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OUTLINE

• Types of multianvil systems
• Design considerations
• Importance of gasketing
• Cell assemblies
• Pressure generation
• Heat generation
• Calibration



             Multianvil Systems
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cubic   
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Single-stage multianvil systems

NovaDiamonds



Sumitomo 2000-Ton Press (SUNY-Stony Brook)

Split-sphere apparatus

Multi-stage multianvil systems



First stage: 
6 spherical anvils

Second stage:
 8 truncated cubic anvils

Kawai- type (6-8) 



SAM85
at X17B2 (NSLS)

DIA apparatus

Cubic cell

8-6

8-6-8

Octahedral cell



Walker 6-8 module

coolant
Pressure Distribution Plate

Steel Wedge

Cylindrical guide block/unachored wedges
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Getting 8-6 (cubic) module

24/19 assembly



T-25

Split-cylinder 6-8 systems



D.J. Frost et al. (2004, Physics of the Earth and Planetary Interiors 143–144, 507–514

Bayreuth Large Volume Multianvil Apparatus

Split-cylinder



Materials:

Pressure distribution plates:
aircraft-quality aluminum base,
hardened stainless steel (RC44-46)
contact plate

Stress/containment ring: M2 tool
steel, upset forging (RC38-40)

Safety ring: ductile SS w/
aluminum shield

Wedges: M2 tool steel (RC44-46)

Anvils: submicron-grade, sintered-
HIP, tungsten carbide; cubic BN;
diamond

Glide surfaces: PTFE coated mylar;
epoxy-filled fiberglass (G10) pads

Walker 6/8 module



Pressure Distr ibution Plate

Anvil Dr iver Wedge
Driver

Anvil

Wedge
Stress
Ring

Safety
Ring

Loading and Friction
coolant

Pressure Distribution Plate

Steel Wedge

Swelling of the stress ring with the cubic anvil wedge nest and assembly under the uniaxial load from the press.  The wedge driver-stress ring
interface is lubicated by two sheets of mylar coated with PTFE spray.  The heavy line is the strain (in micro-strain units) as measured by strain
gauges.  The light solid line shows the radial swelling of the stress ring (in thousands of an inch) as measured by dial indicator. The diameter of the
stress rIng increased by 0.030" (0.28% strain) on loading of the wedge nest to 850 tons and is fully recoverable on decompression.   Non-linear
unloading reflects binding of the wedges by ring.  Extent of hysteresis suggest > 30% of the thrust lost to friction along the contacting surfaces of the
bore and wedge drivers  and wedge drivers and wedges. The hysteresis for Bi metal transitions shown by  (filled rectangles - Bi I-II; unfilled
rectangles - Bi II-III') for various assemblies agrees well with the stress-strain loop determined for the stress ring. ( Lesher et al., 2000)
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6-8 Tcup



6-8 Tcup

(Vaughan et al.)



Carbide is the weakest link!

Toshiba F

Kenamental

Look for carbide that is tough and hard - Toshiba F grade

Submicron Grade Carbides
(Data from Getting et al., 1993, PAGEOPH, v. 141, 545-577)
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Federal Hertel
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6UF (0.4 µm)

FC3M (0.4-1 µm)
GIF (1.1 µm)

K05(<1 µm)

TD05 (1.5 µm)

F (0.5 µm)

H6F (0.8 µm)

FC10M (0.4-1 µm)

FC12M (0.4-1 µm)

Getting et al., 1993



Liebermann & Wang (1992)

Gwanmesia et al. (1993)







COMPRES assembly
(K Leineweber)



http://www2.bnl.gov/sam85/tcup/html/tcup.html (Vaughan et al.)



The Pressure Cell





Incompressible vs. compressible



Porosity



Carbide support vs. Efficiency 
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C-type TC
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TC ceramic sheath
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&
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Cast & pre-cast MgO octahedron

18/11 Assembly

18/11 Assembly

millimeters

D-type TC

Lathanum chromite

Re capsule 
Zirconia

Alumina

MgO octahedron

14/8 Assembly
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Heat Generation



Power Consumption



Temperature Control



P/T dependence of emf

S-type TC

Getting & Kennedy (1970)

Poorly characterized for W/Re thermocouples



Ohtani (1979)



Thermal Gradients



Takahashi (1986)

5 GPa/1700ºC/10 min

5 GPa/1950 ºC/8 min

Zhang and Herzberg (1994)

Thermal Migration

Consequences of
large thermal gradients

Lesher and Walker (1988)



millimeters

14 mm TEL

graphite

TC ceramic sheath

4.55 mm

3.54 mm

3.27

MgO

An900
Filler rod

Castable MgO octahedron

W/Re

Pressure
standard

Sample

Cross-section of stepped heater assembly. 

Soret Effect Calibration
(±10 ºC)

Minimize thermal gradients



MA-KR-4
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W/Re TC Instability/Drift

•Short-time-scale instability - stress relief, recrystallization
•Long-time-scale drift - volume diffusion, contamination, oxidation

Thermocouple instability/drift

(Lesher et al., 2003)



Pressure Calibration



Phase Bracketing
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Phase Bracketing



EOS

UCDavis, unpub



Let the fun begin!


