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Four spectroscopic techniques are currently 
combined with macromolecular X-ray 

crystallography

• UV / visible absorption.
• Fluorescence.
• Raman.
• X-ray absorption.
• These can be done either “off-line” in the 

laboratory, or “on-line” during X-ray data collection.
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• Know what you have in your crystal: If a chromophore is 
present, e.g. flavin / heme, then the the UV/vis spectrum of 
the crystal enables the structure to be directly linked to a 
particular chromophore chemical / redox state. 

• Track unintended photoreduction: X-rays oxidize solvent 
water to produce photoelectrons. These can reduce redox
active cofactors, disulfide bonds etc.

• Kinetic crystallography: Changes in UV/vis absorbance 
that occur during chemical reactions can be followed in the 
crystal. This information can be used to trap reaction 
intermediates.

Single crystal UV/vis microspectrophotometry



Carrie M. Wilmot
Associate Professor

Single crystal UV/vis microspectrophotometer

Hadfield, A. & Hajdu, J. (1993) J. Appl. Cryst. 26: 839-42.
Sjögren, T. et al. (2002) J. Appl. Cryst. 35: 113-6.
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On-line microspectrophotometer mount

BioCARS
14-BM-C
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• The spectra from single crystals are anisotropic.
• Therefore, the isotropic solution spectrum cannot be 

emulated with a single crystal orientation.
• Chromophores with extended planar π electron systems, 

such as heme, exhibit the strongest orientation dependent 
anisotropy.

• Crystal prism effects also distort the spectrum.
• Path length (crystal size) varies.
• Absorbance changes in crystals are qualitative, not 

quantitative.
• Despite this, a crystal orientation can normally be found that 

has the features of the solution spectrum, and relative
changes can be tracked.

Single crystal UV/vis microspectrophotometry
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Solution                            Single crystal

UV/vis of methylamine dehydrogenase
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Pearson, A.R. & Wilmot, C.M. (2003)                
Biochim. Biophys. Acta, 1647: 381-9. 
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Rotation of O-quinone / Cu2+ containing crystal

O-quinone
440nm Cu2+

600nm

UV/vis of methylamine dehydrogenase in 
complex with amicyanin
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Reduction of redox centers by photoelectrons
• X-rays oxidize solvent water to produce photoelectrons, 

and these can reduce oxidized redox centers. 
• The kinetics and dose dependence of reduction at redox

centers can be determined. 
• Composite datasets can then be constructed from multiple 

crystals where only the early time-points during X-ray 
exposure are used. This enables the structure of the 
oxidized species to be determined.

• Experimental tip: If possible only use data where loss of 
the oxidized species is less than 20%.

Sjögren T & Hajdu J (2001) J. Biol. Chem. 276: 13072-6. Berglund et al. (2002) Nature
417:463-8. Pearson AR et al. (2007) J. Synch. Rad. 14: 92-98 



Carrie M. Wilmot
Associate Professor

Reduction of redox centers by X-rays
Photoreduction of N-semiquinone→N-quinol in holo-binary MADH / amicyanin crystals.

Copper is already reduced to Cu(I)
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For N-semiquinone containing intermediate only 20s of X-ray data were used per crystal
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Enzymology in crystals
• [protein] in crystals ≈ [protein] in the cell.
• The crystal acts likes a porous cage that enables molecules, 

such as substrates, to diffuse through the solvent channels.
• Many enzymes retain catalytic activity in the crystal.
• If there are no large conformational changes during 

catalysis, many proteins remain crystalline during turnover.
• Need the majority of the protein molecules in a crystal to be 

in the same state to “see” that state in the structure.
• desired intermediate must accumulate 
• must remain stable during X-ray data collection

• Depending on the system, spectroscopy can track the 
reaction in the crystalline protein.
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Enzymology in crystals
• Chemical trapping: Intermediates can be built up within the 

crystal using knowledge of the reaction mechanism.
• For example, (1) an intermediate prior to an acid catalyzed 

step may be captured by initiating the reaction at high pH. (2) 
A reaction may be halted in an ordered or ping-pong 
mechanism by addition of only the 1st substrate. (3) A “slow” 
substrate can be used.

• Kinetic crystallography: The constraints of the crystal 
lattice can dramatically slow reaction steps that involve 
conformational change. The reaction can be tracked by 
spectroscopy. When the build-up of an intermediate reaches 
a maximum, the crystal can be frozen to “pause” the 
reaction. In this way “snapshots” along the reaction pathway 
can be generated and assembled into a “movie of catalysis” 
at the molecular level. 
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Single crystal kinetics in E. coli amine 
oxidase (ECAO)

Crystalline ECAO takes 9 minutes to 
reach steady state. In solution 
ECAO turns over 118 molecules of 
β-phenylethylamine per second.

Wilmot CM et al.
(2002) Methods in 
Enzym. 353:301-18.
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Single crystal fluorescence

Can also 
be used for 
visualizing 
protein 
crystal in a 
loop.

Dominique 
Bourgeois
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Single crystal non-resonant Raman
• [protein] in crystals 

much greater than 
in solution.

• Therefore more 
protein signal, and 
less solvent 
contribution.

• The crystal 
restricts motions, 
which leads to 
sharper features in 
the Raman.



Carrie M. Wilmot
Associate Professor

Ligand identification in xylose isomerase

Crystal: C: Native; D: Eu derivative, (EuNO3
-); D-C: difference 

Solution: E: 1M NaNO3
Carpentier P et al. (2007) J. Appl. Cryst. 40:1113-22

(1) SO4
- (2) bound NO3

- (3) soln NO3
-
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Dominique 
Bourgeois

Breakage of disulfide bonds
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X-ray absorption spectroscopy

• Genuine XAS / PX combinations are still rare. SSRL BL9-3 
has been developed to support these types of experiments.

• Polarized XAS on crystals of photosystem II (PS-II) has been 
used to shed light on the structure of the oxygen evolving 
complex, Mn4Ca.

• The Ca was replaced with Sr, which still gives a functional 
complex.

• Different intermediate states were probed with XAS.

Latimer, MJ et al. (2005) J. Synch. Rad. 12: 23-7; Pushkar, Y et al. (2008) 
PNAS, 105: 1879-84; Yano J et al. (2006) Science 314: 821-5.
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A) Mn K-edge 
XANES. Lower 
panel 2nd

derivative. 
B) FT of Mn
EXAFS. 

Polarized 
XAS on OEC 

of PS-II
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Polarized XAS on 
OEC of PS-II

• The data indicated 
substantial changes to 
the cluster during OEC 
turnover. 

Pushkar, Y et al. (2008) PNAS, 105: 1879-84.
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Single crystal spectroscopy / PX facilities
• Single UV/visible 

spectroscopy is 
becoming widely 
available at 
synchrotrons, e.g.
BioCARS at APS.

• Currently, one of the 
best set up labs for 
combined single crystal 
spectroscopy / PX is 
sector 23 at ESRF.

http://www.esrf.eu/UsersAndScience/Experiments/MX/Cryobench/
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Single crystal spectroscopy / PX facilities

• A similar facility to 
cryobench is being built 
at NSLS-II, Brookhaven 
National Laboratory, but 
will also include X-ray 
absorption spectroscopy.

http://www.px.nsls.bnl.gov/x26c/x26c_info.html
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Reviews on single crystal spectroscopies:

• Pearson, A.R., Mozzarelli, A. & Rossi, G.L. Microspectrophotometry 
for structural enzymology. Current opinion in structural biology 14, 
656-662 (2004).

• Bourgeois, D. & Royant, A. Advances in kinetic protein 
crystallography. Current opinion in structural biology 15, 538-547 
(2005).

• De la Mora-Rey, T. & Wilmot, C.M. Synergy within structural biology 
of single crystal optical spectroscopy and X-ray crystallography. 
Current opinion in structural biology 17, 580-586 (2007).

• Bourgeois, D., de Rosay, E. & Katona, G. Kinetic crystallography: a 
tool for filming proteins in action. Biofutur, 48-51 (2007).

More info……
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UV/visible (kinetics):
• Hajdu, J., et al. Analyzing protein functions in four dimensions. Nature 

structural biology 7, 1006-1012 (2000).
• Wilmot, C.M., Sjogren, T., Carlsson, G.H., Berglund, G.I. & Hajdu, J. 

Defining redox state of X-ray crystal structures by single-crystal 
ultraviolet-visible microspectrophotometry. Methods in enzymology
353, 301-318 (2002).

• Berglund, G.I., et al. The catalytic pathway of horseradish peroxidase 
at high resolution. Nature 417, 463-468 (2002).

More info……
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Photoreduction:
• Pearson, A.R., Pahl, R., Kovaleva, E.G., Davidson, V.L. & Wilmot, 

C.M. Tracking X-ray-derived redox changes in crystals of a 
methylamine dehydrogenase/amicyanin complex using single-crystal 
UV/Vis microspectrophotometry. Journal of synchrotron radiation 14, 
92-98 (2007).

Fluoresence:
• Royant, A., et al. Advances in spectroscopic methods for biological 

crystals. 1. Fluorescence lifetime measurements. Journal of Applied 
Crystallography 40, 1105-1112 (2007).

More info……
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Raman:
• Carey, P.R. Raman crystallography and other biochemical 

applications of Raman microscopy. Annual Review of Physical 
Chemistry 57, 527-554 (2006).

• Carpentier, P., Royant, A., Ohana, J. & Bourgeois, D. Advances in 
spectroscopic methods for biological crystals. 2. Raman 
spectroscopy. Journal of Applied Crystallography 40, 1113-1122 
(2007).

• Carey, P.R. & Dong, J. Following ligand binding and ligand reactions 
in proteins via Raman crystallography. Biochemistry 43, 8885-8893 
(2004).

More info……
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