<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; color: rgb(0, 0, 0); font-size: 16px; font-family: Calibri, sans-serif; ">
<div>Dear FEFF users!</div>
<div><br>
</div>
<div>I am looking into the use of the DEBYE card in order to calculate the EELS spectrum of graphite at ~800 K. Obviously, graphite is highly anisotropic, such that it would be unphysical to use a single Debye temperature. However, the effective in-plane (a,b
 axes) and out-of-plane (c axis) Debye temperatures are known for graphite (2500 and 950 K, respectively). I was therefore wondering whether it is possible in FEFF9 to specify two Debye temperatures for the two different crystallographic directions.</div>
<div><br>
</div>
<div>I am calculating the (oriented) EELS spectrum of graphite in reciprocal space using the RECIPROCAL, LATTICE and ATOMS cards; see feff.inp file below. I am using FEFF version 9.05.</div>
<div><br>
</div>
<div>In case the use of Debye temperatures is not possible in this way, could anybody recommend another way to take into account the Debye-Waller factors for an anisotropic material such as graphite?</div>
<div><br>
</div>
<div>Thanks!</div>
<div>Best regards,</div>
<div>Renske van der Veen</div>
<div><br>
</div>
<div>
<div>
<div>
<div>-- </div>
<div><br>
</div>
</div>
<div>Dr. Renske M. van der Veen</div>
<div>California Institute of Technology</div>
<div>Arthur Amos Noyes Laboratory of Chemical Physics</div>
<div>1200 E California Blvd</div>
<div>MC 127-72, Pasadena, CA 91125, USA</div>
<div><br>
</div>
<div>Office: (+1) (626) 395 6530</div>
<div>Mobile: (+1) (626) 808 2635</div>
</div>
</div>
<div><br>
</div>
<div>****</div>
<div><br>
</div>
<div>
<div> TITLE graphite</div>
<div><br>
</div>
<div>*  C K edge energy = 284.20 eV</div>
<div> EDGE      K  0.0</div>
<div> CONTROL   1      1     1     1     1      1</div>
<div> PRINT     1 1 1 1 1 1    </div>
<div><br>
</div>
<div>COREHOLE RPA</div>
<div><br>
</div>
<div>LDOS -20 10 0.05   * this calculates the density of states</div>
<div><br>
</div>
<div>EGRID </div>
<div>e_grid -3 17 0.3</div>
<div>e_grid last 30 0.4</div>
<div>e_grid last 58 1</div>
<div><br>
</div>
<div>ELNES </div>
<div>200   # beam energy in keV</div>
<div>0 0 1  # beam direction in the crystal frame</div>
<div>10 5 # collection semiangle, convergence semiangle (in mrad)</div>
<div>200 1  # q-integration mesh : radial size, angular size</div>
<div>0.0 0.0 # position of the detector (x,y angle in mrad)</div>
<div><br>
</div>
<div> FMS       7.0 2</div>
<div> EXCHANGE  0      1   0.7</div>
<div> SCF       5</div>
<div> RPATH     0.2</div>
<div><br>
</div>
<div> POTENTIALS</div>
<div> *    ipot   Z  element            l_scmt  l_fms   stoichiometry</div>
<div>        0    6   C                  3       2       0.01</div>
<div>        1    6   C                  3       2       2</div>
<div>        2    6   C                  3       2       2</div>
<div><br>
</div>
<div> RECIPROCAL</div>
<div> KMESH 5000</div>
<div> MARKER 1</div>
<div><br>
</div>
<div> LATTICE P 2.4612</div>
<div>     0.86603     -0.50000      0.00000</div>
<div>     0.00000      1.00000      0.00000</div>
<div>     0.00000      0.00000      2.72546</div>
<div> </div>
<div> ATOMS                          * this list contains 251 atoms</div>
<div>* *   x          y          z      ipot  tag           distance</div>
<div>      0.00000      0.00000      0.68160  1  C1</div>
<div>      0.00000      0.00000      2.04479  1  C1</div>
<div>      0.57735      0.00000      0.68160  2  C2</div>
<div>      0.28868      0.50000      2.04479  2  C2</div>
<div> END</div>
<div><br>
</div>
<div><br>
</div>
</div>
<div><br>
</div>
<div><br>
</div>
<div><br>
</div>
<div><br>
</div>
</body>
</html>