

areaDetector

Writing Plugins

Mark Rivers

University of Chicago

Advanced Photon Source

Existing Plugins

Plugin Generates new

NDArrays

Limitations

NDPluginROI Yes None

NDPluginStats No Centroid, Profiles limited to 2-D mono

NDPluginProcess Yes None

NDPluginTransform Yes 2-D mono or color only

NDPluginStdArrays No None

NDPluginOverlay Yes 2-D mono or color only

NDPluginROIStat No None

NDPluginColorConvert Yes 2-D mono or color only

NDPluginCircularBuff Yes None

NDPluginFile No HDF5, netCDF, Nexus: None

JPEG, TIFF, Magick: 2-D mono or

color only

Guidelines and Rules for Writing an

areaDetector Plugin

• Plugins will almost always implement the processCallbacks() function. This

function will be called with an NDArray pointer each time an NDArray

callback occurs.

– This function will normally call the NDPluginDriver::processCallbacks() base class function,

which handles tasks common to all plugins, including callbacks with information about the

array, etc.

• Plugins will generally implement one or more of the writeInt32(),

writeFloat64() or writeOctet() functions if they need to act immediately on a

new value of a parameter.

– For many parameters it is normally sufficient to simply have them written to the parameter

library, and not to handle them in the writeXXX() functions. The parameters are then

retrieved from the parameter library with the getIntParam(), getDoubleParam(), or

getStringParam() function calls when they are needed.

• If the writeInt32(), writeFloat64() or writeOctet() functions are implemented

they must call the base class function for parameters that they do not handle

and whose parameter index value is less than the first parameter of this class,

i.e. parameters that belong to a base class.

Guidelines and Rules for Writing an

areaDetector Plugin
• Plugins will need to call the createParam() function in their constructor if

they have additional parameters beyond those in the asynPortDriver or

NDPluginDriver base classes.

• Plugins may never modify the NDArray that they receive in the

processCallbacks() function.

– The reason is that other plugins may be concurrently operating on the same NDArray,

since each is passed the same pointer.

– This means also that when getting the attributes for this plugin that

asynNDArrayDriver::getAttributes(pArray->pAttributeList) must not be called with the

NDArray passed to processCallbacks(), because that will modify the NDArray attribute

list, and hence the NDArray that other plugins are operating on.

– Plugins such as NDPluginROI and NDPluginColorConvert create new NDArrays via

NDArrayPool::copy() or NDArrayPool::convert() (which copy the attributes to the new

array) and then call getAttributes(pArray->pAttributeList) with the new array.

– The NDPluginFile makes a copy of the attribute list from the original NDArray before

calling getAttributes(), but does not need to make a copy of the NDArray because it

does not modify it.

Guidelines and Rules for Writing an

areaDetector Plugin

• Plugins must release their mutex by calling this->unlock()

when they do time-consuming operations.

– If they do not then they will not be able to queue new NDArrays

callbacks or obtain new parameter values.

– Obviously they must not access memory locations that other threads

could modify during this time, so they should only access local

variables, not class variables (which includes the parameter library).

• If plugins generate new or modified NDArrays then they must

call doCallbacksGenericPointer() so that registered clients can

get the values of the new arrays.

Plugin examples

• Look in detail at 3 plugins

– NDPluginStdArrays

– NDPluginROI

– NDPluginStats

