to ensure that the input offset address is valid. If an offset is given that is beyond the range of the DFN board addresses, the driver will still attempt to write to that location. This may cause operating system instability or even a system crash.
It is illegal to write to the CMD-REG location of the DFN card using this function (see the driver documentation). This would cause an interrupt and would not be properly handled by this function. The driver will protect against writing to the CMD-REG and an error will be returned.
See Also:
DFNPeek
5.2.4.88
DFNDeleteAllOrphanSequences

The DFNDeleteAllOrphanSequences allows an application to clear any sequences that were left over in driver high memory from a previous run where an application crashed or failed to delete sequences for some unknown reason. Calling this routine assures that all of the high memory area is available.
DFN_STATUS DFNDeleteAllOrphanSequences();
Parameters:
None.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Images of sequences are stored in the high memory area above MAXMEM. The driver manages this memory area. The memory area above MAXMEM is not available for the NT operating system’s use. The MAXMEM parameter is set in the NT registry.
While the driver is running, it manages the high memory area. Applications can come and go, making driver calls to acquire or archive images in the high memory area. Image sequences that are left in the high memory area when an application exits, abnormally or otherwise, would remain in the memory area, leaving less memory available for the next application to use.
Do not call DFNDeleteAllOrphanSequences after your application has taken data. Call DFNDeleteSequence or DFNDeleteAllSequences instead. The call to DFNDeleteAllSequences has the option to delete any orphans after first deleting the sequences acquired by the current application. The optimal place to call DFNDeleteAllOrphanSequences directly would be right after calling DFNOpenSystem.
Calling DFNDeleteAllOrphanSequences when no orphans exist will not produce an error.
See Also: DFNDeleteAllSequences, DFNDeleteSequence
5.2.4.89
DFNDeleteAllSequences

The DFNDeleteAllSequences routine allows an application to delete all the sequences that it acquired that are still in memory. A choice also is given to delete any orphan sequences that exist after first deleting the sequences that this application acquired.
DFN_STATUS DFNDeleteAllSequences(
long
lboolDoClearOrphans

// flag 1L = also delete orphan sequences,
// 0L = do not delete orphans
);
Parameters:

LboolDoClearOrphans is a long input value which takes values of 0L for false and 1L for true.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
Calling DFNDeleteAllSequences or DFNDeleteSequence for a particular sequence has the effect of deleting the application’s sequence(s) from the high memory area and also of deleting any of the housekeeping information kept in the DLL about the application sequence.
Calling DFNDeleteAllOrphanSequences deletes all sequences from the high memory area, but not any housekeeping information in the DLL as it is assumed that an orphan was left over from a prior application’s run. Calling DFNDeleteOrphanSequences when the application itself still has sequences in memory will produce unpredictable results.
The DFNCloseSystem call will automatically call DFNDeleteAllSequences without deleting orphan sequences.
Calling DFNDeleteAllSequences when no application sequences or orphan sequences exist in memory will not return an error.
See Also: DFNDeleteSequence, DFNDeleteAllOrphanSequences, DFNCloseSystem
5.2.4.90
DFNGetRLClassEnableMask

The DFNGetRLClassEnableMask function allows the application to retrieve the current mask used to enable response log classes which will be entered into the response log.
DFN_STATUS DFNGetRLClassEnableMask(
ULONG * pulMask

// pointer to response log class enable mask
);
Parameters:
pulMask is the pointer to the unsigned long response log class enable mask. The bits of the mask represent which classes of response logs are enabled.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
The classes of response logs which can be turned on or off are: IMAGE_READOUT_RL_CLASS, DMA_INFO_RL_CLASS, ERROR_RL_CLASS, QUEUE_EVENT_RL_CLASS, DETECTOR_CMD_RL_CLASS and RTBUS_STATE_RL_CLASS. These constants for bit definition are defined in the driver include file dfn.h. There are also two classes of response log entries that are always turned on: Image_tag and Sequence_transition. The returned bit mask tells which of the response log classes are enabled.
The returned mask could have been enabled through the NT registry for a default setting, or by using the DFNSetRLClassEnableMask to override the registry setting.
See Also: DFNSetRLClassEnableMask
5.2.4.91 DFNSetRLClassEnableMask

The DFNSetRLClassEnableMask function allows the application to set the current mask used to enable response log classes which will be entered into the response log.
DFN_STATUS DFNSetRLClassEnableMask(
ULONG ulMask

// response log class enable mask
);
Parameters:
ulMask is the unsigned long response log class enable mask. The bits of the mask represent which classes of response logs are enabled.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error.
Remarks:
The classes of response logs which can be turned on or off are: IMAGE_READOUT_RL_CLASS, DMA_INFO_RL_CLASS, ERROR_RL_CLASS, QUEUE_EVENT_RL_CLASS, DETECTOR_CMD_RL_CLASS and RTBUS_STATE_RL_CLASS. These constants for bit definition are defined in the driver include file dfn.h. There are also two classes of response log entries that are always turned on: Image_tag and Sequence_transition. Setting the bit mask sets which of the response log classes are enabled.

An acquisition or chit chat cannot be running when the DFNSetRLClassEnableMask is called.
The response log class enabled mask can also be set in the NT registry as a default for the driver. Use of this routine will override the registry setting.
See Also: DFNGetRLClassEnableMask
5.2.4.92
DFNGetDirectExtendedErrorThreadInfo

The DFNGetDirectExtendedErrorThreadInfo is used to return extended error information to the application, which maintains a separate error reporting thread. Both DFNGetDirectExtendedErrorThreadInfo and DFNClearExtendedErrorThread can only be used if the NT registry value UseErrorThread has been turned on.
DFN_STATUS DFNGetDirectExtendedErrorThreadInfo(
ULONG * pulEQErrors,

// pointer to Event Queue Error bits code
ULONG * pulFCErrors,

// pointer to Fiber Chanel Error bits code
ULONG * pulIMGErrors,

// pointer to Image Error bits code
CHAR * exerrorstring,

// character string containing error text with newline chars
DWORD dwmaxstrlen,

// max size of the exerrorstring including the EOS character
long lboolAutoClear,

// flag to clear the extended error after receipt automatically

// 0L = no; 1L = yes
long lboolWaitOnGet

// flag to wait until an error occurs before returning

// 0L = no; 1L = yes
);
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Parameters:
The pulEQErrors is the pointer to the unsigned long representation of the event queue errors. The bits of the 32 bit word are set according to which errors are being reported. If there are no event queue errors, 0L is returned as it's value.
The pulFCErrors is the pointer to the unsigned long representation of the fiber channel errors. The bits of the 32 bit word are set according to which errors are being reported. If there are no fiber channel errors, 0L is returned as it's value.
The pulIMGErrors is the pointer to the unsigned long representation of the image errors. The bits of the 32 bit word are set according to which errors are being reported. If there are no image errors, 0L is returned as it's value.
The exerrorstring is a pointer to a character string which must be allocated or declared by the application. The size of this string is defined by the next argument, dwmaxstrlen. The string, when returned, will contain text representation of all the errors indicated in the error codes for the event queue, fiber channel and image errors.
The dwmaxstrlen is the number of bytes in the exerrorstring available to return the error text.
The flag lboolAutoClear indicates whether the routine will automatically clear any reported errors or not.
The flag lboolWaitOnGet indicates whether the routine will block waiting for an error to occur before returning, or whether the routine will just check for an extended error and return immediately.
Remarks:
For event queue errors, only the bits defined by the mask EQ_ERROR_BITS_MASK represent extended event queue errors, which may be returned by the driver. The EQ_ERROR_BITS_MASK is defined in the driver include file, dfn.h. Reporting the event queue errors can be turned off by setting the proper bit in the NT registry entry doorbell mask. See the driver manual for details on the doorbell mask.
For fiber channel errors, only the bits defined by the mask FC_ERROR_BITS_MASK represent extended fiber channel errors, which may be returned by the driver. The FC_ERROR_BITS_MASK is defined in the driver include file, dfn.h. Reporting the fiber channel errors can be turned off by setting the proper bit in the NT registry entry doorbell mask. See the driver manual for details on the doorbell mask.
For image errors, only the bits defined by the mask IMG_ERROR_BITS_MASK represent extended image errors, which may be returned by the driver. The IMG_ERROR_BITS_MASK is defined in the driver include file, dfn.h. Reporting the image errors can be turned off by setting the proper bit in the NT registry entry doorbell mask. See the driver manual for details on the doorbell mask.
In using the lboolAutoClear flag, the application thread is setting a choice for letting this routine handle clearing extended event queue, fiber channel and image errors or chosing to explicitely call DFNClearErrorThread later. . The driver cannot report another extended error of this type until a previously reported extended error has been cleared. The application may want to clear the errors after allowing the user to correct a situation, rather than automatically clearing an error, only to have it be reported again, as would be the case, for instance, if the fiber channel cable were to become unplugged. When errors will be cleared is up to the application designer.
In using the lboolWaitOnGet, the application thread either blocks waiting for an extended event queue, fiber channel or image error to occur, or merely checks if one of these extended errors has occured, and returns immediately.
The routine, DFNGetDirectExtendedErrorThreadInfo, is designed to be called from a separate thread of an application. By using a separate error reporting thread, the driver can return extended event queue, fiber channel and image errors to the application immediately if this routine has an outstanding error request. This method would be useful for picking up asychrouous errors, such as fiber channel errors, immediately. When the error reporting thread is not used, the application will not be told of an extended error unless a driver call of the proper type has been made. In order to use this routine, the NT registry entry UseErrorThread must be turned on under the DFN driver. When the routine DFNOpenSystem is called by the main thread (or another thread) of an application, the DLL will also create a separate driver handle and overlapped IO structure for the error reporting thread to use. Therefore, until the application has called DFNOpenSystem, DFNGetDirectExtendedErrorThreadInfo cannot be used. Likewise, after calling DFNCloseSystem, this routine cannot be used, as the driver handle will be closed.
For the driver NT registry entries for the doorbell mask and UseErrorThread, use regedt32 and look under HKEY_LOCAL_MACHINE, System, CurrentControlSet, Services, Dfndrvr, DefaultParameters.
One way to use the smart pointer for the COM interface within a thread, is to declare a global instance and make a copy of the smart pointer instantiated in the main thread. For example, a global smart pointer can be declared and initialized as:
IDFNCardCPtr ppDFN = NULL;

In the main thread the smart pointer can be instantiated as:

IDFNCardCPtr pDFN(__uuidof(DFNCardC));
And then the global copy can be picked up for the error reporting thread right after this instantiation as:

ppDFN = pDFN;

In the error reporting thread, the call would be made as

ppDFN->DFNGetDirectExtendedErrorThreadInfo(&ulEQErrors,

&ulFCErrors,&ulIMGErrors,exerrorstring,2048,lboolAutoClear,

lboolWaitOnGet);
Note that using DFNGetDirectExtendedErrorThreadInfo differs from using DFNGetExtendedErrorInformation, which gets information about an extended error that has already occurred and has been reported to the application as the return value of a DFN DLL call.
If the application is using the ErrorReportingThread method (as set in the NT registry), then the driver will not return extended event queue, image or fiber channel errors on driver calls such as image mapping, unmapping etc, as it expects to notify the application through the mechanism of the error reporting thread.
See Also:
DFNClearExtendedErrorThread, DFNOpenSystem, DFNGetExtendedErrorInformation,

DFNAbortGetDirectExtendedErrorThreadInfo, DFNCheckAndClearExtendedErrorInfo
5.2.4.93
DFNClearExtendedErrorThread

The DFNClearExtendedErrorThread routine allows the application error reporting thread to explicitely clear the extended event queue, fiber channel and image errors which were returned by the DFNGetDirectExtendedErrorThreadInfo. This routine, as well as the error reporting thread itself, cannot be used unless UseErrorThread has been turned on in the NT registry.
DFN_STATUS DFNClearExtendedErrorThread(
ULONG

ulEQErrors,

// Extended Event Queue Error bits code
ULONG

ulFCErrors,

// Extended Fiber Channel Error bits code
ULONG

ulIMGErrors

// Extended Image Error bits code
);
Parameters:
The ulEQErrors is the unsigned long representation of the extended event queue errors, which are to be cleared. If there are no event queue errors to be cleared, 0L is used as it's value.
The pulFCErrors is the unsigned long representation of the extended fiber channel errors, which are to be cleared. If there are no fiber channel errors, 0L is returned as it's value.
The pulIMGErrors is the unsigned long representation of the extended image errors, which are to be cleared. If there are no image errors, 0L is returned as it's value
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
If the application error reporting thread has called DFNGetDirectExtendedErrorThreadInfo with the lboolAutoClear turned off, then the application thread must explicitely make the call to clear the extended errors before these errors will be reported again.
The DFNClearExtentendedErrorThread routine cannot be called until DFNOpenSystem has been called. Likewise after DFNCloseSystem has been called, this routine cannot be used.
The DFNClearExtendedErrorThread clears all extended event queue, fiber channel and image errors for which the bits in the ulEQErrors, ulFCErrors and ulIMGErrors are set. See the DFN Driver manual, and the driver include file dfn.h for information on the bit settings of the extended error codes.
The application can clear all the extended event queue errors which were reported by the 32 bit word returned from the DFNGetDirectExtendedErrorThreadInfo routine. Sending back the same bit values will clear all of the reported extended event queue errors. However the application may selectively clear errors by chosing which bits to clear. There may be some reason why the application would not want to clear a specific extended event queue error. The extended fiber channel errors and the extended image errors work the same way. An extended error will not be reported again unless the prior extended error report has been cleared.
See Also:
DFNGetDirectExtendedErrorThreadInfo
5.2.4.94
DFNAbortGetDirectExtendedErrorThreadInfo

The DFNAbortGetDirectExtendedErrorThreadInfo routine allows an application to abort any outstanding request for getting extended event queue, fiber channel or image errors through an application’s error reporting thread. The thread can use the returned ERROR_OPERATION_ABORTED to know that it is time for the thread to exit, if the application is written to handle that error in that manner.
DFN_STATUS DFNAbortGetDirectExtendedErrorThreadInfo(
);
Parameters: None
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
When an application is using a separate error reporting thread, the thread will usually make a blocking call to DFNGetDirectExtendedErrorThreadInfo. In that situation, the thread has a call blocked on the driver which would need to be aborted when it is time to exit the application. The application can make the DFNAbortGetDirectExtendedErrorThreadInfo call from the main (or another) thread, so that the driver will return from the DFNGetDirectExtendedThreadInfo call with ERROR_OPERATION_ABORTED, which is an NT error code. The error reporting thread can then, if it wants to, close it’s thread handle and exit.
See Also: DFNGetDirectExtendedErrorThreadInfo
5.2.4.95
DFNWriteValueToDFNCardOffset

The DFNWriteValueToDFNCardOffset routine allows an application to write a value to a memory location on the DFN card. This function is equivalent to DFNPoke and using the driver tool dfnw.
DFN_STATUS DFNWriteValueToDFNCardOffset(
ULONG ulOffset,

// memory offset on the DFN Card
ULONG ulValue

// value to write to the memory offset on the DFN Card
);
Parameters:
The ulOffset is the offset from the user virtual base address of the DFN board. The offset must be between 0x0 and 0xFFFFFF, excluding the range 0xC00000 to 0xDFFFFF.
The ulValue is the value to be written to the memory location.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The kernel virtual base address of the DFN board is mapped to the user virtual base address. The memory location is calculated from the base address. The value is written to the memory location and then the base address is unmapped.

The user is responsible for choosing the appropriate offset and value.

This routine is functionally equivalent to the driver tool dfnw and the DLL call DFNPoke.
Warning: if you use the offset 0xA00200 with the value 0x03000000 to reset the DFN card, you will also clear the doorbell register and zero out all of the internal timeouts, which will cause errors in other DFN driver requests for functionality such as image mapping. You should not reset the DFN card in this manner.
See Also: driver tool dfnw, DFNPoke
5.2.4.96
DFNCheckAndClearExtendedErrorInfo

The DFNCheckAndClearExtendedErrorInfo allows the application, which is not using the Extended Error Reporting Thread, to check if there were any extended errors on an operation in situations where the driver does not have the opportunity to return extended errors.
DFN_STATUS DFNCheckAndClearExtendedErrorInfo(
ULONG ulMask,

// [in] mask of extended errors to check and clear
ULONG * pulEQErrors,

// [out] pointer to the event queue error bit codes
ULONG * pulFCErrors,

// [out] pointer to the fiber channel error bit codes
ULONG * pulHFErrors,

// [out] pointer to the host flag error bit codes
ULONG * pulIMGErrors,

// [out] pointer to the image transfer error bit codes
ULONG * pulRLErrors,

// [out] pointer to the response log error bit codes
CHAR * exerrorstring,

// [out] string returned containing text of error messages
DWORD dwmaxstrlen

// [in] max number of characters including the end of string

// that can be returned in exerrorstring
);
Parameters:
The ulMask is the bit mask of which of the extended error classes to check for and clear. The mask can be or'ed together by one or more of the following constants defined in the driver include file dfn.h.

EQERRS | FCERRS | HFERRS | IMGERRS | RLERRS
The pulEQErrors is the pointer to the returned event queue error codes. One or more event queue errors may be included if the ulMask enables reporting extended event queue errors.
The pulFCErrors is the pointer to the returned fibre channel error codes. One or more fibre channel errors may be included if the ulMask enables reporting extended fibre channel errors.
The pulHFErrors is the pointer to the returned host flag error codes. One or more host flag errors may be included if the ulMask enables reporting extended host flag errors.
The pulIMGErrors is the pointer to the returned image transfer error codes. One or more image transfer errors may be included if the ulMask enables reporting extended image transfer errors.
The pulRLErrors is the pointer to the returned response log error codes. One or more response log errors may be included if the ulMask enables reporting extended response log errors.
The exerrorstring will contain the text of any extended errors of the types enabled by the ulMask. The maximum length of the exerrorstring is given by the dwmaxstrlen. If the text for an error will not fit within the maximum string length of the exerrorstring, it is not included in the string of errors. However, the returned error codes will still include the error bit code for all such errors.
The dwmaxstrlen defines the maximum string length in bytes, including the end of string byte, which has been allocated by the application to hold the extended error text.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The application should only use this routine when the extended error reporting thread is not being implemented by an application.
If the driver has an opportunity to return an extended error, it will do so. For instance, image transfer errors will be returned on image mapping requests. However, if a sequence is being run without mapping, and the error reporting thread is not implemented, then the driver has no opportunity to return an extended image transfer error. For that case, after the sequence has finished and reached the idle stage, the application could call this routine to check if any extended errors occurred during the sequence.
The application should allocate a string for error text that would be long enough to pick up the error text. Since multiple errors can occur at one time, the text could become lenghty. Allocating a string of 4092 bytes should usually be sufficient. A minimum suggested length would be 512 bytes.
The application can choose which of the extended error classes to check on by using the ulMask. Any errors of a class of errors in the ulMask will be cleared by this routine after they are picked up for return to the application. It would be fine to call this routine multiple times using different masks each time, if the application wanted to separate checking on classes of errors.
Classes of errors can be enabled or disabled by using the NT registry settings for the dfn driver. These registry settings are described in the DFN driver manual. If a class of errors has been disabled in the registry, then no errors of that type will be reported even if set in the ulMask for this routine.
See Also:
DFNClearExtendedErrorThread, DFNOpenSystem, DFNGetExtendedErrorInformation,

DFNAbortGetDirectExtendedErrorThreadInfo, DFNGetDirectExtendedErrorThreadInfo
5.2.4.97
DFNBreakupErrorstring

The DFNBreakupErrorstring routine will accept an errorstring returned from the DFN card interface and break it up into lines for display. The application can specify what the new-line is (one or more characters) and also the maximum length of the lines. The application must supply the output string to receive the re-formatted errorstring already allocated to be of sufficient size.
DFN_STATUS DFNBreakupErrorstring(
CHAR * cpInputErrorstring,

//[in] the errorstring returned from the DFN interface on a

//
previous error
CHAR * cpOutputErrorstring,

//[out] the returned re-formatted errorstring
CHAR * cpNewLine,

//[in] a string containing the newline character(s) which will
//
be appended at the end of every line
DWORD dwMaxOutputLength,

//[in] the maximum size of the OutputErrorstring which was

//
allocated by the application (in bytes)
DWORD dwMaxLineLength

//[in] the maximum size of a line which an application desires

//
the output lines to be in (in bytes)
);
Parameters:

The cpInputErrorstring is the error string returned through the DFN interface.
The cpOutputErrorstring must be allocated by the application to receive the re-formatted error string.
The cpNewLine is a string which contains one or more characters use to mark the end of a line.
The dwMaxOutputLength is the size in bytes of the allocated cpOutputErrorstring.
The dwMaxLineLength is the maximum size in bytes of lines which the application requests to be returned.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error. Note that this routine always returns DFN_SUCCESS.
Remarks:
Usually the application would have used a try-catch block. The errorstring is available in the catch block with the use of “catch(_com_error e)”. The errorstring is returned by calling the function e.Description(). The function e.Description() can be input directly into this routine as the first argument, or it may be picked up by strcpy to a local string which the application has allocated. The maximum size of the errorstring returned by the DFN interface is 1024 bytes. If the input error string contains embedded newline characters (‘\n’), these locations for a new line will be preserved, but replaced by the specified cpNewLine.
The cpOutputErrorstring must allocated by the application and should be big enough to contain the entire input error string plus the line break characters. The number of these additional charactrers will depend on the line size chosen plus the number of characters used to mark the new line. The cpOutputErrorstring will be returned with the end-of-string character at the end.
The cpNewLine is a string containing the new line character(s) to use to mark the end of a line. Usually in C or C++ applications, the cpNewLine string will contain only the newline character, ‘\n’. However, sometimes an application will want to mark the end of a line in another way. A string which is to be sent to a Java application over a socket, for instance, may want another end of line marker such as “ZZ” so that the regular new line does not get interpreted as an end of transmission. This new line specification is completely application dependent.
The dwMaxOutputLength is the size of the allocated OutputErrorstring. If the size is too short, the routine will truncate the formatting at the specified dwMaxOutputLength.
The dwMaxLineLength specifies the maximum line length, which will be used to break up the input error string. Lines are broken at the nearest blank character before exceeding the max line length. If the input error string does not contain a blank character within the max line length, then the string is still broken at the max line length.
5.2.4.98 DFNSetDriverCommandExecutionTimeout

The DFNSetDriverCommandExecutionTimeout allows the application to set the timeout for the driver to execute individual commands sent to the DFN card, overriding the NT registry setting.
DFN_STATUS DFNSetDriverCommandExecutionTimeout(
ULONG ulTimeout

// timeout to set
)
Parameters:

The ulTimeout specifies the timeout for the driver command execution.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver command execution timeout can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry DriverCmdExectutionTimeout can be found as a REG_DWORD. The default value for this entry is 0x2faf080.
See Also:
DFNGetDriverCommandExecutionTimeout
5.2.4.99 DFNGetDriverCommandExecutionTimeout

The DFNGetDriverCommandExecutionTimeout allows the application to get the timeout which has been set for the driver to execute individual commands sent to the DFN card. The timeout is specified in the NT registry, but may have been overridden by the application using DFNSetDriverCommandExecutionTimeout.
DFN_STATUS DFNGetDriverCommandExecutionTimeout(
ULONG* pulTimeout

// pointer to timeout returned
)
Parameters:
The pulTimeout is the pointer to the timeout specifying the driver command execution timeout returned by this call.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver command execution timeout can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry DriverCmdExectutionTimeout can be found as a REG_DWORD. The default value for this entry is 0x2faf080.
See Also:
DFNSetDriverCommandExecutionTimeout
5.2.4.100 DFNSetEndQueuePendingImagesTimeout

The DFNSetEndQueuePendingImagesTimeout allows the application to set the timeout for the driver to wait for pending image transfer once the downloaded coff file queue has stopped execution, overriding the NT registry setting.
DFN_STATUS DFNSetEndQueuePendingImagesTimeout(
ULONG ulTimeout

// timeout to set
)
Parameters:
The ulTimeout specifies the timeout for the driver to wait for pending image transfer after the end of queue execution has been reached.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver timeout to wait for pending image transfer, after the end of queue execution has been reached, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry EndqPendingImagesTimeout can be found as a REG_DWORD. The default value for this entry is 0x2625a00.
See Also:
DFNGetEndQueuePendingImagesTimeout
5.2.4.101 DFNGetEndQueuePendingImagesTimeout

The DFNGetEndQueuePendingImagesTimeout allows the application to get the timeout for the driver to wait for pending image transfer once the downloaded coff file queue has stopped execution. The timeout is specified in the NT registry, but may have been overridden by the application using DFNSetEndQueuePendingImagesTimeout.
DFN_STATUS DFNGetEndQueuePendingImagesTimeout(
ULONG *pulTimeout

// pointer to timeout returned
)
Parameters:
The pulTimeout is the pointer to the timeout specifying the driver timeout to wait for pending image transfer after the end queue, returned by this call.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver timeout to wait for pending image transfer, after the end of queue execution has been reached, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry EndqPendingImagesTimeout can be found as a REG_DWORD. The default value for this entry is 0x2625a00.
See Also:
DFNSetEndQueuePendingImagesTimeout
5.2.4.102 DFNSetDetectorCommandAckTimeout

The DFNSetDetectorCommandAckTimeout allows the application to set the timeout for the driver to wait for the ACK on commands sent to the detector, overriding the NT registry setting.
DFN_STATUS DFNSetDetectorCommandAckTimeout(
ULONG ulTimeout

// timeout to set
)
Parameters:
The ulTimeout specifies the timeout for the driver to wait for the ACK on a detector command.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver timeout to wait for receiving the ACK after sending a detector command, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry FCDetectorCmdAckTimeout can be found as a REG_DWORD. The default value for this entry is 0x3ff.
See Also:
DFNGetDetectorCommandAckTimeout
5.2.4.103 DFNGetDetectorCommandAckTimeout

The DFNGetDetectorCommandAckTimeout allows the application to get the timeout for the driver to wait for the ACK on commands sent to the detector. The timeout is specified in the NT registry, but may have been overridden by the application using DFNSetDetectorCommandAckTimeout.
DFN_STATUS DFNGetDetectorCommandAckTimeout(
ULONG *pulTimeout

// pointer to timeout returned

)
Parameters:
The pulTimeout is the pointer to the timeout specifying the detector command ACK timeout, for the driver, returned by this call.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the driver timeout to wait for receiving the ACK after sending a detector command, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry FCDetectorCmdAckTimeout can be found as a REG_DWORD. The default value for this entry is 0x3ff.
See Also:
DFNSetDetectorCommandAckTimeout
5.2.4.104 DFNSetFirmwareCommandExecutionTimeout

The DFNSetFirmwareCommandExecutionTimeout allows the application to set the timeout for the DFN card firmware to execute individual commands, overriding the NT registry setting.
DFN_STATUS DFNSetFirmwareCommandExecutionTimeout(
ULONG ulTimeout

// timeout to set
)
Parameters:
The ulTimeout specifies the timeout for the firmware to execute a command.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the firmware timeout to wait for command execution, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry FirmwareCmdExecutionTimeout can be found as a REG_DWORD. The default value for this entry is 0x20000.
See Also:
DFNGetFirmwareCommandExecutionTimeout
5.2.4.105
DFNGetFirmwareCommandExecutionTimeout

The DFNGetFirmwareCommandExecutionTimeout allows the application to set the timeout for the DFN card firmware to execute individual commands. . The timeout is specified in the NT registry, but may have been overridden by the application using DFNSetFirmwareCommandExecutionTimeout.
DFN_STATUS DFNGetFirmwareCommandExecutionTimeout(
ULONG *pulTimeout

// pointer to timeout returned
)
Parameters:
The pulTimeout is the pointer to the timeout specifying the DFN card firmware command execution timeout returned by this call.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The NT registry setting for the firmware timeout to wait for command execution, can be found under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, Dfndrvr, DefaultParameters, Times, where the registry entry FirmwareCmdExecutionTimeout can be found as a REG_DWORD. The default value for this entry is 0x20000.
See Also:
DFNSetFirmwareCommandExecutionTimeout
5.2.4.106
DFNGetQueueVariableByteSize

The DFNGetQueueVariableByteSize routin allows a user to obtain the byte size of a queue variable stored in the symbol table created when EAB memory is loaded. The inovation of full queue variables allows specification of a symbol name within a particular frame. The bytes are now packed in EAB memory so that, depending on type, the symbol will use 2, 3 or 4 bytes. This routine can be called prior to changing a queue variable so that the correct number of bytes can be sent with the call to change the variable.
DFN_STATUS DFNGetQueueVariableByteSize(
CHAR *cpSymbolName,
// [in] name of symbol at destination address within EAB
// memory which is to be changed

CHAR *cpFrameName,

// [in] name of frame that the symbol belongs to

ULONG * pulNumBytes
 // [out] number of bytes used for the specified symbol

 // (2, 3 or 4 as appropriate)
)
Parameters:
The cpSymbolName is the name of the queue variable at the destination address within EAB memory. The symbol name will be mapped to the destination address using the symbol table created when the COFF file was loaded. Symbol names must be unique in the first 8 characters.
The cpFrameName is the name of the coff file frame that the queue variable belongs to.
The pulNumBytes contains the returned number of bytes used for the value of the specified symbol of the specified frame.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Prior to revision 3.5, all queue variables contained 8 bytes. With revision 3.5 and full queue variables, the variables are packed into EAB memory, using only the number of bytes needed.
Below is a list of examples of the number of bytes per queue variable type:
The two arguments of the Send command each use 4 bytes.
The Delay queue variable requires 4 bytes.
The Wait queue variable and the Flag queue variable each use 3 bytes.
The two arguments of the LookKN command each use 2 bytes.
The first argument of the LoopKF command uses 2 bytes, while the second argument of the LoopKF command uses 3 bytes.
See Also: DFNReadQueueVariable, DFNChangeQueueVariable
5.2.4.107
DFNSetRTBImmuneToSoftReset

The DFNSetRTBImmuneToSoftReset allows the application to set the RTB_no_reset line in the EP enable register (bit 3) so that when a DFNSoftReset is done, the RTB lines will not be affected. Applications that are using the RTB lines to control hardware may want to use this feature.
DFN_STATUS DFNSetRTBImmuneToSoftReset()
Parameters: none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Before acquisition of a sequence is done, the application must issue the soft reset so that the DMA pointers are reset back to the beginning. If the RTB_no_reset line in the EP enable register is not set, then the RTB lines will also be reset on a soft reset. For applications that are using the RTB lines to control other hardware, the atomatic reset of the RTB lines at the beginning of a sequence may be undesireable. The application can use this DFNSetRTBImmuneToSoftReset call to keep the DFNSoftReset from affecting the state of the RTB lines.
RTB lines are always reset on a DFNHardReset, no matter how the RTB_no_reset line is set. The EP enable register is only initialized on a DFNHardReset.
This call is equivalent to using DFNPoke(0xA0003C, 0x08) or the driver tool dfnw, with the same parameters.
See Also: DFNSetRTBResponsiveToSoftReset
5.2.4.108
DFNSetRTBResponsiveToSoftReset

The DFNSetRTBResponsiveToSoftReset allows the application to unset the RTB_no_reset line in the EP enable register (bit 3) so that when a DFNSoftReset is done, the RTB lines will also be reset. Applications that are using the RTB lines to control hardware may want to use this feature.
DFN_STATUS DFNSetRTBResponsiveToSoftReset()
Parameters: none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
Before acquisition of a sequence is done, the application must issue the soft reset so that the DMA pointers are reset back to the beginning. If the RTB_no_reset line in the EP enable register is not set, then the RTB lines will also be reset on a soft reset. For applications that are using the RTB lines to control other hardware, the atomatic reset of the RTB lines at the beginning of a sequence may be undesireable. The application can use DFNSetRTBImmuneToSoftReset call to keep the DFNSoftReset from affecting the state of the RTB lines. Later, when the application wants the soft reset to also reset the RTB lines, it can call this DFNSetRTBResponsiveToSoftReset.
RTB lines are always reset on a DFNHardReset, no matter how the RTB_no_reset line is set. The EP enable register is only initialized on a DFNHardReset.
This call is equivalent to using DFNPoke(0xA00200, 0x12000008) or the driver tool dfnw, with the same parameters.
See Also: DFNSetRTBImmuneToSoftReset
5.2.4.109 DFNChangeMultipleQueueVariables (IDFNCardC only)

The DFNChangeMultipleQueueVariables routine is an efficient way of doing multiple queue variable changes in one call, which will execute faster than individual calls to DFNChangeQueueVariable. Because the routine uses a structure to pass the arguments, however, this routine is limited to the C interface for DCOM.
DFN_STATUS DFNChangeMultipleQueueVariables(
struct tMultiQV *tMultiQVar,

// [in] structure containing multiple queue variable parameters
ULONG **ppulMailbox0

// [out] array of actual unsigned long word written to the
// command register for each queue variable changed
);
The following typedefs are declared in the DLL DCOM interface and do not have to be declared again in the application:
typedef union _uByteBuffer

// union for equivalencing bytes with ULONG to pass Value
{

ULONG ulByteBuffer;

CHAR cByteBuffer[4];
}uByteBuffer;
typedef struct tOneQV

// structure for changing one queue variable
{

CHAR cSymbolName[36]; // queue variable symbol name; must be unique in first 8 chars

CHAR cFrameName[36];
 // frame name that the queue variable belongs to; must be
 // unique in first 8 chars

uByteBuffer Value;
 // value of queue variable (2, 3 or 4 bytes in length)

short sValueSwitch; // 0 when ulByteBuffer used, 1 when cByteBuffer used for Value

ULONG ulNumBytes;
 // number of bytes in cByteBuffer (2, 3 or 4 bytes)
}tOneQVar;
typedef struct tMultiQV

// structure to pass for changing multiple queue variables
{

ULONG ulNumQVars;

// number of queue variables to change

tOneQVar *sTheQVars;

// pointer to allocated array of
// tOneQVar[ulNumQVars] structures
}tMultiQVars;
Parameters:
The uMultiQVar is a pointer to the structure used to hold the parameters of multiple queue variables. The application is responsible for allocating the memory for this structure.
The ppulMailbox0 is the pointer to an array to hold the results of changing each queue variable. This array must be dimensioned by the number of queue variables to change. The application is responsible for allocating the memory for this array.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
A queue variable is specified by it's symbol name and the frame to which it belongs. These names must be unique in the first 8 characters.
A queue variable holds a value of 2, 3 or 4 bytes. To change a queue variable value, the number of bytes in the request must match the number of bytes that the specified queue variable uses. The number of bytes used by a particular queue variable can be obtained, before making this call, from DFNGetQueueVariableByteSize.
For example, to fill in the parameters for two queue variables to be changed:
Struct tMultiQV Mqv;
ULONG theResults[2];
ULONG ulMyValue;
Mqv.ulNumQVars = 2;
// changing 2 queue variables
// allocate the memory needed for the multiple queue variable parameters
Mqv.sTheQVars = (tOneQVar *)malloc(Mqv.ulNumQVars * sizeof(tOneQVar));
sprintf(Mqv.sTheQVars[0].cSymbolName,"mysymbol1");
sprintf(Mqv.sTheQVars[0].cFrameName,"myframe");
ulMyValue = 0x010203; // mysymbol1 takes 3 bytes
Mqv.sTheQVars[0].uByteBuffer.ulValue = ulMyValue;
Mqv.sTheQVars[0].sValueSwitch = 0; // always 0 for passing a ULONG
Mqv.StheQVars[0].ulNumBytes = 3;
sprintf(Mqv.sTheQVars[1].cSymbolName,"mysymbol2");
sprintf(Mqv.sTheQVars[1].cFrameName,"myframe");
ulMyValue = 0x0A0B; // mysymbol2 takes 2 bytes
Mqv.sTheQVars[1].uByteBuffer.ulValue = ulMyValue;
Mqv.sTheQVars[1].sValueSwitch = 0; // always 0 for passing a ULONG
Mqv.StheQVars[1].ulNumBytes = 2;
ppDFN->DFNChangeMultipleQueueVariables(&Mqv, &theResults);

free(Mqv.sTheQVars);

Note that no error processing was shown in the above example.
The DFN card must be in NORMAL or RUN or TEST or RUN_T mode to write to EAB memory. This routine will automatically put the card into the NORMAL or TEST mode if it is not already in NORMAL or RUN or TEST or RUN_T mode. NORMAL or TEST mode is the mode the DFN card is in just prior to an acquisition(RUN or RUN_T). The DFN card may be put into NORMAL or TEST mode without actually beginning an acquisition.
A buffer written to EAB memory for a queue variable value cannot exceed 4 bytes.
See Also:
DFNGetEABMemSizes, DFNLoadEvents, DFNReadEABMemory, DFNReadQueueVariable, DFNGetQueueVariableByteSize
5.2.4.110 DFNEnableAutoscrubScrubCommand

The DFNEnableAutoscrubScrubCommand allows the application to specify that when the autoscrub timer is enabled, the autoscrub command will be sent. If the autoscrub timer is not enabled, then enabling the autoscrub command has no effect.
DFN_STATUS DFNEnableAutoscrubScrubCommand()
Parameters: none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The autoscrub timer is enabled by using the DFNEnableAutoscrub command.
See Also:
DFNDisableAutoscrubScrubCommand, DFNEnableAutoscrub, DFNDisableAutoscrub.
5.2.4.111
DFNDisableAutoscrubScrubCommand

The DFNEnableAutoscrubScrubCommand allows the application to specify that when the autoscrub timer is enabled, the autoscrub command will not be sent, but the autoscrub timer still works. If the autoscrub timer is not enabled, then disabling the autoscrub command has no effect.
DFN_STATUS DFNDisableAutoscrubScrubCommand()
Parameters: none
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
The autoscrub timer is enabled by using the DFNEnableAutoscrub command, and disabled using the DFNDisableAutoscrub command. When the timer is enabled, the commands can be enabled by using DFNEnableAutoscrubScrubCommand.
See Also:
DFNEnableAutoscrubScrubCommand, DFNEnableAutoscrub, DFNDisableAutoscrub.
5.2.4.112 DFNBeginSequenceSendi

The DFNBeginSequenceSendi function makes the sequence current. For acquisition sequences, the DFNBeginSequenceSendi function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images; then DLL begins mapping of the images. For both acquisition and chitchat sequences, the DFNBeginSequenceSendi begins reading response logs. If the application calles this routine chitchat sequences, the sendi portion is ignored. Sendi is only used for acquisition sequences.
For acquisition sequences, the sendi specification allows for sending detector commands during sequence execution. The sendi mechanism is specified with a special adjacent set of sendi queue variables, the first of which is specified in this call.
DFN_STATUS
DFNBeginSequenceSendi(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName,

// [in]coff file name containing events
CHAR *

cpSendiQVarName,

// [in] sendi queue variable symbol name
CHAR *

cpSendiFrameName

// [in] the frame name that the sendi queue
// variable is active in
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening thesequence. The sequence identifier is a negative number for chitchat sequences, and a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information. For chitchat sequences, this parameter is NULL.
The cpSendiQVarName is a null terminated character string containing the first sendi queue variable name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
The cpSendiFrameName is a null terminated character string containing the sendi frame name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition and chitchat sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition or chitchat. Once the user is actually ready to begin the acquisition or chitchat, the DFNBeginSequence function is called. The coff file name parameter is NULL for chitchats because there are no events running during a chitchat. For acquisition sequences, the coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
For acquisition sequences, the user would then call DFNGetNextFrame or DFNGetNextFrameTimeout to retrieve the images. DFNAbortSequence can be used to halt an acquitition or chitchat in progress. DFNCloseSequence is used to unmap any remaining mapped images. DFNBeginSequence is not used for archive mode, manual mode, sequential or random playback or retrieving response logs. After the sequence has stopped acquisition or chitchat, the response logs may be reviewed in entirity or on a per-image section. Response logs can be retrieved during active response log capture, but not associated with an image number (see DFNGetResponseLogOfRunningSequence).
For acquisition sequences, the coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceSendi. The coff file must be downloaded for each sequence before the acquisition begins. For a coff file to be loaded, the driver must have a soft reset done and then be placed in normal or test mode. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
A soft reset is done automatically on the DFN card when loading events.
The sendi mechanism enables detector commands (those involving the fibre channel) to be sent during sequence acquisition. The mechanism involves setting up two adjacent queue variables in the coff file which act as place holders for the detector commands sent during event queue execution. The coff file has to be set up to contain a Sendi command in one frame. The Sendi command can only exist in one frame of the coff file, but it may be contained within a loop. See the documentation on the event compiler for details of setting up for the Sendi command. Beginning a sequence with the sendi enabled requires that the name of the first of the two sendi queue variables be specified as well as the name of the frame that the queue variable belongs to.
Sendi Example of a Perl Script called 10frms.pm for a cardiac panel:
package all_frame;

require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(frame);

use event;

these scan parameters are different from cardiac defaults

%setup_opts = ('ramp_select' => 3,

 'arc_bandwidth'=> 1,

 'arc_feedback' => 2,

 'digital_test' => 1,

 'arc_gain' => 1);

$setup_word = make_setup_word('c', \%setup_opts);

$setup_cmd = 0x4020;

sequence_begin();

frame(NULL, NULL, 1);

sequence_end();

SendI queue variable is "cmd" and argument is "val"

These need to be initialized here, but the values do not

matter, since the SendI will over-write them in use.

sub frame

{

$frame_name = 'frame';

%qv = ('cmd' => 0x8000000,

 'val' => 0x123456);

%qp = ();

compile_init(@_,\%qp,\%qv,$frame_name);

#send parameters to turn on test images

Send($setup_cmd, $setup_word);

Do 3 scrub frames

 Send(0x00000000,0x00000000);

 Delay(100000);

 Send(0x00000000,0x00000000);

Delay(100000);

Send(0x00000000,0x00000000);

Delay(100000);

Acquire 10 images and allow for sendi command after each one

Send(0x800000,0x0);

Delay(40*500);

SendI('cmd', 'val');

LoopKN(3,8);

compile_finit();

}

1;

And here is an example of what might be in the application code making use of the above perl script:

ULONG ulAns1, ulAns2; // answer words from sending detector cmd

Long snum; // sequence number

Int i;

Int NumberOfFrames = 10;

// begin a sequence and enable sending commands during execution

pDFN->DFNBeginSequenceSendi(snum,"10frms.bin","cmd","frame");

// send a detector command to get panel signature

// with the Sendi Trap turned on

pDFN->DFNSendDetectorCommand(0x00001002, 0x00000000,

0x1, 0x0, &ulAns1, &ulAns2);

_tprintf(_T("SendDetectorCMD: Ans1=0x%lX, Ans2=0x%lX\n"),ulAns1,

ulAns2);

// now send a detector command with the Sendi Trap turned off

pDFN->DFNSendDetectorCommand(0x00001002, 0x00000000,

0x0, 0x0, &ulAns1, &ulAns2);

_tprintf(_T("SendDetectorCMD: Ans1=0x%lX, Ans2=0x%lX\n"),ulAns1,

ulAns2);

for (i=0;i< NumberOfFrames;i++)

{

try

{

pDFN->DFNGetNextFrame(&FrameNumber,&FrameAddress);

_tprintf(_T("Real time %d mapped frame: %lu at 0x%08X\n"),

i,FrameNumber,FrameAddress);

// display frames here

// now send a detector command with the Sendi Trap turned

//off

pDFN->DFNSendDetectorCommand(0x00001002, 0x00000000,

0x0, 0x0, &ulAns1, &ulAns2);

_tprintf(_T("SendDetectorCMD: Ans1=0x%lX, Ans2=0x%lX\n"),

 ulAns1,ulAns2);

}

catch(_com_error e)

{

// handle error

}
} // end for i
In the above example the event queue is running while detector commands to get the panel signature are being sent. Some of the commands are actually executed while the queue is running and some after the queue is completed. Because the commands are sent with the Sendi Trap turned off after the first command, there is no error returned when the commands are executed after the queue has ended. Of course in a real application, the commands being sent to the detector would probably be alot more interesting than getting the panel signature. Perhaps an application may want to monitor panel temperature.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNGetNextFrame,

DFNGetNextFrameTimeout, DFNLoadEvents, DFNResetFC, DFNBeginChitChat,

DFNBeginSequence, DFNBeginSequenceNoMapping,DFNBeginSequenceNoLog,

DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceSendiNoMapping,

DFNBeginSequenceSendiNoLog, DFNBeginSequenceSendiNoMappingNoLog,

DFNSendDetectorCommand
5.2.4.113 DFNBeginSequenceSendiNoMapping

The DFNBeginSequenceSendiNoMapping function makes the acquisition sequence current The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL begins reading response logs, but no image mapping is done. The sendi specification allows for sending detector commands during sequence execution. The sendi mechanism is specified with a special adjacent set of sendi queue variables, the first of which is specified in this call.
DFN_STATUS
DFNBeginSequenceSendiNoMapping(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName,

// [in]coff file name containing events
CHAR *

cpSendiQVarName,

// [in] sendi queue variable symbol name
CHAR *

cpSendiFrameName

// [in] the frame name that the sendi queue
// variable is active in
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:

The DFNBeginSequenceSendiNoMapping function is not used for chitchat sequences.
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping, the DFNBeginSequenceSendiNoMapping function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
If the user mistakenly calls DFNGetNextFrame after beginning the sequence with no mapping, the sequence end-of-file error code will be returned.
DFNBeginSequenceSendiNoMapping is only used for image acquisition when real time image mapping is not desired and when detector commands are enabled for sending during sequence acquisition. Response logs are still captured. After the sequence has stopped acquisition, the response logs may be reviewed in entirity or on a per-image section. Response logs can be retrieved during active response log capture, but not on a per-image section (see DFNGetResponseLogOfRunningSequence).
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceSendiNoMapping. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The DFNBeginSequene, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceSendiNoMapping, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMappingNoLog, DFNBeginSequenceSendiNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
A soft reset is done automatically on the DFN card when loading events.
The sendi mechanism enables detector commands (those involving the fibre channel) to be sent during sequence acquisition. The mechanism involves setting up two adjacent queue variables in the coff file which act as place holders for the detector commands sent during event queue execution. The coff file has to be set up to contain a Sendi command in one frame. The Sendi command can only exist in one frame of the coff file, but it may be contained within a loop. See the documentation on the event compiler for details of setting up for the Sendi command. Beginning a sequence with the sendi enabled requires that the name of the first of the two sendi queue variables be specified as well as the name of the frame that the queue variable belongs to.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, DFNResetFC, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceSendi,

DFNBeginSequenceSendiNoLog, DFNBeginSequenceSendiNoMappingNoLog,

DFNSendDetectorCommand
5.2.4.114 DFNBeginSequenceSendiNoMappingNoLog

The DFNBeginSequenceSendiNoMappingNoLog function makes the acquisition sequence current The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL does not acquire response logs and no image mapping is done. Only the images are acquired into memory. The sendi specification allows for sending detector commands during sequence execution. The sendi mechanism is specified with a special adjacent set of sendi queue variables, the first of which is specified in this call.
DFN_STATUS
DFNBeginSequenceSendiNoMappingNoLog(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName,

// [in]coff file name containing events
CHAR *

cpSendiQVarName,

// [in] sendi queue variable symbol name
CHAR *

cpSendiFrameName

// [in] the frame name that the sendi queue
// variable is active in
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
The cpSendiQVarName is a null terminated character string containing the first sendi queue variable name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
The cpSendiFrameName is a null terminated character string containing the sendi frame name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping or response logs, the DFNBeginSequenceSendiNoMappingNoLog function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
If the user mistakenly calls DFNGetNextFrame after beginning the sequence with no mapping, the sequence end-of-file error code will be returned.
DFNBeginSequenceSendiNoMappingNoLog is only used for image acquisition when real time image mapping and response log acquisition is not desired and when detector commands are enabled for sending during sequence execution. After the sequence has stopped acquisition, the sequence of images may be played back.
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceSendiNoMappingNoLog. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoMappingNoLog, DFNBeginSequeneNoLog, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMapping, DFNBeginSequenceSendiNoMappingNoLog, DFNBeginSequenceSendiNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
A soft reset is done automatically on the DFN card when loading events.
The sendi mechanism enables detector commands (those involving the fibre channel) to be sent during sequence acquisition. The mechanism involves setting up two adjacent queue variables in the coff file which act as place holders for the detector commands sent during event queue execution. The coff file has to be set up to contain a Sendi command in one frame. The Sendi command can only exist in one frame of the coff file, but it may be contained within a loop. See the documentation on the event compiler for details of setting up for the Sendi command. Beginning a sequence with the sendi enabled requires that the name of the first of the two sendi queue variables be specified as well as the name of the frame that the queue variable belongs to.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, DFNResetFC, DFNBeginSequence, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMapping, DFNBeginSequenceSendiNoLog, DFNSendDetectorCommand
5.2.4.115 DFNBeginSequenceSendiNoLog

The DFNBeginSequenceSendiNoLog function makes the acquisition sequence current. The function loads the events from the coff file and makes a call to the driver to begin DMA transfers of images. The DLL does not acquire response logs, but images are acquired and mapping is done. The sendi specification allows for sending detector commands during sequence execution. The sendi mechanism is specified with a special adjacent set of sendi queue variables, the first of which is specified in this call.
DFN_STATUS
DFNBeginSendiSequenceNoLog(
long

lSequenceNum,

// [in] sequence identifier
CHAR *

cpCOFFileName,

// [in]coff file name containing events
CHAR *

cpSendiQVarName,

// [in] sendi queue variable symbol name
CHAR *

cpSendiFrameName

// [in] the frame name that the sendi queue
// variable is active in
);
Parameters:

The unique sequence identifier, lSequenceNum, was returned to the user upon opening the sequence. The sequence number must be a number greater than or equal to zero for acquisition sequences.
The COFFileName is a null terminated character string containing the coff file name with full path information.
The cpSendiQVarName is a null terminated character string containing the first sendi queue variable name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
The cpSendiFrameName is a null terminated character string containing the sendi frame name, which must be unique within the first 8 characters. This string cannot exceed 64 bytes.
Return value:
DFN_STATUS will be DFN_SUCCESS for no error
Remarks:
For acquisition sequences, the sequences may be allocated with DFNOpenSequence for setting up, without making the sequence current and beginning actual acquisition. Once the user is actually ready to begin the acquisition with no image mapping, the DFNBeginSequenceSendiNoLog function is called. The coff file information is downloaded to the DFN driver along with the size of the event buffer, and the offsets for the event queue and queue variables. See DFNLoadEvents for more information.
DFNBeginSequenceSendiNoLog is only used for image acquisition and mapping when response log acquisition is not desired and when detector commands are enabled for sending during sequence execution.
The coff file name may be passed in NULL here if the user chooses to call the DFNLoadEvents function explicitly before calling DFNBeginSequenceNoLog. The coff file must be downloaded for each sequence before the acquisition begins. The driver must have a soft reset done and then be placed in normal or test acquisition mode before downloading the coff file. The
DFNBeginSequene, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceSendiNoMapping, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMappingNoLog, DFNBeginSequenceSendiNoLog and DFNLoadEvents functions make sure that the driver is in the proper mode before downloading the coff file. If the coff file name is passed in as NULL to this routine, no download will be attempted and no error will result unless the user has forgotten to download the coff file using the DFNLoadEvents function. In that case, the driver will return an error when acquisition is begun.
A soft reset is done automatically on the DFN card when loading events.
The sendi mechanism enables detector commands (those involving the fibre channel) to be sent during sequence acquisition. The mechanism involves setting up two adjacent queue variables in the coff file which act as place holders for the detector commands sent during event queue execution. The coff file has to be set up to contain a Sendi command in one frame. The Sendi command can only exist in one frame of the coff file, but it may be contained within a loop. See the documentation on the event compiler for details of setting up for the Sendi command. Beginning a sequence with the sendi enabled requires that the name of the first of the two sendi queue variables be specified as well as the name of the frame that the queue variable belongs to.
See Also:
DFNOpenSequence, DFBAbortSequence, DFNCloseSequence, DFNLoadEvents, , DFNResetFC, DFNBeginSequence, DFNBeginSequenceNoMappingNoLog, DFNBeginSequenceNoMapping, DFNBeginSequenceNoLog, DFNBeginSequenceSendi, DFNBeginSequenceSendiNoMappingNoLog, DFNBeginSequenceSendiNoMapping,

DFNSendiDetectorCommand
5.2.5 HRESULT DFN DLL Errors

The DFN DLL error codes are organized so that in HEX, errors begin with E and warnings begin with A. The next code 013 is the DLL facility code. If this next code is 007, then the error comes from the DFN driver and is reported by the DLL. The bottom 4 digits on a DLL error or warning define the particular error code. The error is returned as the DFN_STATUS of type HRESULT on every DFN DLL call.
5.2.5.1
DFN DLL Success

The error code for no error is:

DFN_SUCCESS = 0L

5.2.5.2
DFN DLL Errors

DFN_INVALID_PARAMETER

E0130001

DFN_SEQUENCE_NOT_RUNNING
E0130002

DFN_INSUFFICIENT_RESOURCES
E0130003

DFN_SEQUENCE_IN_PROGRESS
E0130004

DFN_SEQUENCE_NOT_FOUND
E0130005

DFN_DRIVER_NOT_OPENED
E0130006

DFN_ANSWER_TOO_SHORT

E0130007

DFN_SYSTEM_BUSY

E0130008

DFN_SEQUENCE_LIST_INFO_ERR
E0130009

DFN_SEQUENCE_NOT_CURRENT
E013000A

DFN_CREATE_THREAD_FAILED
E013000B

DFN_BSTR_FREE_ERR

E013000C

DFN_UNKNOWN_EVENT_SIGNALED
E013000D

DFN_IOCTL_TIMEOUT

E013000E

DFN_CHITCHAT_NOT_RUNNING
E013000F

DFN_SEQUENCE_THREAD_DIED
E0130010

DFN_SELFTEST_IN_PROGRESS
E0130011

DFN_STATECHANGE_IN_PROGRESS
E0130012

DFN_IMAGEMAPPING_THREAD_DIED
E0130013

DFN_ILLEGAL_MAPPING_MODE
E0130014

DFN_SEQUENCE_NOT_COMPLETE
E0130015

DFN_RL_READ_OUT_OF_SYNCH
E0130016

DFN_PROCESS_RL_THREAD_DIED
E0130017

DFN_RL_TOTAL_BYTES_WRONG
E0130018

DFN_CMD_BITMASK_WRONG

E0130019

DFN_DETQ_SIZE_WRONG

E013001A

DFN_QVARS_SIZE_WRONG

E013001B

DFN_DETQ_OFFSET_WRONG

E013001C

DFN_QVARS_OFFSET_WRONG

E013001D

DFN_EVENT_BUFSIZE_WRONG

E013001E

DFN_EVENT_BUFFER_CORRUPT
E013001F

DFN_FILE_OPEN_ERROR

E0130020

DFN_FILE_READ_ERROR

E0130021

DFN_FILE_WRITE_ERROR

E0130022

DFN_RTB_DIRECTION_ERROR

E0130023

DFN_IOCTL_TIMEOUT_ABORT

E0130024

DFN_READ_RL_THREAD_DIED

E0130025

DFN_TIMEOUT_WAIT_FOR_IDLE
E0130026

DFN_SEMAPHORE_TIMEOUT

E0130027

5.2.5.3
DFN DLL WARNINGS

DFN_DUPLICATE_SEQUENCE_ID
A0130065

DFN_DUPLICATE_SEQUENCE_NAME
A0130066

DFN_NOT_CHITCHAT_SEQUENCE
A0130067

DFN_NOT_ACQUISITION_SEQUENCE A0130068

DFN_DUPLICATE_FRAME_NUMBER
A0130069

DFN_END_OF_FILE
A013006A

DFN_WRONG_MAPPING_EVENT

A013006B

DFN_STRING_TOO_SHORT

A013006C

DFN_FRAME_NOT_FOUND

A013006D

DFN_BYTEOFFSET_INVALID

A013006E

DFN_EXISTING_CHITCHAT

A013006F

DFN_CANNOT_ACCESS_COFFILE
A0130070

DFN_WRONG_FRAME_NUMBER

A0130071

DFN_FRAME_DELETED

A0130072

DFN_SEQUENCE_HAS_DATA
A0130073

DFN_WRAP_MODE_ILLEGAL

A0130074

DFN_BEGIN_TIME_UNAVAILABLE
A0130075

DFN_EVENT_BUFFER_TOO_LARGE
A0130076

DFN_ROI_SPECIFICATION_WRONG
A0130077

DFN_SET_FRAME_SIZE_WRONG
A0130078

DFN_COFFGEN_FAILED

A0130079

DFN_COFF_PARAM_OUT_OF_RANGE
A013007A

DFN_REORDER_MODE_ILLEGAL
A013007B

DFN_WORD_SWAP_MODE_ILLEGAL
A013007C

DFN_NO_SEQ_RLOGS_EXIST

A013007D

