
Motion Control (at APS)

Most motion control is on APS experimental beamlines

Small amount on the accelerator side, mostly to control undulator gaps

Recent survey of beamline stepper motor controls (done for safety evaluation after a

shock incident)

5,137 stepper motors

86 different models of motor drivers

Most popular:

Advanced Control Systems Step-Pak (Unipolar, bipolar, mini-stepping

bipolar)

>25 different kinds of motor controllers (?)

Most popular:

Pro-Dex OMS-58, MaxV (VME)

Delta-Tau Turbo-PMAC (Ethernet, VME)

Newport XPS (Ethernet)

Aerotech, Parker

• Most (but not all) APS beamlines run the EPICS control system

• Top-level object is the EPICS motor record
– Lots of code has been written to this object:

• spec, Python and IDL classes, etc.

– “Least common denominator” support (acceleration, velocity, limits, etc.) but no
advanced features

• 3 models of lower-level device and driver support have developed over time

• Original (Model 1)

– Device-dependent device support and driver support for each controller type

– Communication between device support and driver is custom for motor code and
very limited

– Cannot use other records to talk to driver, only motor record

– Cannot take advantage of controller-specific features not supported by motor record

– No provision for multi-axis coordination

– Many EPICS drivers are written this way for historical reasons

• Model 2
– Uses standard asyn interfaces to communicate between device support and driver

• Implemented in C

– Can use other records to talk to driver via asyn interfaces for controller-specific
features

• Not as easy as it should be to do so No implementation of multi-axis coordination

APS Motor Software Support

• Model 3

– Two C++ base classes, asynMotorController and asynMotorAxis.

– Base classes provide much functionality, only need to write
device-specific implementations.

– Easy to support controller-specific features

– Don’t have to use motor record.

– Direct support for non-linear multi-axis coordinated “profile
moves” in the driver API.

• Challenges

– Improve efficiency of data collection by using only on-the-fly
scanning

• Upgrade drivers

• Ancillary hardware (multi-channel scalers, detector trigger timing)

• API abstraction needs to be proven on more hardware

• Higher-level software support

– Coordinate undulator motion with monochromators for on-the fly
spectroscopy

APS Motor Software Support

• Top-level object is the EPICS motor record
– Lots of code has been written to this object:

• spec, IDL and Python classes, etc.

• Next layer is EPICS device support
– Knows about the motor record, talks to the driver

• Lowest layer is EPICS driver
– Knows nothing about motor record, talks to the

hardware

• 3 models of device and driver support have
developed over time

EPICS Motor Support

• Two base classes, asynMotorController and
asynMotorAxis.

• Base classes provide much functionality, only need to
write device-specific implementations.

• Easy to support controller-specific features

• Don’t have to use motor record.

• Direct support for coordinated profile moves in the driver
API.

Model 3

class epicsShareFunc asynMotorController : public asynPortDriver {

 asynMotorController(const char *portName, int numAxes, int numParams,

 int interfaceMask, int interruptMask,

 int asynFlags, int autoConnect, int priority, int stackSize);

 virtual asynMotorAxis* getAxis(asynUser *pasynUser);

 virtual asynMotorAxis* getAxis(int axisNo);

 virtual asynStatus startPoller(double movingPollPeriod, double
idlePollPeriod, int forcedFastPolls);

 virtual asynStatus wakeupPoller();

 virtual asynStatus poll();

 void asynMotorPoller();

 virtual asynStatus initializeProfile(size_t maxPoints);

 virtual asynStatus buildProfile();

 virtual asynStatus executeProfile();

 virtual asynStatus abortProfile();

 virtual asynStatus readbackProfile();

asynMotorController

class epicsShareFunc asynMotorAxis {

 virtual asynStatus move(double position, int relative,

 double minVelocity, double maxVelocity, double acceleration);

 virtual asynStatus moveVelocity(double minVelocity, double maxVelocity,

 double acceleration);

 virtual asynStatus home(double minVelocity, double maxVelocity,

 double acceleration, int forwards);

 virtual asynStatus stop(double acceleration);

 virtual asynStatus poll(bool *moving);

 virtual asynStatus setPosition(double position);

 virtual asynStatus initializeProfile(size_t maxPoints);

 virtual asynStatus defineProfile(double *positions, size_t numPoints);

 virtual asynStatus buildProfile();

 virtual asynStatus executeProfile();

 virtual asynStatus abortProfile();

 virtual asynStatus readbackProfile();

asynMotorAxis

• Traditional step scanning overheads:
– Start and stop motors & mechanical systems

– Arm and read detectors.

• Typically much more efficient to collect data on-the-fly as the
motors are moving.

– Better detectors, more flux with APS Upgrade, don’t waste photons and
time

• However, on-the-fly scanning with EPICS has been subject to
limitations.

– Typically limited to simple single-motor scans because EPICS did not
provide a way to program motor controllers to perform synchronized
motion of multi-axis controllers.

• Exception to this was the Trajectory Scanning software I wrote for the
Newport XPS and MM4005 motor controllers.

• Not a clean solution: EPICS SNL program talking directly to the controller,
“behind the back” of the motor record driver.

• PMAC does have motion control programs – good for fixed, simple geometry

– New solution that incorporates a coordinated motion API in the motor
driver layer

Coordinated Motion: Motivation

class epicsShareFunc asynMotorController : public asynPortDriver {

 asynMotorController(const char *portName, int numAxes, int numParams,

 int interfaceMask, int interruptMask,

 int asynFlags, int autoConnect, int priority, int stackSize);

 virtual asynMotorAxis* getAxis(asynUser *pasynUser);

 virtual asynMotorAxis* getAxis(int axisNo);

 virtual asynStatus startPoller(double movingPollPeriod, double
idlePollPeriod, int forcedFastPolls);

 virtual asynStatus wakeupPoller();

 virtual asynStatus poll();

 void asynMotorPoller();

 virtual asynStatus initializeProfile(size_t maxPoints);

 virtual asynStatus buildProfile();

 virtual asynStatus executeProfile();

 virtual asynStatus abortProfile();

 virtual asynStatus readbackProfile();

asynMotorController

class epicsShareFunc asynMotorAxis {

 virtual asynStatus move(double position, int relative,

 double minVelocity, double maxVelocity, double acceleration);

 virtual asynStatus moveVelocity(double minVelocity, double maxVelocity,

 double acceleration);

 virtual asynStatus home(double minVelocity, double maxVelocity,

 double acceleration, int forwards);

 virtual asynStatus stop(double acceleration);

 virtual asynStatus poll(bool *moving);

 virtual asynStatus setPosition(double position);

 virtual asynStatus initializeProfile(size_t maxPoints);

 virtual asynStatus defineProfile(double *positions, size_t numPoints);

 virtual asynStatus buildProfile();

 virtual asynStatus executeProfile();

 virtual asynStatus abortProfile();

 virtual asynStatus readbackProfile();

asynMotorAxis

• Create arrays of target locations of each motor in a multi-
axis controller

• Create array of time per element

• Define times/locations to output synchronization pulses to
trigger detectors

• Execute coordinated move

• Optionally read back encoder positions when each
synchronization pulse was output

• Many controllers have this Position/Velocity/Time (PVT)
capability

– Newport XPS, Delta Tau PMAC, Pro-Dex MAXv, Parker ACR
series, Galil etc.

• We now have an API to take use this capability in a
consistent way

• Now done in same driver as for motor record, eliminates
conflicts

Coordinated Motion

(Now called ProfileMove, previously TrajectoryScan)

• Interface from clients is simple

• Define arrays containing target location for each axis
in each segment of scan

• Define array of time per point for each segment of scan

• Define when to output trigger pulses for detector

• Send these arrays to EPICS records

• Build and execute scan

• Optional read back actual encoder positions at each
point in scan

• Easy to implement in any language with EPICS
bindings:

– Python, SPEC, Matlab, IDL, C/C++, etc.

Client Software

Coordinated Motion

; IDL program to build, execute and readback profile

; This program builds a profile and executes it.

nelements = 100 ; 100 elements in the profile.

npulses = 100 ; 100 pulses in the profile.

naxes=2 ; We will move the first 2 motors (Phi and Kappa)

; Define array of positions

positions = dblarr(nelements, naxes)

; The Phi profile is a sin wave with two complete periods and an

; amplitude of +-1 degrees

positions[*,0] = 1.*sin(findgen(nelements)/(nelements-1.)*4.*!pi)

; The Kappa profile is a sin wave with one complete period and an

; amplitude of +-1 degrees

positions[*,1] = 1.*sin(findgen(nelements)/(nelements-1.)*2.*!pi)

profile = 'IOC:Prof1:'

group = 'GROUP1'

time = 0.1 ; Fixed time per profile point

status = profile_move(profile, positions, group=group, maxAxes=6, $

 build=1, execute=1, readback=1, time=time, $

 npulses=npulses, actual=actual, errors=errors)

end

Phi output profile

Kappa readback profile Kappa following error

Phi following error

SPEC Interface

• SPEC macros have been written to allow SPEC to
utilize profile moves via EPICS interface

• Low level interface, all of SPEC's standard scans
can be done "on-the-fly" with profile move
software. Replacement macros for:

– _ascan # Used by all ascan and dscan macros

– Mesh

– hklscan # Used by hscan, kscan and lscan

– _hklmesh

– _hklline # Used by hkcircle, hlcircle, klcircle,
hkradial, hlradial and klradial

– _scanabort resume

– _loop

•Newport XPS is used to drive 6-circle

diffractometers at APS (3), SLS

•SPEC is the control software

•Use Profile Moves both for initial

alignment and for data collection

•Pilatus 100K is typically used for

collecting crystal truncation rod data

•Up to 200 frames/s

•Use counts in areaDetector ROI and

statistics plugins as a SPEC counter

•Pilatus TIFF files are saved for use

with later data analysis

SPEC Scan Using Newport 6-Circle Diffractometer

Newport XPS
S

tr
u
ck

S
ca

le
r

SPEC 6-Circle

Diffractometer

Control

EPICS Trajectory

Scanning Support

Complex Coordinated
Trajectory Using PVT

I

o
I1

Newport 6-Circle Diffractometer

Pixel Array Detector 100k Pilatus

Readout time 2.7 ms

Framing rate 200 Hz

Dimensions 275 x 146 x 85 mm

Record Encoder
Values at each Trigger

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

A
ng

le
 [d

eg
]

Time [sec]

Phi

Kappa

Keta

Mu

Nu

Del

lup nu -.5 .5 120

.05

mv nu CEN

“6 sec scan”

lup del -.5 .5

120 .05

mv del CEN

“6 sec scan”

lup mu -2 2 120

.05

mv mu CEN

“5 sec scan”

Trajectory Scan For Single Crystal

Alignment
1) Scan Mu to maximize Bragg peak on Ewald

Sphere

2) Scan Del to horizontally center Bragg peak

on detector

3) Scan Nu to vertically center Bragg peak on

detector

Pilatus 100 k Pixel Array Detector

Total Scanning Time 17 sec

1

br 0 0 12

do HKL_lup.mac

orient_add 0 0 12

or0 0 0 12

2

br 1 0 4

do HKL_lup.mac

orient_add 1 0 4

or1 1 0 4

3

br 2 -1 3

do HKL_lup.mac

orient_add 2 -1 3

4

br 1 -2 6

do HKL_lup.mac

orient_add 1 -2 6

5

br -2 -1 8

do HKL_lup.mac

orient_add -2 -1 8

• Fast wide scan to find first reflection

• 190 deg Scan in Omega, 47 sec total scan time

• On The Fly – the detector is always measuring so

the sharp Bragg peak is not missed

6

br -1 0 5

do HKL_lup.mac

orient_add -1 0 5

7

br -2 1 6

do HKL_lup.mac

orient_add -2 1 6

8

br -1 3 8

do HKL_lup.mac

orient_add -1 3 8

9

br 0 2 4

do HKL_lup.mac

orient_add 0 2 4

10

br 1 1 6

do HKL_lup.mac

orient_add 1 1 6

orient_show

print "done with orienting the crystal"

Automated single crystal

orientation refinement using

trajectory scans to center on each

Bragg peak

20

FeOOH 00L Rod

Crystal Truncation Rod (CTR)

measurement using complex coordinated

motion control and on-the-fly data

collection

Future Work

• Convert Pro-Dex MAXv, Aerotech

Ensemble to Model 3

– Tim Mooney already has trajectory scanning

running in SNL program on each of these

• Support other controllers

• See if API needs changes based on mapping

to other controllers

• Work on replacement for EPICS motor

record?

