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The goal: structure and kinetic mechanism from TR-xray data

1.) visual inspection

signal yes/no
where?

2.) integration of difference electron density features
small/large volumes
fit with trial functions

3.) component analysis
global     
effective noise reduction (SVD-flattening)
kinetics AND structures of the intermediates

4.) outlook: kinetic on very fast time-scales

Schmidt
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Difference structure factors:

noise is substantial

signal is distributed over all ∆∆∆∆F (small quantity per ∆∆∆∆F)

Structure Factors not linearly dependent on occupancy ≡ concentration

Difference electron density
noise is randomly distributed, 
signal is confined to small but spatially contiguous volumes

⇒⇒⇒⇒ Power of the Fourier synthesis

Difference Electron density is ideal subject to be analyzed

Schmidt



time dependent data set                                 corresponding dark data set

|F(h,k,l,t)|                                                         |FD(h,k,l)|; ϕD
hkl

difference electron density maps ∆ρ(x,y,z,t)

electrons moved from the red (negative)

difference electron density to the blue

(positive) difference electron density

t=300 ns

data reduction
LaueView, Precognition/Epinorm, Prow

raw data 

∆F(h,k,l,t)= |F(h,k,l,t)|-|FD(h,k,l)|; ϕD
hkl

time resolved scattering patterns corresponding dark exposures
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Strategy

Follow the entire reaction from the beginning to the end after reaction initiation

collect data points equidistantly (linearly) in logarithmic time



1.) Visual Inspection

Schmidt



Photoflash Experiments on L29W Myoglobin

MbCO → Mb-deoxy + CO → MbCO

Dissociation

10 fs to 100 ns

Rebinding

µs to ms (30 ms in L29W)

BI

CI

AI

BI

CI

AI

COP

bond brakes once irradiated

by Laser light (518 nm)
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Movies, extreme slow-motion

1ns 1ns

Schmidt



Movies, extreme slow-motion
Schmidt



2.) Quantification by Integration
Fit of trial functions

Schmidt



Integration of difference electron density within a mask

Programs for users:

Probe_v6: Srajer et al., 2001

Probe and Mask (PROMSK): Schmidt et al., 2005, Knapp et al., 2006

number of

displaced electrons

∑ ⋅
i

GV∆ρ∆

integrate spherical volumes 

mask out entire moieties



The small molecules in L29W MbCO: CO and Heme
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side chains coupled to helices kaleidoscope of relaxations
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Solvent

wild-type, none goes out

Initial CO migration
In L29W MbCO: fast Trp29 relaxation blocks way to Xe1, most CO in solvent
In WT-MbCO: all CO in B and Xe1

B+Xe1=100% in wild-type

Xe1: ~1/3 in L29W

Xe4

B

Xe1

L29W 2/3 goes out

not clear in L29W

most likely in wt



Solvent

wild-type, 300 ns

L29W 1.5 ms
B+Xe1=100% in wild-type

1/3 total in L29W

Xe4

B

Xe1

wild-type fast 150 µs
L29W, slow > 20 ms

Return of CO to the iron
In L29W MbCO: Trp29 blocks access, inefficient leaking on proximal side
In WT-MbCO: 2 orders of magnitude faster, migration to distal side



Results are appealing
-relaxation times

-stretched at fastest times, simple at slower times
-period of time with no relaxations

HOWEVER: 
-no separation of heavily overlapping intermediate states

3. Analysis of TR-crystallographic data with a component analysis
Structures and Kinetics at the same Time

Schmidt, Rajagopal, Ren, Moffat, BJ 2003
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Chemical reactions in general (nomenclature)

-proceed through intermediate states

-intermediate states are shortly (=transiently) occupied by real molecules

-intermediate states are energy minima in multidimensional conformational space

-intermediate states are connected by a chemical kinetic mechanism

Transient state kinetics
-allows the determination of the physical properties (structure) of the intermediate states

together with the kinetics

Note: a transient state is a short lived intermediate state but NOT a transition state

Chemical Kinetics:

Schmidt
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Example: Reaction with 3 intermediate states plus the DARK state (D)

connected by an irreversible, sequential chemical kinetic mechanism
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DFt1
obs

DFtrue

FI1

FD

|Ft1|

DFt2
obs

DFtrue

FI1

FD

|Ft2|

DFt3
obs

DFtrue

FD

|Ft3|

t1 t2 t3

Argand-diagrams for 3 time points, 3 intermediates plus dark are involved

Goal: to determine structure factors FI1…FI3 with amplitude and phase

Problem: non-linearity

Solution: use difference maps, perfect maps on half the absolute scale

(Henderson and Moffat, 1971, textbook: Drenth)



5µs

9µs
20µs

50µs
125µs

250µs

500µs
850µs

1ms

2ms
5ms

7ms
15ms

30ms
100ms

series of time-dependent difference maps

how to get the structures and kinetics?



The Art of Vectorizing a (difference) Electron Density MAP

i.) We ONLY need volume occupied by THE MOLECULES IN THE asymmetric unit
ii.) Difference maps are represented on a 3D grid (voxels)

We ONLY need voxels that contain SIGNAL



-Search all masked out volumes in the time series
-Determine those voxels that contain (abs)density > certain threshold (2ssss)

-Mark these voxels
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Vectorize the maps:
- 1…N voxels, each for t=1…T maps

…. 

∆ρ1

∆ρ2

∆ρ3

.

.

.

∆ρN

t1     t2     … tT

1 2 3
0.32 0.9 3.2

NN-1

difference map
at t=1

Schmidt



…. 

∆ρ1

∆ρ2

∆ρ3

.

.
∆ρG

Vectorized difference maps

t1   t2      tN

SVD the Maps

…. 

∆ρ1

∆ρ2

∆ρ3

.

.
∆ρG

1    2      N    

N x N 

diagonal

t1 t2 .. tN

1

2

…

N

right SV

time-dependent
left SV

time-independent

SValues

scale factors

Significant

Significant

A      =          U      S        VT

Program for users: SVD4TX
select significant SVs

re-construct A

US SS VT,S =     A’
noise reduced !



SVD

decomposition

time-dependent

difference maps (4D)

significant

singular maps (3D)

singular

values >> 0
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1/2+
1/2+

1/2+
1/2+

1/2+
1/2+

need symmetry operations

need periodic boundary conditions

Us Ss VT,s = A‘



1/2+
1/2+

1/2+
1/2+

1/2+
1/2+

phase and

amplitude-combination

measured ∆F, Ft, FD
calculated FD

new difference maps
noise free, phase improved
SVD again

SVD4TX

(i)  SVD-flattening

DDDDFSVD

FFT
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Phase- and Amplitude Recombination in SVD-flattening



SVD

decomposition

time-dependent, SVD-flattened

difference maps (4D)

significant

singular maps (3D)

few singular

values >> 0
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iii) Chemical kinetics is described by chemical kinetic mechanism
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Determine tentative intermediate difference electron density
by fitting a preliminary mechanism to the right singular vectors

candidate kinetic mechanism
global fit

noise reduced
phased
time-dependent

I2-D

I3-D
lSV
significant
time-independent
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Modeling of structure: 

-Extrapolated, Conventional Maps

-Generated from Difference Maps of the Intermediates

IS3

FFT
DDDDFIj (Amplitude AND Phase)

FD

∆FIj

FIj
ext
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Arg 52

Time-Independent Difference Map

- Extracted by SVD

Extrapolated Conventional Map

- Used to model structure

Schmidt



Goal reached?

-ultimate goal: unique, unambiguous mechanism

-structural information: “posterior analysis”

-Program for users: GetMech (get mechanism)

Structures of the intermediates and the ground state

calculated difference electron densities ∆ρj

calculated, time-dependent difference maps ∆ρ∆ρ∆ρ∆ρt
calc(k)

observed, measured, time-dependent difference maps ∆ρ∆ρ∆ρ∆ρt
obs

goodness of fit
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reaction coefficients k

concentrations Cj,t
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1
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Structure factors

Difference structure factors by subtracting the ground state



Various mechanisms can generate very similar concentrations

Some mechanisms still degenerate

⇒ Variation of temperature (k are Arrhenius dependent)
5-dimensional crystallography
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2.3 ps

3 ns

 580 ms
 190 ms

I0pB
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113 s mixture

I0
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XFEL

TR-experiments
3rd generation

synchrotron

Example: The PYP photocycle (Moffat group)
Schmidt et al, 2004, Rajagopal et al., 2005, Ihee et al., 2005
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Kinetic Mechanism

The Kinetics



5. Outlook
analysis (not data reduction) of pico and femto-second time-resolved data
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A table top hard X-ray free electron laser 

(TT-XFEL) 

X-ray pulse: 10 fs

# of photons: 1013 per pulse



•physical kinetics replaces chemical kinetics

•Langevin type of relaxation employing 

friction/diffusion in restricted space

•not well defined states

•inhomogeneous ensemble

•main directions of structural changes 

(maybe curved) instead of isotropic 

B-values

ps fs/as

•protein RIGID

•collective motions in the crystal: 

phonons

•protein is container of small molecule

•relaxation of small molecule 

(bond braking: within some ten fs, iron-

out-of plane: a few 100 fs)

•electronic relaxation ⇒ theory …
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