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We construct the x-ray-absorption fine structure(XAFS) functionxskd from measured absorption datamsEd,
using a Bayesian approach. In particular, an empirical correction to the embedded-atom absorption coefficient
m0—as obtained by the codeFEFF—and the energy-dependent overall efficiency of the experimental setup is
determined. This procedure is combined with a Bayesian analysis of thex function in terms of structural
parameters, reported earlier, to a uniform method of XAFS data evaluation. The method can be generalized to
the case of overlappingL-edge data and yields simultaneously the background-subtraction parameters for the
threeL-edge contributions, besides the structural parameters of the lattice. We apply the method to XAFS data
measured on germanium and computer-generatedL-edge iron data.
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I. INTRODUCTION

In order to extract the x-ray-absorption fine structure
(XAFS) expressionxskd=mskd /m0skd−1 as a function of the
photoelectron wave numberk from absorption datamexpsEd,
measured at energiesE, estimates are needed for(i) the back-
ground absorptionmbacksEd, not originating from the reaction
one wants to analyze,(ii ) the overall efficiencyAsEd of the
experimental setup, and(iii ) various many-electron
corrections1,2 to the embedded-atom absorption coefficient
m0

s1dskd and the XAFS functionxs1dskd. This function is ob-
tained fromab initio XAFS codes likeFEFF3 in terms of the
distancesRi of the first I shells surrounding the absorbing
atom and the projected Debye-Waller(DW) parameterss j

2 of
the J different scattering paths of the photo electron within
the cluster of these shells.

In the following we will quantify the uncertainties con-
nected with the input data and with the models available for
the fit, and discuss the resulting uncertainties of the fitted
geometrical parameters. In particular, we will parametrize
some of the uncertainties of the normalization and of the
model in terms of a few empirical parameters, which are to
be determined by the fit. These auxillary model parameters
are finally integrated out of the jointa posterioriprobability
distribution for the model parameters.

II. ANSATZ FOR THE FIT OF K-EDGE XAFS DATA

We assume that the smooth partm̄back of the background
can be obtained by standard polynomial extrapolation from
the preedge to the postedge region.4 We then apply the
smoothing procedure described in the appendix to the differ-
encemexp−m̄backand obtainmexp. The smoothing removes the
oscillatory XAFS stucture without affecting the steep rise at
the thresholdE0

spriord. The same smoothing procedure is ap-
plied to the embedded-atom absorption coefficientm0

s1d ob-
tained fromFEFF8. This time, oscillations due to resonances
of the photoelectron in its muffin-tin potential well are re-
moved. Then, withk2=2m"−2fE−E0

spriordg, the appropriate

normalization factor of the data to the embedded-atom
strengthm0

s1d is Askd=mexpskd /m0
s1dskd. This quantity can be

interpreted as the overall efficiency of the experimental
setup. We assumed thatAskd is a smooth function. If, how-
ever, the beam intensity oscillates as a function of the energy,
our ansatz forAskd cannot be used. Additional information
on the variation of the beam intensity with energy is needed
in this case.

Our determination of the normalization functionAskd is
very similar to the procedure proposed by Bulgaevet al.5

However, we do not use a folding procedure for smoothing
because of the dangerously long range of edge effects con-
nected with folding, in particular at the absorption edge.

For a variety of reasons theFEFF result form0 needs cor-
rections. Discontinuities in the derivatives of the muffin-tin
approximation of the potential lead to spurious reflections
and a corresponding peak in ther-space transform of the
XAFS function aroundR1/2.1 In addition, many-electron ef-
fects tend to dampen and shift the resonance structure.1 The
factorization approximation in Eq.(44) of Ref. 2 neglects
this effect. To account for all these corrections we write
m0skd=m0

s1dskd+dm0skd, wheredm0skd will be represented by
a cubic spline on an equally spaced grid of support points,
whose numberT is to be chosen to make the spline just
sufficiently flexible for the purpose for which it is intro-
duced. The ordinatesdmt, t=1, . . . ,T are treated as model
parameters to be determined together with all other model
parameters in the fit. A similar correction tom0

s1d was pro-
posed by Klementev.6

The task is, therefore, to fit

mexpskd − m̄backskd = Askdfm0
s1dskd + dm0sk;dm1, . . . ,dmTdg

3fxskd + 1g, s1d

where x is given in the extended x-ray-absorption fine-
structure(EXAFS) energy range for monoatomic, unoriented
samples by the multiple-scattering sum7,8
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xskd =
S0

2

k
o

j

Nj

uf jsk,Rjdu
Rj

2 e−2k2s j
2−2Rj/lskd

3sinF2ksRj − dRjd + f jskd −
4

3
C3,jk

3G , s2d

with the wave numberk and length correctionsdRj
=2s j

2sRj
−1+l−1d, in terms of the model parametersRj, j

=1, . . . ,J, the half-path distances of theJ scattering paths
considered in the multiple-scattering sum,Nj, s j

2, and C3;j,
the multiplicities of equivalent scattering paths, the DW pa-
rameters, and the anharmonicity parameters, respectively,
and finally the effective edge energyE0, which determinesk.

In view of the results of Ref. 2 one expects each term in
the sum(2) to be multiplied by a complex amplitudeSj

2skd
because of the many-electron effects. These quantities seem
to be rather independent of the wave numberk, at least in the
range of the extended x-ray absorption fine structure.FEFF

yields Sj
2skd as the productS0

2aredskd, real. We therefore de-
fine uSj

2u as the average ofuSj
2skdu over k, kù2.8 Å−1, and

absorb the remainingk dependence in the uncertainties
of the productsaredskdf jskd. The conventional factorS0

2 in Eq.
(2) is identified with the average ofuSj

2u over the indexj . We
will treat the factorS0

2 as a model parameter to be determined
in the fit. The deviations ofuSj

2u from S0
2 may be absorbed in

the Nj, whereas the phase ofSj
2skd can be absorbed in the

scattering phasef jskd. The form of Eq.(1) implies that the
wiggly part of the background absorptionmback−m̄back—if
there is any—is absorbed indm0skd.

III. STOCHASTIC REGULARIZATION

To treat high-dimensional, ill-posed fit problems, we used
in Ref. 9 the concept of ana priori guess of the set of model
parameters and reformulated the fitting task by looking for
the shift of the model parameters with respect to theira
priori values, as required by the data. Invoking the
maximum-entropy principle, the ill-posed inversion problem
can then be regularized.10 To define the procedure com-
pletely one still has to fix the variance matrixA of the a
priori model parameters, which determines in particular the
weight with which thea priori information influences the fit
relative to the weight of the experimental data. In Ref. 9 we
showed that an optimization condition, first proposed by
Turchin and Nozik11 to obtain an overall weight parameter
for the a priori input data, admits a generalization such that
the relative weights for several groups ofa priori model
parameters, in particular those of different dimensions, can
be determined independently. They follow from Eq.(34) of
Ref. 9 and must not be assumed ad hoc. This is a decisive
improvement of our approach compared to many other ap-
plications of Bayesian methods in data analyses.

It is easy to extend the implementation of this scheme,
presented in Ref. 9, to include the determination of the ad-
ditional model parametersdmt. Instead of usingxskld, l
=1, . . . ,L, as input, we now takemexpskld with Eqs. (1) and
(2) and add thedmt to the components of the vector of model
parametersx. It is important to remember that the stochastic

regularization method does not require ana priori restriction
of the number of model parameters. Instead, it automatically
determines that subspaceR of the whole model-parameter
spaceQ, where the data determine the outcome of the fit. In
the complementary subspace the result is determined by the
valuesxn

s0d given a priori to the model parameters. Strong
error correlations between two model parameters indicate
that the data do not determine them independently.

The result of the fit consists of anN-dimensional Gauss-
ian a posterioriprobability over theN-dimensional spaceQ.
The variance matrix of this distribution is given bysQ
+Ad−1, whereQ is the information marix.9 The model pa-
rametersS0

2, E0, anddm1, . . . ,dmT, are introduced for the sole
purpose of accounting for certain systematic deficiencies of
the theoretical model underlying the data analysis. Unlike the
radii Ri or the DW parameterss j

2, they are not of interest
themselves. Therefore, we integrate them out of the joint
probability in the end.

IV. ANALYSIS OF GERMANIUM DATA

As an example of the procedure proposed above we will
analyze the high-quality data obtained by Newville12 on ger-
manium at 300 K. As in Ref. 9 we retain, in the sum of Eq.
(2), the first 20 scattering paths with the largest amplitudes,
of which seven are single-scattering paths. The half-lengths
Rj of the multiple-scattering paths are expressed by theRi of
the single-scattering paths, assuming a diamond structure.
We will further assume that the parametersNj have their
ideal lattice values and will not include them in the set of
model parameters to be fitted. The DW parameterss j

2 of all
20 scattering paths and the seven anharmonicity parameters
C3;i of the single-scattering paths will be treated as indepen-
dent model parameters.

The input parameters are those given in Table I of Ref. 9.
In the smoothing procedures formexp and m0, we used the
polynomial orderK=5 and weight parametera=1.2 formexp
and K=7, a=0.15 for m0. The numberT of support points
was chosen to be 21, so that the dimension of the model-
parameter space becomesN=57. A larger number of support
points in the spline leads to increasing error correlations be-
tween these parameters without changing the average values
of the remaining parameters. Thea priori values for thedmt
were all chosen to be zero. It is convenient to take 0.001 of
the size of the edge ofm0

s1dskd at E0 as the initial internal
scalingx̂n for n=1, . . . ,T. The order of the model parameters
in the vector x is dm1, . . . ,dm21, S0

2, E0, R1, . . . ,R7,
s1

2, . . . ,s20
2 , C3;1, . . . ,C3;7, and for these six groups of model

parameters, the relative widths of theira priori probability
distributions have been determined independently.

The normalization functionAskd is plotted in Fig. 1. As
one expects,Askd is a smooth function ofk. In the lower
frame of Fig. 1, the normalized experimental absorption
cross-sectionmexp

sredd=fmexpskd−m̄backskdg /Askd is plotted, to-
gether with the absorption coefficientmspostdskd, resulting
from the fit. In addition, we show the embedded-atom ab-
sorption coefficientsm0

s1dskd andm0
spostdskd. Only data withk

ùkcut=3.3 Å−1 can be used in the fit, since our restriction of
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the cluster size for the scattering calculation to seven shells
and the truncation of the multiple-scattering series(2) make
the latter unreliable for smallerk.9 Actually, we use the
somewhat largerkcut=3.8 Å−1, indicated by the vertical line
in Fig. 1, sincem0

s1dskd varies strongly betweenk=3.0 and
3.8 Å−1, which would require smoothing polynomials of
rather high order in the construction ofm̄0

s1d. The same ex-
perimental and model-related errors were used as in Ref. 9
and are shown there in Fig. 3.

In the upper frame of Fig. 2 we plot the oscillating part of
the embedded-atom absorption fromFEFF Dm0

s1dskd=m0
s1dskd

−m̄0
s1dskd, which may contain spurious contributions and the

corresponding quantity obtained from the fit,Dm0
spostd

=m0
spostd−m̄0

spostd=Dm0
s1d+dm0−dm0. The width of the curve

Dm0
spostd indicates thea posteriorione-standard-deviation er-

ror. The damping of the oscillations inm0
spostd compared to

m0
s1d is clearly visible. In order to achieve an adequate cor-

rection of m0
s1d, a sufficient numberT of spline points is

needed. In the lower frame of Fig. 2 we show the function
Dm0

spostd with its error band, calculated forT=11. It is seen
that an eleven-point spline is too stiff to allow for the re-
quired corrections tom0

s1d.
It is instructive to compare the Fourier transforms of these

functions

f spriordsrd = UE
kcut

kmax

eikrDm0
s1dskddkU

and

f spostdsrd = UE
kcut

kmax

eikrDm0
spostdskddkU .

In Fig. 3 the two functionsf spriord and f spostd are plotted to-
gether with thea posteriorierror band, which obtained from

fDfsrdg2 = o
t,t8=1

T
]f spostdsr ;dmd

]sdmtd
sQ + Adtt8

−1]f spostdsr ;dmd
]sdmt8d

.

Note that the spurious reflection at the edge of the muffin-
tin potential, giving rise to the peak off spriordsrd at 1.2 Å
s<R1/2d, is no longer present inf spostdsrd. The same
calculation for T=11, plotted in the lower frame, shows
again that with an insufficient number of support points,
the spurious peak cannot be removed, However, the peak
of f spostdsrd around r =0.5 Å, accounting for correction to
m0

s1dskd from FEFF8at largek values, shows up in both cases.
The input EXAFS function xskd=smexp−m̄backd /

fAskdm0
s1dg−1 is compared in Fig. 4 with the EXAFS function

xskd, calculated with the correctedm0. Also shown is the
EXAFS function obtained by the routineAUTOBK (Ref. 13)
of the UWXAFS program package14 using the following pa-
rameter settings:k range:f0.05,19.8g Å−1, k weight: 3, sills
window Dk parameters: 0.50 Å−1, 0.50 Å−1, and background

FIG. 2. The dotted line is the oscillating part of the embedded-
atom absorptionDm0

s1dskd, the full line is the oscillating part of the
corrected embedded-atom functionDm0

post, together with its error
band. Upper frame forT=21 spline points, lower frame forT=11.

FIG. 3. The functionsf spriordsrd (dotted line) and f spostdsrd, to-
gether with the error bands(full lines) for T=21 in the upper frame,
and forT=11 in the lower frame.

FIG. 1. The efficiency functionAskd for the Ge data of Ref. 12
(upper frame) in units of the edge jump ofmexp−m̄back. In the lower
frame, data points with errors represent the absorption cross section
from Ref. 12 normalized byAskd, fmexpskd−mbackskdg /Askd. The
thin line gives the result of the fit,mpostskd, the thick line ism0

postskd,
the dashed line showsm0

s1dskd, the embedded-atom strength from
FEFF8. The vertical dotted line is atkcut.
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r range:f0.00,0.98g Å. With this choice, the EXAFS func-
tions obtained byAUTOBK and by our smoothing procedure
are almost indistinguishable in the relevantk range above
kcut. The quality of the fit is therefore the same as in Fig. 5 of
Ref. 9.

The modulus of the off-diagonal matrix elements of the
error-correlation matrix is shown in Fig. 5. There are only
small correlations between thedmt on the one hand, and the
distancesRi and DW parameterss j

2 on the other hand, be-
cause the correction tom0 accounts mainly for effects of the
muffin-tin kink in the electron potential aroundR1/2, which
is well separated from the distancesRi of all scattering cen-
ters. The functionm0

spostd is therefore determined fairly unam-
biguously by the experimental data.

In the upper pannel of Fig. 6, the weightssn
2 are shown,

with which the experimental data(rather than thea priori
information) enter into the fit of the model parameters. As in
Ref. 9, sn

2=1 indicates full determination by the data. It is
seen that the spline ordinates are well determined—in fact
required—by the data. In the lower frame, the deviations of
the model parameters from theira priori values are plotted
together with theira posteriorierrors in dimensionless units,
as in Fig. 6 of Ref. 9. The shiftsxn of the parametersS0 and
E0 (n=22 and 23, respectively) are seen to be compatible
with zero. The same holds for all anharmonicity parameters
C3;i sn=51, . . . ,57d and all radii, exceptR1 andR2, which are
shifted upwards by 0.01 Å with ana posteriori error of
0.006 Å. Of the DW parameters, the first seven are signifi-
cantly changed compared to theira priori values in a corre-
lated Debye model with a Debye temperature of 360 K. The
corresponding data analysis without correction tom0, but
with the samea priori input, was presented in Fig. 6 of Ref.
9. A comparison shows that the trend in the shifts of the DW
parameters is the same as before. Also in absolute units, Fig.
7 of Ref. 9, the shifts have the same size in the present
calculation. But instead of a minor shift inR5 obtained in
Ref. 9, we now see slight shifts ofR1 and R2, which is a
more plausible result.

V. FIT OF L-EDGE DATA

The L1-, L2-, andL3-edge XAFS spectra often overlap in
the k range of interest. This requires an extension of the
background-subtraction procedure presented above. We in-
troduce the shifted wave vectorsks

2skd=k2−Dks
2, s=1,2,3,

with Dks
2=2m"−2fE0

s Lsd−E0
sL3dg, and the averaged embedded-

atom absorption-coefficientsm̄0
sLsdskd obtained by averaging

the FEFF absorption coefficientsm0
sLsdsksd. In FEFF m0

sLsdfE
−E0

sLsd=50 eVg is normalized to one for eachs. Therefore,
we need the absolute normalization factorsDs for each of the
three cross sections. These quantities are available fromFEFF

(file “xmu.dat”). We then form the ratios

FIG. 4. The EXAFS functionxskd in k3xskd representation. The
solid line is the result of our smoothing procedure with the cor-
rectedm0, the dotted line is calculated withAUTOBK. At some data
points, typical error bars are indicated. The dashed line is calculated
with the uncorrectedm0.

FIG. 5. The modulus of the off-diagonal matrix elements of the
a posteriorierror-correlation matrix. The small peaks at the lower
left corner correspond to error correlations between the spline val-
uesdmt of the first two nodal points. They are also correlated with
the parametersS0 andE0 (the peak on the lower border atn=22 and
23). There are smaller correlations betweendm1 and R1, at n=24
and between the first anharmonicity parameterC3;1 and thedmt

(small ridges atn=51. The large peaks aroundfm,ng=f25,52g refer
to correlations between parametersRi andC3;i.

FIG. 6. The deviations of the fitted model parameters from their
a priori values(lower frame); squared cosinessn

2 of the projections
of the model parameters into the subspaceR of the total model
parameter spaceQ (upper frame).
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asskd =
Dsm̄0

sLsdskd

o
s8=1

3

Ds8m̄0
sLs8dskd

, s= 1,2

and the averaged experimentalL3-edge absorption-
coefficient m̄expskd is constructed by averagingsmexp

−m̄backds1−a1−a2d with respect to theL3 edge. The effi-
ciency is then given byAskd=m̄expskd /D3m̄0

sL3dskd.
Instead of the expression(1), we now have to fit

mexpskd − m̄backskd = Askdo
s=1

3

Dsfm0
sLsdskd

+ dm0
sLsdfk;dm1

sLsd, . . . ,dmTs

sLsdgg

3fxsLsdskd + 1g s3d

in terms of the model parametersdmt
sLsd, s=1,2,3, t

=1, . . . ,Ts, E0
sLsd , S0

ssd , Rj , s j
2, andC3;i. In Eq. (3) we add a

correction spline to each of the three embedded-atom
absorption-coefficientsm0

sLsd from FEFF. The threeL-edge
XAFS functionsxsLsdskd are obtained fromFEFF in terms of
the model parameters. In order to reduce the number of in-
dependent model parameters, we assume thatS0

ssd=S0, s
=1,2,3. Theform of Eq. (3) shows that the threedm0

sLsd

cannot be determined independently. We therefore retain
only one correction spline, saydm0

sL3dsk3d=dm0
sL2dsk2d

=dm0
sL1dsk1d. Finally, we assume that the distances of theL1

and L2 edges from theL3 edge are the ones given byFEFF.
Therefore, only one edge energyE0, that of theL3 edge, is
retained in the fit. The output of the fit consists, besides the
efficiency functionAskd, of one correction splinedm0, one
energyE0=E0

sL3d, one factorS0, and the structural parameters
Ri, s j

2, andC3;i. All three L-edge components contribute to
mexp, although in practice theL1 contribution is rather small
compared to the other two components.

VI. ANALYSIS OF IRON DATA

In order to test the unfolding of an EXAFS spectrum con-
sisting of three L-edge contributions, we prefer to use
computer-generated data. We useFEFF to calculate the six
functionsxsLsdskd and m0

sLsdskd, s=1,2,3 for iron, where the
radii are obtained from the lattice constanta=2.8665 Å,15

assuming an ideal bcc lattice. The DW parameters were gen-
erated from a correlated Debye model with a Debye tempera-
ture of 420 K. We further assume thatC3;i =0 and S0

2

=0.986, as given byFEFF8. Nine shells are taken into account
in the FEFF calculations, and altogetherJ=61 paths, corre-
sponding to a 4% amplitude threshold inFEFF. In thek range
f0.05,20.0g Å−1, L=400 data points were taken.

Although in a computer simulation the whole energy
range fromk=0 to kmax could be used for the fit, we intro-
duce cutoffs for the near-edge XAFS(NEXAFS) ranges of
each of the three components of the EXAFS function to
simulate the realistic situation, in which the multiple-
scattering series(2) cannot be used for smallks. Since theL2
andL3 edges are very close to each other, we introduce one

lower cutoffkcut=3.6 Å−1 to account for the NEXAFS ranges
of both theL2 andL3 components. Because of the NEXAFS
L1 component, we suppress thek rangef6.0,6.7g Å−1.

In the computer simulation, the embedded-atom absorp-
tion coefficientsm0

sLsd are obtained fromFEFF8and are there-
fore, by construction, the “truth.” In order to check whether
the fitting procedure can recognize and correct errors in the
m0’s in a realistic fit, we added a distortion to theFEFFresult
for m0

sLsdsksd of the form

dm0
sLsdsksd = 0.01Ds sins2ksde−0.005ks

2
, s= 1,2,3, s4d

with ks in Å−1 in analogy to the germanium case. Of course,
this is not meant to imply that in analyzing real XAFS data
of iron with FEFF8, corrections tom0 of this size are to be
expected. Thea priori values for thedmt are chosen to be
zero. Thea priori values of all other model parameters are
assumed to be the “true” values, i.e., those used to construct
the data. Analogous to the Ge example, the relative weights
of the six groups of model parameters have been determined
independently.

In Fig. 7, the EXAFS functionxskd, calculated with the
modifiedm0skd, is compared with the one obtained with the
correctedm0. Also indicated are the assumed “experimental”
errors. The number of spline points wasT=24 in this calcu-
lation. The distortion, Eq.(4), has a drastic effect on the
EXAFS function. It is shown in Fig. 8, together with the
result of the fit and its error band. A perfect correction of the
distortion by the fit would result in a curve compatible with
zero within the error band. WithT=24 spline points, this is
still not quite achieved for the smallerk values. But for the
choice T=15, the situation is considerably worse. This is
even more obvious when the Fourier transformsf spostdsrd in
Fig. 9 are compared.

In Fig. 10 the shifts of all model parameters, including
radii, DW, and asymmetry parameters, away from theira

FIG. 7. The full line gives the calculated EXAFS functionxskd
with m0

sLsd from FEFF8. The open dots arexskd calculated with the
distortedm0

sLsd plus statistical errors of the indicated size. The full
dots represent the EXAFS function after the distortionsdm0

sLsd have
been corrected out. Thek intervals between the left edge of the
figure and the first vertical dotted line and between the other two
dotted lines are excluded from the fit.
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priori values are shown. The fact that all model parameters,
except thedm0sktd, remain essentially unchanged by the fit
shows that the distortion ofm0 is properly “recognized” by
the procedure and not compensated by various changes of
the other model parameters. This is no longer true forT
=15, as shown in Fig. 11.

VII. SUMMARY

We have shown that certain deficiencies in the calculation
of the embedded-atom strengthm0 from given model param-
eters can be compensated empirically in the inverse problem
of fitting K-edge data. This is also possible in the more de-
manding case of overlapping contributions of the threeL
edges in lighter elements. An important prerequisite of the
proposed procedure is the determination of an empirical ef-
ficiency functionAskd from k-averaged data and a similarly
k-averaged theoreticalm0.

Determining the correction splinedm0 simultaneously
with the standard EXAFS parametersS0, E0, Ri, s j

2, andC3;i

allows us to obtain not only thea posteriorierrors, but also
the cross correlations between all these quantities.

APPENDIX: A SMOOTHING PROCEDURE

In order to obtain a continuous, smoothed, averageŪsxd
of a function Usxld, given at a finite number of discrete
points x1, . . .xL, Strutinsky and Ivanjuk16 proposed the fol-
lowing procedure. One generates the orthonormal polynomi-
als Pksxd on the set of pointsx1, . . .xL to a weight function
vsxd

o
l=1

L

PksxldPk8sxldvsxld = dkk8, k,k8 , L sA1d

by the recursion relations

P̃k+1sxd = sx − bkdPksxd − akPk−1sxd,

ak+1
2 = o

l=1

L

xlPksxldP̃k+1sxldvsxld,

FIG. 9. The functionsf spriordsrd (dotted line) and f spostdsrd (full
line) with the error band, in the upper frame forT=24, in the lower
frame forT=15.

FIG. 10. The same as Fig. 6 for ironL-edge data analyzed with
a T=24 correction spline.

FIG. 11. The same as Fig. 6 for ironL-edge data analyzed with
a T=15 correction spline.

FIG. 8. The dotted line gives the distortiondm0
sL3d, Eq. (4), the

full line with the error band is the result of the fit. The upper frame
is calculated forT=24, the lower frame forT=15.
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Pk+1sxd =
1

ak+1
P̃k+1sxd,

bk+1 = o
l=1

L

xlPk+1
2 sxldvsxld,

valid for 0øk,L with the initial values

P0sxd = So
l=1

L

vsxldD−1/2

,

a0P−1 = 0,

b0 =

o
l

xlvsxld

o
l

vsxld
, sA2d

and with the conventionak.0. It is easy to show by induc-
tion that the orthonormality relations(A1) follow from the

recursion relations. A smoothed functionŪsxd is obtained by
expandingUsxd in the set of polynomialsPksxd, retaining
only theK lowest terms

Ūsxd = o
k=1

K

akPksxd,

with

ak = o
l=1

L

UsxldPksxldvsxld.

For the weight functionvsxd, Strutinsky proposed

vsxd = F1 −S xL − x

xL − x1
D2Ga

, a . 0.

The recursion relations are unstable with the initial con-
ditions (A2). But since we use rather smallK values, the loss
in numerical accuracy remains tolerable forkøK. In our
applications we choose the first support point just belowkcut.
The exponenta in the weight function and the polynomial
orderK were obtained from the minimum of the function

hsa,Kd =1o
l=1

L

fUsxld − Ūsxldg

o
l=1

L

uUsxld − Ūsxldu 2
2
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