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2.2.3  FEvaluating the correctness of a model

Two numbers are calculated by FEFFIT to evaluate the goodness of a fit. These are
x? statistic and the fraction of misfit, R. [99,108] x?* statistic is defined as

= % Z( o ) (2.17)

where the sum is over all “mere” pairs of points (both real and imaginary parts of
the difference are evaluated at each “mere” point) in the region of r-space being fitted.
The number of “mere” points in [Fumin, Trmax] 18 arbitrary as it depends on the grid
spacing in k-space and the size of the fast F'T array. The prefactor N;/N in eq. 2.17
is introduced to remove this arbitrariness as the number of independent points, Ny,
(eq. 2.13) is independent of k-space grid or array size. [99, 102] The difference of
model and data at each point r; is weighted against the uncertainty in the difference
(not just the data) at that point, €(r;). In FEFFIT a single value of € is used as it
is assumed that the uncertainty at point r; is all due to random noise in the data,
independent of r;. The random noise is estimated by the rms value of {**P(r) in
the range [15,25] A, where the XAFS oscillations are assumed to be indistinguishable
from the noise (typical p.e. mean free path Ape ~ 10 — 15 A) Systematic errors in
the data and the theory are not accounted for in y? as those are extremely hard to
evaluate. A related, useful quantity calculated in FEFFIT is reduced x?, given by
X2 = x*/v with v being the degrees of freedom in the fit, i.e., v = N; — Np, where

Np is the number of parameters used in the fit.

If the errors are evaluated correctly (i.e., they are mostly random), a good fit
should have 2 ~ 14 +/2/v. [95,108] Two fits with different Np (and hence different
v’s) can be compared and if their 2 differ by more than 2./2(1/v; + 1/15) (2 times
the fluctuation in the difference) the fit with the lower Y2 is significantly better.

Typical values of x? found in this thesis, however, are on the order 10-50, indicat-
ing that (a) the model is bad, and/or (b) the value of € has been underestimated by
not considering systematic contributions to it. In order to check (a) as a possibility,
FEFFIT calculates the fraction of misfit, R, given by
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(2.18)

This gives the fractional misfit, i.e., the ratio of total amplitude between theoretical
and experimental curves to the total amplitude under the experimental curve. If R
is only a few percent, as always found in this thesis for fits that “look” good, option
(a) can be ruled out (provided the structural parameters obtained are reasonable on
physical grounds) and the reason for y2 > 1 is the underestimation of e.

If € were known (and that would have meant y2 ~ 1 for a good fit), the uncertain-
ties in the parameters (one standard deviation) are found by the change needed to
increase x* by 1, relative to its minimum value, 2 (or increase x2 by 1/v). [99,108]
Since € is underestimated and the fit is good (again, assuming a small R) we can
redefine € — 6\/)712, so that the definition of a good fit having 2 a2 1 is recovered.
FEFFIT finds the uncertainties by the change in the parameters that will result in
x* = x2 + 1 (assumes a “good” fit) but then rescales them by multiplying by \/XTZ/
This procedure would overestimate the value of these uncertainties as the fit is re-
quired to be good; i.e., Y2 &~ 1, while in reality even if most of the “enhanced” 2 is
due to a bad € a fraction of it could be due to a bad fit, the later effect neglected in
the rescaling of uncertainties.

Comparison between different fits by means of x? has to be reinterpreted. Since a
“good” fit will have y2 > 1, the standard fluctuation in y? has to be renormalized to

2/v x2. A fit is significantly better than other if the difference in their y? is larger
than about 24/2((x2,)?/11 + (x2,)?/12) (2 times the fluctuation of the difference), the
fit with the lower 2 being better.

An estimation of the relative sizes of random and systematic errors in ¢ is pos-
sible. Initially only random contributions were considered, ¢.,,, while the “correct”

estimation of € is given by

2 . 2 2 2 2 3
€ R Cran T €ye N Gan Xy = Cays X GanV/ X2 — 1 R Gran Xy (2.19)

since Y2 > 1. This indicates that for the data presented in this thesis (10 <
x2 < 50), systematic errors are ~ 3 — 7 times bigger than random errors. A pretty

severe assumption in deriving eq. 2.19 is that systematic errors are also independent
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of r and can be added in quadrature; i.e., they are also normally distributed. This is
certainly not the case as systematic errors due to, e.g., a poor background removal
will be more significant at low r and errors in the FEFF calculation could perfectly
show r-dependence; i.e., could depend on the particular scattering path involved (as
an example the use of a uniform interstitial charge density would result in under-
estimation of charge density along certain paths while it will overestimate it along
others).



