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1.6 Local dynamics

An EXAFS photoelectron samples the modulus of the instantaneous interatomic dis-

tance between absorber (1) and back-scatterer (2) atoms

r ≡ |r| = |Rc + u2 − u1| (1.46)

Here the u1 and u2 denote the thermal displacements from the equilibrium positions

at a given temperature and Rc is the equilibrium distance between mean positions of

the two atoms (see Fig. 1.2). If we decompose the atomic relative displacement ∆u

1u
r

cR
r

r
r

2u
r

Fig. 1.2. Comparison between crystallographic equilibrium distance Rc and instantaneous interatomic distance r probed by

EXAFS.

into projections parallel and perpendicular to the bond direction, we have [29]

r = Rc + ∆u‖ +
∆u2

⊥
2Rc

− ∆u‖∆u2
⊥

2R2
c

+ . . . (1.47)

This approximate analytical relation for r has been obtained through a Taylor expan-

sion, considering small relative displacements with respect to the interatomic distance

x =
|u2 − u1|

Rc

¿ 1 (1.48)

1.6.1 Cumulants and local dynamical properties

The first three cumulants C∗
i represent average value, variance and asymmetry of the

EXAFS one-dimensional distribution of distances ρ(r). Through Eq. (1.47), they can

be connected to the local dynamical behavior of the system, i.e. to the atomic relative

displacements parallel and perpendicular to the interatomic bond.

First cumulant

The thermal average of Eq. (1.47) leads to

C∗
1 ≡ 〈r〉 = Rc +

〈∆u2
⊥〉

2Rc

+ . . . (1.49)
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Chapter 1. EXAFS and thermal disorder

where it has been considered that 〈∆u‖〉 = 0. This is easily understood since thermal

displacements ui are referred (at any temperature) to the equilibrium positions [30],

which are defined as the centers of the probability distributions of atoms.

Second cumulant

Properly combining Eqs. (1.47) and (1.49), we obtain

C∗
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⊥〉2

]
+ . . . (1.50)

In the case of harmonic crystal, this equation correctly reduces to Eq. (4) of Ref. [13]

(which lacks the second term on the right-hand side). Anyway, it is customary to

truncate Eq. (1.50) to the first dominant term, which corresponds to the parallel mean

square relative displacement [15]

C∗
2 ' 〈∆u2

‖〉 ≡ MSRD‖ (1.51)

Third cumulant

Proceeding as above, we find that the third cumulant is given by:

C∗
3 ≡ 〈(r − 〈r〉)3〉 = 〈∆u3

‖〉 +
3

2Rc

[
〈∆u2

‖∆u2
⊥〉 − 〈∆u2

‖〉〈∆u2
⊥〉

]
+ . . . (1.52)

The lowest order term 〈∆u3
‖〉 corresponds to the parallel mean cubic relative displace-

ment (MCRD‖). For an ideally harmonic crystal [31] it would be zero: in this case

Eq. (1.52) correctly reduces to Eq. (7) of Ref. [13] (which lacks the first term on the

right-hand side). Therefore it is well understood that the third cumulant is mainly due

to crystal anharmonicity. The second order term on the right-hand side of Eq. (1.52)

is instead due to the harmonic part of the crystal potential: the third cumulant is then

always different from zero, also for an harmonic crystal [13], so that in principle the

distribution ρ(r) is never gaussian.

1.6.2 Mean square relative displacements

The parallel and perpendicular MSRDs are defined as

MSRD‖ = 〈
∣∣(u2 − u1) · R̂c

∣∣2〉 (1.53a)

MSRD⊥ = 〈
∥∥(u2 − u1)

∥∥2〉 − 〈
∣∣(u2 − u1) · R̂c

∣∣2〉 (1.53b)
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They both can be decomposed into the sum of un-correlated mean square displacements

(MSDs) and a correlation term

〈∆u2
‖〉 = 〈∣∣(u2 · R̂c)

∣∣2〉 + 〈∣∣(u1 · R̂c)
∣∣2〉 − 2〈(u2 · R̂c)(u1 · R̂c)〉

= 〈u2
2‖〉 + 〈u2

1‖〉 − 2〈u2‖u1‖〉 (1.54a)
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∣∣2〉 + 〈
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2⊥〉 + 〈u2
1⊥〉 − 2〈u2⊥ · u1⊥〉 (1.54b)

In these equations we have set

∥∥ui

∥∥2
= u2

i‖ + u2
i⊥

ui · uj = ui‖uj‖ + ui⊥ · uj⊥ for i 6= j

The comparison between EXAFS MSRDs and the absolute mean square displacements

(MSDs)‡ obtained from x-ray diffraction (XRD) allows the valuation of correlation of

atomic motion parallel and perpendicular to interatomic bond.

On the basis of statistics theorems [30], it is possible to place bounds upon the

correlation terms of Eqs. (1.54a) and (1.54b)
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One can then place upper and lower bounds to parallel and perpendicular MSRDs [30]
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It is then possible to put lower and upper bounds upon the parallel and perpendicular

mean square relative displacements without any knowledge of their correlation: lower

and upper bounds correspond to highly correlated and anti-correlated relative motion,

respectively.

‡According to Ref. [30], the perpendicular mean square displacement MSD⊥ ≡ 〈u2
⊥〉 refers to a

projection on the plane perpendicular to the interatomic bond. This is consistent with the use of the

term ”perpendicular” in Eq. (1.47) and followings. Elsewhere [32] the so-called U⊥ are used, referring

however to a single direction contained in the perpendicular plane. In the case of rotational symmetry

around the bond direction, 〈u2
⊥〉 = 2U⊥.
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