
areaDetector: EPICS software for area detectors

Table of Contents
 areaDetector: EPICS Area Detector Support...1

 Release 1-8..1
 October 1, 2012...1
 Mark Rivers...1
 University of Chicago...1
 Contents..1
 Overview...2
 Architecture...2
 Implementation details..4

 asynPortDriver..5
 NDArray...5
 NDArrayPool..5
 NDAttribute..5
 NDAttributeList..6
 PVAttribute...6
 paramAttribute..6
 asynNDArrayDriver...6
 ADDriver..10

 Guidelines and rules for drivers..14
 MEDM screens...14
 Installation, configuration, and running..18

 Installation: source code version..18
 Installation: prebuilt version...18
 Installation: medm..19
 Configuration..19
 Running the IOC...20

 Acknowledgements and licenses..20

areaDetector: EPICS software for area detectors

i

areaDetector: EPICS software for area detectors

ii

areaDetector: EPICS Area Detector Support

Release 1-8

October 1, 2012

Mark Rivers

University of Chicago

Contents

Overview•
Architecture•
Implementation details

asynPortDriver♦
NDArray♦
NDArrayPool♦
NDAttribute♦
NDAttributeList♦
PVAttribute♦
paramAttribute♦
asynNDArrayDriver♦

•

Detector drivers
ADDriver♦
Guidelines and rules for drivers♦
ADSC driver♦
Andor driver♦
Bruker driver♦
Firewire Linux driver♦
Firewire Windows driver♦
mar345 driver♦
MarCCD driver♦
Perkin-Elmer flat panel driver♦
Pilatus driver♦
Prosilica driver♦
PVCAM driver♦
Roper driver♦
Simulation detector driver♦
URL driver♦

•

Plugins
NDPluginDriver♦
Guidelines and rules for plugins♦
NDPluginStdArrays♦
NDPluginFile♦
NDPluginROI♦
NDPluginStats♦

•

 areaDetector: EPICS Area Detector Support 1

http://controls.diamond.ac.uk/downloads/support/firewireDCAM/index.html

NDPluginProcess♦
NDPluginOverlay♦
NDPluginTransform♦
NDPluginColorConvert♦

MEDM screens•
Viewers

ImageJ Viewer♦
IDL Viewer♦

•

Installation, configuration, and startup•
Acknowledgments and licenses•

Overview

The areaDetector module provides a general-purpose interface for area (2-D) detectors in EPICS. It is intended to
be used with a wide variety of detectors and cameras, ranging from high frame rate CCD and CMOS cameras,
pixel-array detectors such as the Pilatus, and large format detectors like the MAR-345 online imaging plate.

The goals of this module are:

Minimize the amount of code that needs to be written to implement a new detector.•
Provide a standard interface defining the functions and parameters that a detector driver must support.•
Provide a set of base EPICS records that will be present for every detector using this module. This allows
the use of generic EPICS clients for displaying images and controlling cameras and detectors.

•

Allow easy extensibility to take advantage of detector-specific features beyond the standard parameters.•
Have high-performance. Applications can be written to get the detector image data through EPICS, but an
interface is also available to receive the detector data at a lower-level for very high performance.

•

Provide a mechanism for device-independent real-time data analysis such as regions-of-interest and
statistics.

•

Provide detector drivers for commonly used detectors in synchrotron applications. These include Prosilica
GigE video cameras, IEEE 1394 (Firewire) cameras, ADSC and MAR CCD x-ray detectors, MAR-345
online imaging plate detectors, the Pilatus pixel-array detector, Roper Scientific CCD cameras, and the
Perkin-Elmer amorphous silicon detector.

•

Architecture

The architecture of the areaDetector module is shown below.

areaDetector: EPICS software for area detectors

2 Contents

http://www.aps.anl.gov/epics/

From the bottom to the top this architecture consists of the following:

Layer 1. This is the layer that allows user written code to communicate with the hardware. It is usually
provided by the detector vendor. It may consist of a library or DLL, of a socket protocol to a driver, a
Microsoft COM interface, etc.

•

Layer 2. This is the driver that is written for the areaDetector application to control a particular detector.
It is written in C++ and inherits from the ADDriver class. It uses the standard asyn interfaces for control
and status information. Each time it receives a new data array it can pass it as an NDArray object to all
Layer 3 clients that have registered for callbacks. This is the only code that needs to be written to

•

areaDetector: EPICS software for area detectors

Architecture 3

implement a new detector. Existing drivers range from 800 to 1800 lines of code.
Layer 3. Code running at this level is called a "plug-in". This code registers with a driver for a callback
whenever there is a new data array. The existing plugins implement file saving (NDPluginFile),
region-of-interest (ROI) calculations (NDPluginROI), color mode conversion (NDPluginColorConvert),
and conversion of detector data to standard EPICS array types for use by Channel Access clients
(NDPluginStdArrays). Plugins are normally written in C++ and inherit from NDPluginDriver. Existing
plugins range from 300 to 800 lines of code.

•

Layer 4. This is standard asyn device support that comes with the EPICS asyn module.•
Layer 5. These are standard EPICS records, and EPICS database (template) files that define records to
communicate with drivers at Layer 2 and plugins at Layer 3.

•

Layer 6. These are EPICS channel access clients, such as MEDM that communicate with the records at
Layer 5. areaDetector includes two client applications that can display images using EPICS waveform
and other records communicating with the NDPluginStdArrays plugin at Layer 3. One of these clients is
an ImageJ plugin, and the other is a freely runnable IDL application.

•

The code in Layers 1-3 is essentially independent of EPICS. There are only 2 EPICS dependencies in this code.

libCom. libCom from EPICS base provides operating-system independent functions for threads, mutexes,
etc.

1.

asyn. asyn is a module that provides interthread messaging services, including queueing and callbacks.2.

In particular it is possible to eliminate layers 4-6 in the architecture shown in Figure 1, providing there is a
programs such as the high-performance GUI shown in Layer 3. This means that it is not necessary to run an
EPICS IOC or to use EPICS Channel Access when using the drivers and plugins at Layers 2 and 3.

The plugin architecture is very powerful, because new plugins can be written for application-specific purposes.
For example, a plugin could be written to analyze images and find the center of the beam, and such a plugin
would then work with any detector driver. Plugins are also powerful because they can be reconfigured at run-time.
For example the NDPluginStdArrays can switch from getting its array data from a detector driver to an
NDPluginROI plugin. That way it will switch from displaying the entire detector to whatever sub-region the ROI
driver has selected. Any Channel Access clients connected to the NDPluginStdArrays driver will automatically
switch to displaying this subregion. Similarly, the NDPluginFile plugin can be switched at run-time from saving
the entire image to saving a selected ROI, just by changing its input source. Plugins can be used to form an image
processing pipeline, for example with a detector providing data to a color convert plugin, which feeds an ROI
plugin, which feeds a file saving plugin. Each plugin can run in its own thread, and hence in its own core on a
modern multi-core CPU.

The use of plugins is optional, and it is only plugins that require the driver to make callbacks with image data. If
there are no plugins being used then EPICS can be used simply to control the detector, without accessing the data
itself. This is most useful when the vendor provides an API has the ability to save the data to a file and an
application to display the images.

What follows is a detailed description of the software, working from the bottom up. Most of the code is object
oriented, and written in C++.

Implementation details

The areaDetector module depends heavily on asyn. It is the software that is used for interthread communication,
using the standard asyn interfaces (e.g. asynInt32, asynOctet, etc.), and callbacks. In order to minimize the
amount of redundant code in drivers, areaDetector has been implemented using C++ classes. The base classes,

areaDetector: EPICS software for area detectors

4 Implementation details

http://www.aps.anl.gov/epics/base/R3-14/10-docs/AppDevGuide.pdf
http://www.aps.anl.gov/epics/modules/soft/asyn/
http://www.aps.anl.gov/epics/modules/soft/asyn/

from which drivers and plugins are derived, take care of many of the details of asyn and other common code.

asynPortDriver

Detector drivers and plugins are asyn port drivers, meaning that they implement one or more of the standard asyn
interfaces. They register themselves as interrupt sources, so that they do callbacks to registered asyn clients when
values change. They inherit from the asynPortDriver base C++ class that is provided in the asyn module. That
base class handles all of the details of registering the port driver, registering the supported interfaces, and
registering the required interrupt sources. It also provides a parameter library for int, double, and string
parameters indexed by the integer index values defined in the driver. The parameter library provides methods to
write and read the parameter values, and to perform callbacks to registered clients when a parameter value has
changed. The asynPortDriver class documentation describes this class in detail.

NDArray

The NDArray (N-Dimensional array) is the class that is used for passing detector data from drivers to plugins. An
NDArray is a general purpose class for handling array data. An NDArray object is self-describing, meaning it
contains enough information to describe the data itself. It can optionally contain "attributes" (class NDAttribute)
which contain meta-data describing how the data was collected, etc.

An NDArray can have up to ND_ARRAY_MAX_DIMS dimensions, currently 10. A fixed maximum number of
dimensions is used to significantly simplify the code compared to unlimited number of dimensions. Each
dimension of the array is described by an NDDimension structure. The NDArray class documentation describes
this class in detail.

NDArrayPool

The NDArrayPool class manages a free list (pool) of NDArray objects. Drivers allocate NDArray objects from
the pool, and pass these objects to plugins. Plugins increase the reference count on the object when they place the
object on their queue, and decrease the reference count when they are done processing the array. When the
reference count reaches 0 again the NDArray object is placed back on the free list. This mechanism minimizes the
copying of array data in plugins. The NDArrayPool class documentation describes this class in detail.

NDAttribute

The NDAttribute is a class for linking metadata to an NDArray. An NDattribute has a name, description, data
type, value, source type and source information. Attributes are identified by their names, which are
case-insensitive. There are methods to set and get the information for an attribute.

It is useful to define some conventions for attribute names, so that plugins or data analysis programs can look for
a specific attribute. The following are the attribute conventions used in current plugins:

Conventions for standard attribute names

Attribute name Description Data type

ColorMode "Color mode" int (NDColorMode_t)

BayerPattern "Bayer pattern" int (NDBayerPattern_t)
Attribute names are case-insensitive in the areaDetector software, but external software may not be
case-insensitive so the attribute names should generally be used exactly as they appear above. For attributes not in

areaDetector: EPICS software for area detectors

 asynPortDriver 5

http://www.aps.anl.gov/epics/modules/soft/asyn/R4-11a/asynPortDriver.html
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-11a/asynDoxygenHTML/classasyn_port_driver.html

this table a good convention would be to use the corresponding driver parameter without the leading ND or AD,
and with the first character of every "word" of the name starting with upper case. For example, the standard
attribute name for ADManufacturer should be "Manufacturer", ADNumExposures should be "NumExposures",
etc.

The NDAttribute class documentation describes this class in detail.

NDAttributeList

The NDAttributeList implements a linked list of NDAttribute objects. NDArray objects contain an
NDAttributeList which is how attributes are associated with an NDArray. There are methods to add, delete and
search for NDAttribute objects in an NDAttributeList. Each attribute in the list must have a unique name, which is
case-insensitive.

When NDArrays are copied with the NDArrayPool methods the attribute list is also copied.

IMPORTANT NOTE: When a new NDArray is allocated using NDArrayPool::alloc() the behavior of any
existing attribute list on the NDArray taken from the pool is determined by the value of the global variable
eraseNDAttributes. By default the value of this variable is 0. This means that when a new NDArray is
allocated from the pool its attribute list is not cleared. This greatly improves efficiency in the normal case where
attributes for a given driver are defined once at initialization and never deleted. (The attribute values may of
course be changing.) It eliminates allocating and deallocating attribute memory each time an array is obtained
from the pool. It is still possible to add new attributes to the array, but any existing attributes will continue to exist
even if they are ostensibly cleared e.g. asynNDArrayDriver::readNDAttributesFile() is called again. If it is desired
to eliminate all existing attributes from NDArrays each time a new one is allocated then the global variable
eraseNDAttributes should be set to 1. This can be done at the iocsh prompt with the command:

 var eraseNDAttributes 1

The NDAttributeList class documentation describes this class in detail.

PVAttribute

The PVAttribute class is derived from NDAttribute. It obtains its value by monitor callbacks from an EPICS PV,
and is thus used to associate current the value of any EPICS PV with an NDArray. The PVAttribute class
documentation describes this class in detail.

paramAttribute

The paramAttribute class is derived from NDAttribute. It obtains its value from the current value of a driver or
plugin parameter. The paramAttribute class is typically used when it is important to have the current value of the
parameter and the value of a corresponding PVAttribute might not be current because the EPICS PV has not yet
updated. The paramAttribute class documentation describes this class in detail.

asynNDArrayDriver

asynNDArrayDriver inherits from asynPortDriver. It implements the asynGenericPointer functions for NDArray
objects. This is the class from which both plugins and area detector drivers are indirectly derived. The
asynNDArrayDriver class documentation describes this class in detail.

areaDetector: EPICS software for area detectors

6 NDAttribute

The file asynNDArrayDriver.h defines a number of parameters that all NDArray drivers and plugins should
implement if possible. These parameters are defined by strings (drvInfo strings in asyn) with an associated asyn
interface, and access (read-only or read-write). There is also an integer index to the parameter which is assigned
by asynPortDriver when the parameter is created in the parameter library. The EPICS database ADBase.template
provides access to these standard driver parameters. The following table lists the standard driver parameters. The
columns are defined as follows:

Parameter index variable: The variable name for this parameter index in the driver. There are several
EPICS records in ADBase.template that do not have corresponding parameter indices, and these are
indicated as Not Applicable (N/A).

•

asyn interface: The asyn interface used to pass this parameter to the driver.•
Access: Read-write (r/w) or read-only (r/o).•
drvInfo string: The string used to look up the parameter in the driver through the drvUser interface. This
string is used in the EPICS database file for generic asyn device support to associate a record with a
particular parameter. It is also used to associate a paramAttribute with a driver parameter in the XML file
that is read by asynNDArrayDriver::readNDAttributesFile

•

EPICS record name: The name of the record in ADBase.template. Each record name begins with the
two macro parameters $(P) and $(R). In the case of read/write parameters there are normally two records,
one for writing the value, and a second, ending in _RBV, that contains the actual value (Read Back
Value) of the parameter.

•

EPICS record type: The record type of the record. Waveform records are used to hold long strings, with
length (NELM) = 256 bytes and EPICS data type (FTVL) = UCHAR. This removes the 40 character
restriction string lengths that arise if an EPICS "string" PV is used. MEDM allows one to edit and display
such records correctly. EPICS clients will typically need to convert such long strings from a string to an
integer or byte array before sending the path name to EPICS. In IDL this is done as follows:

 ; Convert a string to a null-terminated byte array and write with caput
 IDL> t = caput('13PS1:TIFF1:FilePath', [byte('/home/epics/scratch'),0B])
 ; Read a null terminated byte array
 IDL> t = caget('13PS1:TIFF1:FilePath', v)
 ; Convert to a string
 IDL> s = string(v)

In SPEC this is done as follows:

 array _temp[256]
 # Setting the array to "" will zero-fill it
 _temp = ""
 # Copy the string to the array. Note, this does not null terminate, so if array already contains
 # a longer string it needs to first be zeroed by setting it to "".
 _temp = "/home/epics/scratch"
 epics_put("13PS1:TIFF1:FilePath", _temp)

•

Note that for parameters whose values are defined by enum values (e.g NDDataType, NDColorMode, etc.),
drivers can use a different set of enum values for these parameters. They can override the enum menu in
ADBase.template with driver-specific choices by loading a driver-specific template file that redefines that record
field after loading ADBase.template.

Parameter Definitions in asynNDArrayDriver.h and EPICS Record Definitions in ADBase.template (file-related records are in NDFile.template)

Parameter index
variable

asyn interface Access Description drvInfo string EPICS record name EPICS
record

areaDetector: EPICS software for area detectors

asynNDArrayDriver 7

type

Information about the asyn port

NDPortNameSelf asynOctet r/o asyn port name PORT_NAME_SELF (P)(R)PortName_RBV stringin

Data type

NDDataType asynInt32 r/w Data type (NDDataType_t). DATA_TYPE (P)(R)DataType
(P)(R)DataType_RBV

mbbo
mbbi

Color mode

NDColorMode asynInt32 r/w Color mode (NDColorMode_t). COLOR_MODE (P)(R)ColorMode
(P)(R)ColorMode_RBV

mbbo
mbbi

Actual dimensions of array data

NDArraySizeX asynInt32 r/o Size of the array data in the X direction ARRAY_SIZE_X (P)(R)ArraySizeX_RBV longin

NDArraySizeY asynInt32 r/o Size of the array data in the Y direction ARRAY_SIZE_Y (P)(R)ArraySizeY_RBV longin

NDArraySizeZ asynInt32 r/o Size of the array data in the Z direction ARRAY_SIZE_Z (P)(R)ArraySizeZ_RBV longin

NDArraySize asynInt32 r/o Total size of the array data in bytes ARRAY_SIZE (P)(R)ArraySize_RBV longin

File saving parameters (records are defined in NDFile.template)

NDFilePath asynOctet r/w File path FILE_PATH (P)(R)FilePath
(P)(R)FilePath_RBV

waveform
waveform

NDFilePathExists asynInt32 r/o Flag indicating if file path exists FILE_PATH_EXISTS (P)(R)FilePathExists_RBV bi

NDFileName asynOctet r/w File name FILE_NAME (P)(R)FileName
(P)(R)FileName_RBV

waveform
waveform

NDFileNumber asynInt32 r/w File number FILE_NUMBER (P)(R)FileNumber
(P)(R)FileNumber_RBV

longout
longin

NDFileTemplate asynOctet r/w Format string for constructing
NDFullFileName from NDFilePath,
NDFileName, and NDFileNumber. The final
file name (which is placed in
NDFullFileName) is created with the
following code:

epicsSnprintf(
 FullFilename,
 sizeof(FullFilename),
 FileTemplate, FilePath,
 Filename, FileNumber);

FilePath, Filename, FileNumber are converted
in that order with FileTemplate. An example
file format is "%s%s%4.4d.tif". The first
%s converts the FilePath, followed
immediately by another %s for Filename.
FileNumber is formatted with %4.4d, which
results in a fixed field with of 4 digits, with
leading zeros as required. Finally, the .tif

FILE_TEMPLATE (P)(R)FileTemplate
(P)(R)FileTemplate_RBV

waveform
waveform

areaDetector: EPICS software for area detectors

8 asynNDArrayDriver

extension is added to the file name. This
mechanism for creating file names is very
flexible. Other characters, such as _ can be put
in Filename or FileTemplate as desired. If one
does not want to have FileNumber in the file
name at all, then just omit the %d format
specifier from FileTemplate. If the client
wishes to construct the complete file name
itself, then it can just put that file name into
NDFileTemplate with no format specifiers at
all, in which case NDFilePath, NDFileName,
and NDFileNumber will be ignored.

NDFullFileName asynOctet r/o Full file name constructed using the algorithm
described in NDFileTemplate FULL_FILE_NAME (P)(R)FullFileName_RBV waveform

waveform

NDAutoIncrement asynInt32 r/w
Auto-increment flag. Controls whether
FileNumber is automatically incremented by 1
each time a file is saved (0=No, 1=Yes)

AUTO_INCREMENT (P)(R)AutoIncrement
(P)(R)AutoIncrement_RBV

bo
bi

NDAutoSave asynInt32 r/w
Auto-save flag (0=No, 1=Yes) controlling
whether a file is automatically saved each time
acquisition completes.

AUTO_SAVE (P)(R)AutoSave
(P)(R)AutoSave_RBV

bo
bi

NDFileFormat asynInt32 r/w File format. The format to write/read data in
(e.g. TIFF, netCDF, etc.) FILE_FORMAT (P)(R)FileFormat

(P)(R)FileFormat_RBV
mbbo
mbbi

NDWriteFile asynInt32 r/w Manually save the most recent array to a file
when value=1 WRITE_FILE (P)(R)WriteFile

(P)(R)WriteFile_RBV
busy
bi

NDReadFile asynInt32 r/w Manually read a file when value=1 READ_FILE (P)(R)ReadFile
(P)(R)ReadFile_RBV

busy
bi

NDFileWriteMode asynInt32 r/w File saving mode (Single, Capture,
Stream)(NDFileMode_t) WRITE_MODE (P)(R)FileWriteMode

(P)(R)FileWriteMode_RBV
mbbo
mbbi

NDFileWriteStatus asynInt32 r/o
File write status. Gives status information on
last file open or file write operation. Values
are WriteOK (0) and WriteError (1).

WRITE_STATUS (P)(R)FileWriteStatus mbbi

NDFileWriteMessage asynOctet r/o
File write error message. An error message
string if the previous file open or file write
operation resulted in an error.

WRITE_MESSAGE (P)(R)FileWriteMessage waveform

NDFileCapture asynInt32 r/w Start (1) or stop (0) file capture or streaming CAPTURE (P)(R)Capture
(P)(R)Capture_RBV

busy
bi

NDFileNumCapture asynInt32 r/w Number of frames to acquire in capture or
streaming mode NUM_CAPTURE (P)(R)NumCapture

(P)(R)NumCapture_RBV
longout
longin

NDFileNumCaptured asynInt32 r/o Number of arrays currently acquired capture
or streaming mode NUM_CAPTURED (P)(R)NumCaptured_RBV longin

NDFileDeleteDriverFile asynInt32 r/w Flag to enable deleting original driver file
after a plugin has re-written the file in a
different format. This can be useful for
detectors that must write the data to disk in
order for the areaDetector driver to read it

DELETE_DRIVER_FILE (P)(R)DeleteDriverFile
(P)(R)DeleteDriverFile_RBV

bo
bi

areaDetector: EPICS software for area detectors

asynNDArrayDriver 9

back. Once a file-writing plugin has rewritten
the data in another format it can be desireable
to then delete the original file.

Array data

NDArrayCallbacks asynInt32 r/w

Controls whether the driver does callbacks
with the array data to registered plugins.
0=No, 1=Yes. Setting this to 0 can reduce
overhead in the case that the driver is being
used only to control the device, and not to
make the data available to plugins or to EPICS
clients.

ARRAY_CALLBACKS (P)(R)ArrayCallbacks
(P)(R)ArrayCallbacks_RBV

bo
bi

NDArrayData asynGenericPointer r/w The array data as an NDArray object NDARRAY_DATA N/A. EPICS access to array data
is through NDStdArrays plugin. N/A

NDArrayCounter asynInt32 r/w
Counter that increments by 1 each time an
array is acquired. Can be reset by writing a
value to it.

ARRAY_COUNTER (P)(R)ArrayCounter
(P)(R)ArrayCounter_RBV

longout
longin

N/A N/A r/o Rate at which arrays are being acquired.
Computed in the ADBase.template database. N/A (P)(R)ArrayRate_RBV calc

Array attributes

NDAttributesFile asynOctet r/w

The name of an XML file defining the
PVAttributes and paramAttributes to be added
to each NDArray by this driver or plugin. The
format of the XML file is described in the
documentation for
asynNDArrayDriver::readNDAttributesFile().

ND_ATTRIBUTES_FILE (P)(R)NDAttributesFile waveform

Debugging control

N/A N/A N/A asyn record to control debugging (asynTrace) N/A (P)(R)AsynIO asyn

ADDriver

ADDriver inherits from asynNDArrayDriver. This is the class from which area detector drivers are directly
derived. It provides parameters and methods that are specific to area detectors, while asynNDArrayDriver is a
general NDArray driver. The ADDriver class documentation describes this class in detail.

The file ADDriver.h defines the parameters that all areaDetector drivers should implement if possible.

Parameter Definitions in ADDriver.h and EPICS Record Definitions in ADBase.template

Parameter index variable asyn
interface Access Description drvInfo string EPICS record name

EPICS
record
type

Information about the detector

ADManufacturer asynOctet r/o Detector manufacturer name MANUFACTURER (P)(R)Manufacturer_RBV stringin

ADModel asynOctet r/o Detector model name MODEL (P)(R)Model_RBV stringin

ADMaxSizeX asynInt32 r/o Maximum (sensor) size in the X MAX_SIZE_X (P)(R)MaxSizeX_RBV longin

areaDetector: EPICS software for area detectors

10 ADDriver

direction

ADMaxSizeY asynInt32 r/o Maximum (sensor) size in the Y
direction MAX_SIZE_Y (P)(R)MaxSizeY_RBV longin

ADTemperature asynFloat64 r/w Detector temperature TEMPERATURE (P)(R)Temperature
(P)(R)Temperature_RBV

ao
ai

ADTemperatureActual asynFloat64 r/o Actual detector temperature TEMPERATURE_ACTUAL (P)(R)Temperature_Actual ai

Detector readout control including gain, binning, region start and size, reversal

ADGain asynFloat64 r/w Detector gain GAIN (P)(R)Gain
(P)(R)Gain_RBV

ao
ai

ADBinX asynInt32 r/w Binning in the X direction BIN_X (P)(R)BinX
(P)(R)BinX_RBV

longout
longin

ADBinY asynInt32 r/w Binning in the Y direction BIN_Y (P)(R)BinY
(P)(R)BinY_RBV

longout
longin

ADMinX asynInt32 r/w First pixel to read in the X direction.
0 is the first pixel on the detector. MIN_X (P)(R)MinX

(P)(R)MinX_RBV
longout
longin

ADMinY asynInt32 r/w First pixel to read in the Y direction.
0 is the first pixel on the detector. MIN_Y (P)(R)MinY

(P)(R)MinY_RBV
longout
longin

ADSizeX asynInt32 r/w Size of the region to read in the X
direction SIZE_X (P)(R)SizeX

(P)(R)SizeX_RBV
longout
longin

ADSizeY asynInt32 r/w Size of the region to read in the Y
direction SIZE_Y (P)(R)SizeY

(P)(R)SizeY_RBV
longout
longin

ADReverseX asynInt32 r/w Reverse array in the X direction
(0=No, 1=Yes) REVERSE_X (P)(R)ReverseX

(P)(R)ReverseX_RBV
longout
longin

ADReverseY asynInt32 r/w Reverse array in the Y direction
(0=No, 1=Yes) REVERSE_Y (P)(R)ReverseY

(P)(R)ReverseY_RBV
longout
longin

Image and trigger modes

ADImageMode asynInt32 r/w Image mode (ADImageMode_t). IMAGE_MODE (P)(R)ImageMode
(P)(R)ImageMode_RBV

mbbo
mbbi

ADTriggerMode asynInt32 r/w Trigger mode (ADTriggerMode_t). TRIGGER_MODE (P)(R)TriggerMode
(P)(R)TriggerMode_RBV

mbbo
mbbi

Frame type

ADFrameType asynInt32 r/w Frame type (ADFrameType_t). FRAME_TYPE (P)(R)FrameType
(P)(R)FrameType_RBV

mbbo
mbbi

Acquisition time and period

ADAcquireTime asynFloat64 r/w Acquisition time per image ACQ_TIME (P)(R)AcquireTime
(P)(R)AcquireTime_RBV

ao
ai

ADAcquirePeriod asynFloat64 r/w Acquisition period between images ACQ_PERIOD (P)(R)AcquirePeriod
(P)(R)AcquirePeriod_RBV

ao
ai

Number of exposures and number of images

ADNumExposures asynInt32 r/w NEXPOSURES

areaDetector: EPICS software for area detectors

 ADDriver 11

Number of exposures per image to
acquire

(P)(R)NumExposures
(P)(R)NumExposures_RBV

longout
longin

ADNumImages asynInt32 r/w Number of images to acquire in one
acquisition sequence NIMAGES (P)(R)NumImages

(P)(R)NumImages_RBV
longout
longin

Acquisition control

ADAcquire asynInt32 r/w

Start (1) or stop (0) image
acquisition. This is an EPICS busy
record that does not process its
forward link until acquisition is
complete. Clients should write 1 to
the Acquire record to start
acquisition, and wait for Acquire to
go to 0 to know that acquisition is
complete.

ACQUIRE (P)(R)Acquire
(P)(R)Acquire_RBV

busy
bi

Status information

ADStatus asynInt32 r/o Acquisition status (ADStatus_t) STATUS (P)(R)DetectorState_RBV mbbi

ADStatusMessage asynOctet r/o Status message string STATUS_MESSAGE (P)(R)StatusMessage_RBV waveform

ADStringToServer asynOctet r/o String from driver to string-based
vendor server STRING_TO_SERVER (P)(R)StringToServer_RBV waveform

ADStringFromServer asynOctet r/o String from string-based vendor
server to driver STRING_FROM_SERVER (P)(R)StringFromServer_RBV waveform

ADNumExposuresCounter asynInt32 r/o

Counter that increments by 1 each
time an exposure is acquired for the
current image. Driver resets to 0
when acquisition is started.

NUM_EXPOSURES_COUNTER (P)(R)NumExposuresCounter_RBV longin

ADNumImagesCounter asynInt32 r/o

Counter that increments by 1 each
time an image is acquired in the
current acquisition sequence. Driver
resets to 0 when acquisition is
started. Drivers can use this as the
loop counter when
ADImageMode=ADImageMultiple.

NUM_IMAGES_COUNTER (P)(R)NumImagesCounter_RBV longin

ADTimeRemaining asynFloat64 r/o

Time remaining for current image.
Drivers should update this value if
they are doing the exposure timing
internally, rather than in the detector
hardware.

TIME_REMAINING (P)(R)TimeRemaining_RBV ai

ADReadStatus asynInt32 r/w

Write a 1 to this parameter to force a
read of the detector status. Detector
drivers normally read the status as
required, so this is usually not
necessary, but there may be some
circumstances under which forcing a
status read may be needed.

READ_STATUS (P)(R)ReadStatus bo

Shutter control

areaDetector: EPICS software for area detectors

12 ADDriver

ADShutterMode asynInt32 r/w

Shutter mode (None,
detector-controlled or
EPICS-controlled)
(ADShutterMode_t)

SHUTTER_MODE (P)(R)ShutterMode
(P)(R)ShutterMode_RBV

mbbo
mbbi

ADShutterControl asynInt32 r/w
Shutter control for the selected
(detector or EPICS) shutter
(ADShutterStatus_t)

SHUTTER_CONTROL (P)(R)ShutterControl
(P)(R)ShutterControl_RBV

bo
bi

ADShutterControlEPICS asynInt32 r/w

This record processes when it
receives a callback from the driver
to open or close the EPICS shutter.
It triggers the records below to
actually open or close the EPICS
shutter.

SHUTTER_CONTROL_EPICS (P)(R)ShutterControlEPICS bi

N/A N/A r/w

This record writes its OVAL field to
its OUT field when the EPICS
shutter is told to open. The OCAL
(and hence OVAL) and OUT fields
are user-configurable, so any
EPICS-controllable shutter can be
used.

N/A (P)(R)ShutterOpenEPICS calcout

N/A N/A r/w

This record writes its OVAL field to
its OUT field when the EPICS
shutter is told to close. The OCAL
(and hence OVAL) and OUT fields
are user-configurable, so any
EPICS-controllable shutter can be
used.

N/A (P)(R)ShutterCloseEPICS calcout

ADShutterStatus asynInt32 r/o Status of the detector-controlled
shutter (ADShutterStatus_t) SHUTTER_STATUS (P)(R)ShutterStatus_RBV bi

N/A N/A r/o

Status of the EPICS-controlled
shutter. This record should have its
input link (INP) set to a record that
contains the open/close status
information for the shutter. The link
should have the "CP" attribute, so
this record processes when the input
changes. The ZRVL field should be
set to the value of the input link
when the shutter is closed, and the
ONVL field should be set to the
value of the input link when the
shutter is open.

N/A (P)(R)ShutterStatusEPICS_RBV mbbi

ADShutterOpenDelay asynFloat64 r/w Time required for the shutter to
actually open (ADShutterStatus_t) SHUTTER_OPEN_DELAY (P)(R)ShutterOpenDelay

(P)(R)ShutterOpenDelay_RBV
ao
ai

ADShutterCloseDelay asynFloat64 r/w Time required for the shutter to
actually close (ADShutterStatus_t) SHUTTER_CLOSE_DELAY (P)(R)ShutterCloseDelay

(P)(R)ShutterCloseDelay_RBV
ao
ai

areaDetector: EPICS software for area detectors

 ADDriver 13

Guidelines and rules for drivers

The following are guidelines and rules for writing areaDetector drivers

Drivers will generally implement one or more of the writeInt32(), writeFloat64() or writeOctet() functions
if they need to act immediately on a new value of a parameter. For many parameters it is normally
sufficient to simply have them written to the parameter library, and not to handle them in the writeXXX()
functions. The parameters are then retrieved from the parameter library with the getIntParam(),
getDoubleParam(), or getStringParam() function calls when they are needed.

•

If the writeInt32(), writeFloat64() or writeOctet() functions are implemented they must call the base class
function for parameters that they do not handle and whose parameter index value is less than the first
parameter of this class, i.e. parameters that belong to a base class.

•

Drivers will need to call the createParam() function in their constructor if they have additional parameters
beyond those in the asynPortDriver or ADDriver base classes.

•

Drivers will generally need to create a new thread in which they run the acquisition task. Some vendor
libraries create such a thread themselves, and then the driver must just implement a callback function that
runs in that thread (the Prosilica is an example of such a driver).

•

The acquisition thread will typically monitor the acquisition process and perform periodic status update
callbacks. The details of how to implement this will vary depending on the specifics of the vendor API.
There are many existing detector drivers that can be used as examples of how to write a new driver.

•

If the detector hardware does not support fixed-period acquisition or muliple-image acquisition sequence
(ADNumImages parameter) then these should be emulated in the driver. The simDetector, marCCD and
other drivers can be used as examples of how to do this.

•

If NDArrayCallbacks is non-zero then drivers should do the following:
Call asynNDArrayDriver::getAttributes to attach any attributes defined for this driver to the
current array.

♦

Call doCallbacksGenericPointer() so that registered clients can get the values of the new arrays.
Drivers must release their mutex by calling this->unlock() before they call
doCallbacksGenericPointer(), or a deadlock can occur if the plugin makes a call to one of the
driver functions.

♦

•

MEDM screens

The following is the top-level MEDM screen that provides links to the screens for most of the detectors and
plugins that areaDetector supports. This screen is useful for testing, and as a source for copying related-display
menus to be placed in application-specific MEDM screens.

ADTop.adl

areaDetector: EPICS software for area detectors

14 Guidelines and rules for drivers

The following is the MEDM screen that provides access to the parameters in asynNDArrayDriver.h and
ADDriver.h through records in ADBase.template. This is a top-level MEDM screen that will work with any
areaDetector driver. Note however that many drivers will not implement all of these parameters, and there will
usually be detector-specific parameters not shown in this screen, so detector-specific MEDM screens should
generally be created that display the EPICS PVs for the features implemented for that detector.

ADBase.adl

areaDetector: EPICS software for area detectors

MEDM screens 15

The following is the MEDM screen that provides access to the file-related parameters in asynNDArrayDriver.h
through records in NDFile.template. This screen is for use with detector drivers that directly implement file I/O.

NDFile.adl

areaDetector: EPICS software for area detectors

16 MEDM screens

The following is the MEDM screen that provides access to the EPICS shutter parameters in ADDriver.h through
records in ADBase.template. This screen allows one to define the EPICS PVs to open the shutter, close the
shutter, and determine the shutter status. The values of these PVs for open and close drive and status can also be
defined. Note that in many cases the same PV will be used for open and close drive, but in some cases (e.g. APS
safety shutters) different PVs are used for open and close.

ADEpicsShutter.adl

areaDetector: EPICS software for area detectors

MEDM screens 17

Installation, configuration, and running

Installation: source code version

After obtaining a copy of the distribution, it must be installed and built for use at your site. These steps only need
to be performed once for the site (unless versions of the module running under different releases of EPICS and/or
the other required modules are needed).

Create an installation directory for the module, usually this will end with

.../support/

1.

Place the distribution file in this directory. Then issue the commands (Unix style)

tar xvzf areaDetectorRX-Y.tgz

where X-Y is the release.

2.

This creates a <top> application.

.../support/areaDetectorRX-Y

3.

Download all required supporting modules if you don't already have them. This includes asyn, autosave,
busy, etc.

4.

Edit the configure/RELEASE file and set the paths to your installation of EPICS base and to your
versions of supporting modules.

5.

Run gnumake in the top level directory and check for any compilation errors.6.

Installation: prebuilt version

Prebuilt versions of areaDetector are provide for Windows (win32-x86), Cygwin (cygwin-x86), and Linux
(linux-x86). Follow these steps to use the prebuilt version:

Create an installation directory for the module. On Windows I typically use C:\EPICS\support. On Linux
I typically use /home/ACCOUNT/epics/support, where ACCOUNT is the name of the account that is
normally used to run the detector software, e.g. marccd on a marCCD detector, mar345 on a mar345
detector, etc.

1.

Place the distribution file in this directory. Then issue the commands (Unix style)

tar xvzf areaDetectorPrebuilt_RX-Y.tgz

2.

In the iocBoot directory make a copy of the example ioxXXX directory for the detector you are using and
give it a new local name. By doing this you will be able to update to later versions of areaDetector
without overwriting modifications you make in the iocXXX directory.

3.

In the new iocXXX directory you just created edit st.cmd to change the PV prefix $(P) to one that is
unique to your site. PV prefixes must be unique on the subnet, and if you use the default prefix there
could be a conflict with other detectors of the same type.

4.

In the same iocXXX directory edit the file envPaths to point to the locations of all of the support modules
on your system. Normally this is handled by the EPICS build system, but when using the prebuilt version
this must be manually edited. Do not worry about the path to EPICS_BASE, it is not required.

5.

areaDetector: EPICS software for area detectors

18 Installation, configuration, and running

Installation: medm

areaDetector provides display/control screens for the medm Motif Editor and Display Manager. A prebuilt
version of medm for Windows can be found in the EPICS WIN32 Extensions. For Linux one can build medm
from source code, which requires downloading and building EPICS base first. Alternatively I provide a prebuilt
version of medm for Linux in the EPICS_Linux_binraries.tar package. To use this version copy the medm
executable to some location in your PATH, e.g. /usr/local/bin, or ~/bin, etc. Copy the 2 shareable libraries
libCom.so and libca.so to a location which is in your LD_LIBRARY_PATH. To use either the source code or
prebuilt version you need to have the OpenMotif package installed. This typically is not installed by default with
recent versions of Linux. Go to www.openmotif.org and download and install the appropriate RPM package for
your Linux version.

Configuration

Before running an areaDetector application it is usually necessary to configure a number of items.

EPICS environment variables. There are several environment variables that EPICS uses. I suggest setting
these in the .cshrc (or .bashrc) file for the account that will be used to run the detector.

EPICS_CA_AUTO_ADDR_LIST and EPICS_CA_ADDR_LIST. These variables control the IP
addresses that EPICS clients use when searching for EPICS PVs. The default is
EPICS_CA_AUTO_ADDR_LIST=YES and EPICS_CA_ADDR_LIST to be the broadcast
address of all networks connected to the host. Some detectors, for example the marCCD and
mar345, come with 2 network cards, which are on 2 different subnets, typically a private one
connected to the detector and a public one connected to the local LAN. If the default value of
these variables is used then EPICS clients (e.g. medm) running on the detector host computer will
generate many errors because each EPICS PV will appear to be coming from both networks. The
solution is to set these variables as follows:

 setenv EPICS_CA_AUTO_ADDR_LIST NO
 setenv EPICS_CA_ADDR_LIST localhost:XX.YY.ZZ.255

where XX.YY.ZZ.255 should be replaced with the broadcast address for the public network on
this computer.

♦

EPICS_CA_MAX_ARRAY_BYTES. This variable controls the maximum array size that EPICS
can transmit with Channel Access. The default is only 16kB, which is much too small for most
detector data. This value must be set to a large enough value on both the EPICS server computer
(e.g. the one running the areaDetector IOC) and client computer (e.g. the one running medm,
ImageJ, IDL, etc.). This can simply be set to a very large value like 100MB.

 setenv EPICS_CA_MAX_ARRAY_BYTES 100000000

♦

EPICS_DISPLAY_PATH. This variable controls where medm looks for .adl display files. If the
recommendation below is followed to copy all adl files to a single directory, then this
environment variable should be defined to point to that directory. For example:

 setenv EPICS_DISPLAY_PATH /home/mar345/epics/adls

♦

•

medm display files. I find it convenient to copy all medm .adl files to a single directory and then point the
environment variable EPICS_DISPLAY_PATH to this directory. The alternative is to point
EPICS_DISPLAY_PATH to a long list of directories where the adl files are located in the distributions,

•

areaDetector: EPICS software for area detectors

 Installation: medm 19

http://www.aps.anl.gov/epics/extensions/medm/
http://www.aps.anl.gov/epics/distributions/win32/
http://www.aps.anl.gov/epics/base/
http://cars.uchicago.edu/software/pub/EPICS_Linux_binaries.tar
http://www.openmotif.org/

which is harder to maintain. On the mar345, for example, I create a directory called
/home/mar345/epics/adls, where I put all of the adl files. To simplify copying the adl files to that location
I use the following one-line script, which I place in /home/mar345/bin/sync_adls.

 find /home/mar345/epics/support -name '*.adl' -exec cp -fv {} /home/mar345/epics/adls \;

This script finds all adl files in the epics/support tree and copies them to /home/mar345/epics/adls. That
directory must be created before running this script. Similar scripts can be used for other Linux detectors
(marCCD, Pilatus, etc.) and can be used on Windows as well if Cygwin is installed. Each time a new
release of areaDetector is installed remove the old versions of each support module (areaDetector, asyn,
autosave, etc.) and then run this script to install the latest medm files.

Running the IOC

Each example IOC directory comes with a Linux script (start_epics) or a Windows batch file (start_epics.bat) or
both depending on the architectures that the detector runs on. These scripts provide simple examples of how to
start medm and the EPICS IOC. For example, for the mar345 iocBoot/iocMAR345/start_epics contains the
following:

 medm -x -macro "P=13MAR345_1:, R=cam1:, I=image1:, ROI=ROI1:, NETCDF=netCDF1:, TIFF=TIFF1:, JPEG=JPEG1:, NEXUS=Nexus1:" mar345.adl &
 ../../bin/linux-x86/mar345App st.cmd

This script starts medm in execute mode with the appropriate medm display file and macro parameters, running it
in the background. It then runs the IOC application. This script assumes that iocBoot/iocMAR345 is the default
directory when it is run, which could be added to the command or set in the configuration if this script is set as the
target of a desktop shortcut, etc. The script assumes that EPICS_DISPLAY_PATH has been defined to be a
location where the mar345.adl and related displays that it loads can be found. You will need to edit the script in
your copy of the iocXXX directory to change the prefix (P) from 13MAR345_1: to whatever prefix you chose for
your IOC. The start_epics script could also be copied to a location in your PATH (e.g.
/home/mar345/bin/start_epics). Add a command like cd
/home/mar345/epics/support/areaDetector/1-5/iocBoot/iocMAR345 at the beginning of
the script and then type start_epics from any directory to start the EPICS IOC.

Acknowledgements and licenses

"This software is based in part on the work of the Independent JPEG Group".

areaDetector: EPICS software for area detectors

20 Configuration

	Table of Contents
	 areaDetector: EPICS Area Detector Support
	 Release 1-8
	 October 1, 2012
	 Mark Rivers
	 University of Chicago
	 Contents
	 Overview
	 Architecture
	 Implementation details
	 asynPortDriver
	 NDArray
	 NDArrayPool
	 NDAttribute
	 NDAttributeList
	 PVAttribute
	 paramAttribute
	 asynNDArrayDriver
	 ADDriver

	 Guidelines and rules for drivers
	 MEDM screens
	 Installation, configuration, and running
	 Installation: source code version
	 Installation: prebuilt version
	 Installation: medm
	 Configuration
	 Running the IOC

	 Acknowledgements and licenses

